The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

Size: px
Start display at page:

Download "The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal."

Transcription

1 Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45 What is an essential characteristic of an object in equilibrium? A) zero kinetic energy B) zero velocity C) zero acceleration D) zero potential energy Page 1 The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. 4) 5) 6) What is the magnitude of force F if it establishes equilibrium? A) 86.6 N B) 50.0 N C) 187 N D) 100. N In which situation is the net force on the object equal to zero? A) an automobile braking to a stop B) a pitched baseball being hit by a bat C) a bicycle moving at constant speed on a straight, level road D) a satellite moving at constant speed around Earth in a circular orbit A man standing on a scale in an elevator notices that the scale reads 30 newtons greater than his normal weight. Which type of movement of the elevator could cause this greater-than-normal reading? A) accelerating upward B) accelerating downward C) moving downward at constant speed D) moving upward at constant speed The diagram below represents a 0.40-kilogram stone attached to a string. The stone is moving at a constant speed of 4.0 meters per second in a horizontal circle having a radius of 0.80 meter. 7) 8) 9) What is the magnitude of the centripetal acceleration of the stone? A) 0.0 m/s2 B) 2.0 m/s2 C) 20. m/s2 D) 5.0 m/s2 A high school physics student is sitting in a seat reading this question. The magnitude of the force with which the seat is pushing up on the student to support him is closest to A) 6,000 N B) 0 N C) 600 N D) 60 N A 1,200-kilogram car traveling at 10. meters per second hits a tree and is brought to rest in 0.10 second. What is the magnitude of the average force acting on the car to bring it to rest? A) N B) N C) N D) N A ball having mass m is struck by a bat having mass 9m. Compared to the magnitude of the force exerted by the bat on the ball, the magnitude of the force exerted by the ball on the bat is A) the same B) greater C) less

2 10) A constant unbalanced force is applied to an object for a period of time. Which graph best represents the acceleration of the object as a function of elapsed time? Page 2 A) C) B) D) 11) 12) The force required to start an object sliding across a uniform horizontal surface is larger than the force required to keep the object sliding at a constant velocity. The magnitudes of the required forces are different in these situations because the force of kinetic friction A) decreases as the speed of the object relative to the surface increases B) increases as the speed of the object relative to the surface increases C) is less than the force of static friction D) is greater than the force of static friction The table below lists the coefficients of kinetic friction for four materials sliding over steel. 13) A 10.-kilogram block of each of these materials is pulled horizontally across a steel floor at constant velocity. Which block requires the smallest applied force to keep it moving at constant velocity? A) aluminum B) steel C) copper D) brass The diagram below represents a block sliding down an incline. 14) 15) Which vector best represents the frictional force acting on the block? A) A B) B C) C D) D If the magnitude of the gravitational force of Earth on the Moon is F, the magnitude of the gravitational force of the Moon on Earth is A) larger than F B) smaller than F C) equal to F A wooden block is at rest on a horizontal steel surface. If a 10.-newton force applied parallel to the surface is required to set the block in motion, how much force is required to keep the block moving at constant velocity? A) less than 10. N B) 10. N C) greater than 10. N

3 16) Page 3 The graph below represents the relationship between gravitational force and mass for objects near the surface of Earth. 17) 18) What does the slope of the graph represent? A) acceleration due to gravity B) universal gravitational constant C) weight of objects D) momentum of objects The magnitude of the acceleration due to gravity on the surface of planet A is twice as great as on the surface of planet B. What is the ratio of the weight of mass X on the surface of planet A to its weight on the surface of planet B? A) 4:1 B) 1:4 C) 2:1 D) 1:2 The diagram below shows a force of magnitude F applied to a mass at angle relative to a horizontal frictionless surface. 19) As angle is increased, the horizontal acceleration of the mass A) decreases B) remains the same C) increases The diagram below shows a horizontal 8.0-newton force applied to a 4.0-kilogram block on a frictionless table. 20) 21) What is the magnitude of the block's acceleration? A) 9.8 m/s2 B) 32 m/s2 C) 2.0 m/s2 D) 0.50 m/s2 A spring scale reads 20. newtons as it pulls a 5.0-kilogram mass across a table. What is the magnitude of the force exerted by the mass on the spring scale? A) 4.0 N B) 5.0 N C) 20. N D) 49 N A 40.-kilogram mass is moving across a horizontal surface at 5.0 meters per second. What is the magnitude of the net force required to bring the mass to a stop in 8.0 seconds? A) 25 N B) 1.0 N C) 40. N D) 5.0 N

4 22) Page 4 The diagram below shows a compressed spring between two carts initially at rest on a horizontal frictionless surface. Cart A has a mass of 2 kilograms and cart B has a mass of 1 kilogram. A string holds the carts together. 23) 24) 25) What occurs when the string is cut and the carts move apart? A) The magnitude of the impulse applied to cart A is twice the magnitude of the impulse applied to cart B. B) The length of time that the force acts on cart A is twice the length of time the force acts on cart B. C) The magnitude of the acceleration of cart A is one-half the magnitude of the acceleration of cart B. D) The magnitude of the force exerted on cart A is one-half the magnitude of the force exerted on cart B. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude of the force producing this acceleration? A) 0.70 N B) 1.5 N C) 6.0 N D) 3.0 N A 50.-newton horizontal force is needed to keep an object weighing 500. newtons moving at a constant velocity of 2.0 meters per second across a horizontal surface. What is the magnitude of the frictional force acting on the object? A) 0 N B) 450. N C) 50. N D) 500. N Which graph best represents the relationship between acceleration due to gravity and mass for objects near the surface of Earth? [Neglect air resistance.] A) C) B) D) 26) 27) A net force of 25 newtons is applied horizontally to a 10.-kilogram block resting on a table. What is the magnitude of the acceleration of the block? A) 0.0 m/s2 B) 0.26 m/s2 C) 2.5 m/s2 D) 0.40 m/s2 A different force is applied to each of four 1-kilogram blocks to slide them across a uniform steel surface at constant speed as shown below. In which diagram is the coefficient of friction between the block and steel smallest? A) C) B) D) 28) A mosquito flying over a highway strikes the windshield of a moving truck. Compared to the magnitude of the force of the truck on the mosquito during the collision, the magnitude of the force of the mosquito on the truck is A) the same B) larger C) smaller

5 29) In the diagram below, a box is on a frictionless horizontal surface with forces F1 and F2 acting as shown Page 5 If the magnitude of F1 is greater than the magnitude of F2, then the box is 30) A) accelerating in the direction of F2 B) moving at constant speed in the direction of F2 C) accelerating in the direction of F1 D) moving at constant speed in the direction of F1 The diagram below shows a block sliding down a plane inclined at angle with the horizontal. 31) 32) As angle is increased, the coefficient of kinetic friction between the bottom surface of the block and the surface of the incline will A) increase B) decrease C) remain the same A net force of 10. newtons accelerates an object at 5.0 meters per second2. What net force would be required to accelerate the same object at 1.0 meter per second2? A) 2.0 N B) 1.0 N C) 50. N D) 5.0 N The diagram below shows a granite block being slid at constant speed across a horizontal concrete floor by a force parallel to the floor. Which pair of quantities could be used to determine the coefficient of friction for the granite on the concrete? A) frictional force and speed of the block B) frictional force and normal force on the block C) mass and speed of the block D) mass and normal force on the block

6 33) Page 6 A kilogram car is driven clockwise around a flat circular track of radius 25.0 meters. The speed of the car is a constant 5.00 meters per second. 34) 35) 36) 37) 38) What is the minimum friction force that must exist between the tires and the road to prevent the car from skidding as it rounds the curve? A) N B) N Which person has the greatest inertia? A) a 110-kg wrestler resting on a mat B) a 90-kg man walking at 2 m/s C) a 50-kg girl sprinting at 10 m/s D) a 70-kg long-distance runner traveling at 5 m/s C) N D) N What is the magnitude of the gravitational force between two 5.0-kilogram masses separated by a distance of 5.0 meters? A) N B) N C) N D) N An object weighs 100. newtons on Earth's surface. When it is moved to a point one Earth radius above Earth's surface, it will weigh A) 400. N B) 100. N C) 25.0 N D) 50.0 N What is the speed of a kilogram car that has a momentum of kilogram meters per second east? A) m/s B) m/s C) m/s D) m/s A kilogram bullet is fired from a 4.0-kilogram rifle that is initially at rest. If the bullet leaves the rifle with momentum having a magnitude of 20. kilogram meters per second, what will be the magnitude of the momentum of the rifle's recoil? A) 0.25 kg m/s B) 1,600 kg m/s C) 20. kg m/s D) 80. kg m/s

7 39) Page 7 The diagram below shows a 0.1-kilogram apple attached to a branch of a tree 2 meters above a spring on the ground below. The apple falls and hits the spring, compressing it 0.1 meter from its rest position. If all of the gravitational potential energy of the apple on the tree is transferred to the spring when it is compressed, what is the spring constant of this spring? A) 40 N/m B) 10 N/m C) 400 N/m D) 100 N/m 40) A bullet traveling at meters per second is brought to rest by an impulse of 50. newton seconds. What is the mass of the bullet? A) kg B) kg C) kg D) kg

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below. 1. Which statement about the movement of an object with zero acceleration is true? The object must be at rest. The object must be slowing down. The object may be speeding up. The object may be in motion.

More information

1d forces and motion

1d forces and motion Name: ate: 1. car accelerates uniformly from rest to a speed of 10 meters per second in 2 seconds. The acceleration of the car is 4. book weighing 20. newtons slides at constant velocity down a ramp inclined

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

act concurrently on point P, as shown in the diagram. The equilibrant of F 1

act concurrently on point P, as shown in the diagram. The equilibrant of F 1 Page 1 of 10 force-friction-vectors review Name 12-NOV-04 1. A 150.-newton force, F1, and a 200.-newton force, F 2, are applied simultaneously to the same point on a large crate resting on a frictionless,

More information

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale 1. A 15-kilogram cart is at rest on a horizontal surface. A 5-kilogram box is placed in the cart. Compared to the mass and inertia of the cart, the cart-box system has A) more mass and more inertia B)

More information

Physics Christmas Break Packet w/ Answers Which vector below represents the resultant of the two displacement vectors shown?

Physics Christmas Break Packet w/ Answers Which vector below represents the resultant of the two displacement vectors shown? Physics hristmas reak Packet w/ nswers 2018 Name: ate: 1. Which vector below represents the resultant of the two displacement vectors shown? 4. The accompanying diagram represents a block sliding down

More information

Upon collision, the clay and steel block stick together and move to the right with a speed of

Upon collision, the clay and steel block stick together and move to the right with a speed of 1. A 2.0-kilogram ball traveling north at 4.0 meters per second collides head on with a 1.0-kilogram ball traveling south at 8.0 meters per second. What is the magnitude of the total momentum of the two

More information

Page 1. Name:

Page 1. Name: Name: 3834-1 - Page 1 1) If a woman runs 100 meters north and then 70 meters south, her total displacement is A) 170 m south B) 170 m north C) 30 m south D) 30 m north 2) The graph below represents the

More information

Regents Physics. Physics Midterm Review - Multiple Choice Problems

Regents Physics. Physics Midterm Review - Multiple Choice Problems Name Physics Midterm Review - Multiple Choice Problems Regents Physics 1. A car traveling on a straight road at 15.0 meters per second accelerates uniformly to a speed of 21.0 meters per second in 12.0

More information

Physics Midterm Review KEY

Physics Midterm Review KEY Name: Date: 1. Which quantities are scalar? A. speed and work B. velocity and force C. distance and acceleration D. momentum and power 2. A 160.-kilogram space vehicle is traveling along a straight line

More information

C) D) 2. The diagram below shows a worker using a rope to pull a cart.

C) D) 2. The diagram below shows a worker using a rope to pull a cart. 1. Which graph best represents the relationship between the acceleration of an object falling freely near the surface of Earth and the time that it falls? 2. The diagram below shows a worker using a rope

More information

Base your answers to questions 5 and 6 on the information below.

Base your answers to questions 5 and 6 on the information below. 1. A car travels 90. meters due north in 15 seconds. Then the car turns around and travels 40. meters due south in 5.0 seconds. What is the magnitude of the average velocity of the car during this 20.-second

More information

Impulse,Momentum, CM Practice Questions

Impulse,Momentum, CM Practice Questions Name: Date: 1. A 12.0-kilogram cart is moving at a speed of 0.25 meter per second. After the speed of the cart is tripled, the inertia of the cart will be A. unchanged B. one-third as great C. three times

More information

Dynamics-Newton's 2nd Law

Dynamics-Newton's 2nd Law 1. A constant unbalanced force is applied to an object for a period of time. Which graph best represents the acceleration of the object as a function of elapsed time? 2. The diagram below shows a horizontal

More information

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit?

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit? Name: ate: 1. Which combination correctly pairs a vector quantity with its corresponding unit?. weight and kg. velocity and m/s. speed and m/s. acceleration and m 2 /s 2. 12.0-kilogram cart is moving at

More information

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.] A) Its vertical speed remains the same, and its horizontal

More information

Physics Test Review: Mechanics Session: Name:

Physics Test Review: Mechanics Session: Name: Directions: For each statement or question, write in the answer box, the number of the word or expression that, of those given, best completes the statement or answers the question. 1. The diagram below

More information

5. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

5. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below. 1. The greatest increase in the inertia of an object would be produced by increasing the A) mass of the object from 1.0 kg to 2.0 kg B) net force applied to the object from 1.0 N to 2.0 N C) time that

More information

Dynamics-Newton's 2nd Law

Dynamics-Newton's 2nd Law 1. A constant unbalanced force is applied to an object for a period of time. Which graph best represents the acceleration of the object as a function of elapsed time? 2. The diagram below shows a horizontal

More information

St. Mary's H.S. Physics. Midterm Review

St. Mary's H.S. Physics. Midterm Review Name Midterm Review St. Mary's H.S. Physics 1. If a car accelerates uniformly from rest to 15 meters per second over a distance of 100. meters, the magnitude of the car s acceleration is A) 0.15 m/s 2

More information

Period: Date: Review - UCM & Energy. Page 1. Base your answers to questions 1 and 2 on the information and diagram below.

Period: Date: Review - UCM & Energy. Page 1. Base your answers to questions 1 and 2 on the information and diagram below. Base your answers to questions 1 and 2 on the information and diagram below. The diagram shows the top view of a -kilogram student at point A on an amusement park ride. The ride spins the student in a

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

6. Which graph best represents the motion of an object that is not in equilibrium as it travels along a straight line? A) B)

6. Which graph best represents the motion of an object that is not in equilibrium as it travels along a straight line? A) B) 1. The data table below lists the mass and speed of four different objects. 6. Which graph best represents the motion of an object that is not in equilibrium as it travels along a straight line? Which

More information

3. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.

3. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. 1. Which statement describes the gravitational force and the electrostatic force between two charged particles? A) The gravitational force may be either attractive or repulsive, whereas the electrostatic

More information

Page 1. Name: 1) The diagram below represents two concurrent forces.

Page 1. Name: 1) The diagram below represents two concurrent forces. Name: 3434-1 - Page 1 1) The diagram below represents two concurrent forces. Which vector represents the force that will produce equilibrium with these two forces? 2) Which diagram represents a box in

More information

m/s m/s m/s m/s

m/s m/s m/s m/s P and J review Name 10-FEB-03 1. The diagram shows two carts on a horizontal, frictionless surface being pushed apart when a compressed spring attached to one of the carts is released. Cart A has a mass

More information

Review 3: Forces. 1. Which graph best represents the motion of an object in equilibrium? A) B) C) D)

Review 3: Forces. 1. Which graph best represents the motion of an object in equilibrium? A) B) C) D) 1. Which graph best represents the motion of an object in equilibrium? A) B) C) D) 2. A rock is thrown straight up into the air. At the highest point of the rock's path, the magnitude of the net force

More information

Forces Review. A. less than the magnitude of the rock s weight, but greater than zero A. 0 B. 45 C. 90. D. 180.

Forces Review. A. less than the magnitude of the rock s weight, but greater than zero A. 0 B. 45 C. 90. D. 180. Name: ate: 1. Two 20.-newton forces act concurrently on an object. What angle between these forces will produce a resultant force with the greatest magnitude?. 0 B. 45 C. 90.. 180. 5. rock is thrown straight

More information

Name: Class: 903 Active Physics Winter Break Regents Prep December 2014

Name: Class: 903 Active Physics Winter Break Regents Prep December 2014 In this section use the following equations for velocity and displacement to solve: 1. In a drill during basketball practice, a player runs the length of the 30.meter court and back. The player does this

More information

Page 1. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is A) 34 m B) 30.

Page 1. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is A) 34 m B) 30. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is 34 m 30. m 17 m 24 m 2) The graph below represents the motion of a body that is moving with 6) Which

More information

Centripetal Force Review. 1. The graph given shows the weight of three objects on planet X as a function of their mass.

Centripetal Force Review. 1. The graph given shows the weight of three objects on planet X as a function of their mass. Name: ate: 1. The graph given shows the weight of three objects on planet X as a function of their mass. 3. If the circular track were to suddenly become frictionless at the instant shown in the diagram,

More information

Part I Review Unit Review Name Momentum and Impulse

Part I Review Unit Review Name Momentum and Impulse Part I Review Unit Review Name Momentum and Impulse 1. A 5.00-kilogram block slides along a horizontal, frictionless surface at 10.0 meters per second for 4.00 seconds. The magnitude of the block's momentum

More information

Momentum Problems. What is the total momentum of the two-object system that is shown after the expansion of the spring?

Momentum Problems. What is the total momentum of the two-object system that is shown after the expansion of the spring? Name: ate: 1. The diagram here shows a 1-kilogram aluminum sphere and a 3-kilogram copper sphere of equal radius located 20 meters above the ground. 4. The diagram shown represents two objects at rest

More information

Forces. 3. The graph given shows the weight of three objects on planet X as a function of their mass. A. 0 N. B. between 0 N and 12 N C.

Forces. 3. The graph given shows the weight of three objects on planet X as a function of their mass. A. 0 N. B. between 0 N and 12 N C. Name: Date: 1. When a 12-newton horizontal force is applied to a box on a horizontal tabletop, the box remains at rest. The force of static friction acting on the box is 3. The graph given shows the weight

More information

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time.

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time. 1. n object is launched across a room. How can a student determine the average horizontal velocity of the object using a meter stick and a calculator? The student can calculate the object s initial potential

More information

Practice Test for Midterm Exam

Practice Test for Midterm Exam A.P. Physics Practice Test for Midterm Exam Kinematics 1. Which of the following statements are about uniformly accelerated motion? Select two answers. a) If an object s acceleration is constant then it

More information

Isaac Newton. What is the acceleration of the car? "If I have seen further it is by standing on the shoulders of giants" Isaac Newton to Robert Hooke

Isaac Newton. What is the acceleration of the car? If I have seen further it is by standing on the shoulders of giants Isaac Newton to Robert Hooke Aim: What did Isaac Newton teach us about motion? Do Now: 1. A 2009 Ford Mustang convertible is travelling at constant velocity on Interstate 95 south from Philadelphia to Wilmington Delaware. It passes

More information

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam #2, Chapters 5-7 Name PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The quantity 1/2 mv2 is A) the potential energy of the object.

More information

Unit 6: Forces II PRACTICE PROBLEMS

Unit 6: Forces II PRACTICE PROBLEMS Regents Physics Mrs. Long Unit 6: Forces II PRACTICE PROBLEMS Essential Understanding for the Unit: The net force can be determined by using force diagrams in order to show all forces acting, and thereby

More information

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds.

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds. Name: Hour: 1. The slope of the tangent on a position-time graph equals the: Sem 1 Exam Review Advanced Physics 2015-2016 2. The area under the curve on a velocity-time graph equals the: 3. The graph below

More information

Circular Motion. 2 types of Acceleration. Centripetal Force and Acceleration. In a circle. Constant Velocity vs. Constant Speed.

Circular Motion. 2 types of Acceleration. Centripetal Force and Acceleration. In a circle. Constant Velocity vs. Constant Speed. Circular Motion What does it mean to accelerate Centripetal Force and Acceleration Constant Velocity vs. Constant Speed. 2 types of Acceleration In a circle Direction of acceleration / velocity top view

More information

m/s m/s m/s m/s

m/s m/s m/s m/s P And J Review TEACHER ANSWER KEY February 10, 2003 2 1. The diagram shows two carts on a horizontal, frictionless surface being pushed apart when a compressed spring attached to one of the carts is released.

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

v (m/s) 10 d. displacement from 0-4 s 28 m e. time interval during which the net force is zero 0-2 s f. average velocity from 0-4 s 7 m/s x (m) 20

v (m/s) 10 d. displacement from 0-4 s 28 m e. time interval during which the net force is zero 0-2 s f. average velocity from 0-4 s 7 m/s x (m) 20 Physics Final Exam Mechanics Review Answers 1. Use the velocity-time graph below to find the: a. velocity at 2 s 6 m/s v (m/s) 1 b. acceleration from -2 s 6 c. acceleration from 2-4 s 2 m/s 2 2 4 t (s)

More information

PRACTICE TEST for Midterm Exam

PRACTICE TEST for Midterm Exam South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos

More information

Midterm Review. 1. A car accelerates uniformly from rest to a speed of 10 meters per second in 2 seconds. The acceleration of the car is

Midterm Review. 1. A car accelerates uniformly from rest to a speed of 10 meters per second in 2 seconds. The acceleration of the car is Name: Date: 1. car accelerates uniformly from rest to a speed of 10 meters per second in 2 seconds. The acceleration of the car is 1.. 0.2 m/sec 2. 5 m/sec 2 C. 10 m/sec 2 D. 20 m/sec 2 2. steel ball is

More information

Friction (static & Kinetic) Review

Friction (static & Kinetic) Review Friction (static & Kinetic) Review 1. Sand is often placed on an icy road because the sand A) decreases the coefficient of friction between the tires of a car and the road B) increases the coefficient

More information

Version PREVIEW Semester 1 Review Slade (22222) 1

Version PREVIEW Semester 1 Review Slade (22222) 1 Version PREVIEW Semester 1 Review Slade () 1 This print-out should have 48 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Holt SF 0Rev 10A

More information

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved 1. A 1-kilogram rock is dropped from a cliff 90 meters high. After falling 20 meters, the kinetic energy of the rock is approximately 1. 20 J 2. 200 J 3. 700 J 4. 900 J 2. If the speed of a car is doubled,

More information

Friction, Inclined Planes, Forces Practice

Friction, Inclined Planes, Forces Practice Name: Date: 1. The diagram below shows a 4.0-kilogram object accelerating at 10. meters per second 2 on a rough horizontal surface. 4. n 8.0-newton block is accelerating down a frictionless ramp inclined

More information

Isaac Newton. What is a force? Newton s Three Laws of Motion. What is the acceleration of the car?

Isaac Newton. What is a force? Newton s Three Laws of Motion. What is the acceleration of the car? Aim: What did Isaac Newton teach us about motion? Do Now: 1. A 2009 Ford Mustang convertible is travelling at constant velocity on Interstate 95 south from Philadelphia to Wilmington Delaware. It passes

More information

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Q1. Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 20 N, acting due east, and the other

More information

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 Name: Date: 1. A crate resting on a rough horizontal floor is to be moved horizontally. The coefficient of static friction

More information

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, 2005 Mechanics Test Please answer the following questions on the supplied answer sheet. You may write on this test booklet,

More information

Dynamics Review Outline

Dynamics Review Outline Dynamics Review Outline 2.1.1-C Newton s Laws of Motion 2.1 Contact Forces First Law (Inertia) objects tend to remain in their current state of motion (at rest of moving at a constant velocity) until acted

More information

RELEASED FORM RELEASED. North Carolina Test of Physics

RELEASED FORM RELEASED. North Carolina Test of Physics Name Physics Form North arolina Test of Physics RELESE Public Schools of North arolina www.ncpublicschools.org State oard of Education epartment of Public Instruction ivision of ccountability Services/North

More information

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive?

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive? 1 The slope of the tangent on a position-time graph equals the instantaneous velocity 2 The area under the curve on a velocity-time graph equals the: displacement from the original position to its position

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

Dynamics Review Checklist

Dynamics Review Checklist Dynamics Review Checklist Newton s Laws 2.1.1 Explain Newton s 1 st Law (the Law of Inertia) and the relationship between mass and inertia. Which of the following has the greatest amount of inertia? (a)

More information

Honors Physics Semester 2 Final Exam Review

Honors Physics Semester 2 Final Exam Review Honors Physics Semester 2 Final Exam Review 1600 kg 800 kg 9 m/s truck with mass 1600 kg collides with a car with mass 800 kg at rest. They stick together and continue to move to the right. 1. What is

More information

Additional Practice Test 1 Physics

Additional Practice Test 1 Physics Name: ate: 1. person walks 5.0 kilometers north, then 5.0 kilometers east. His displacement is closest to 7.1 kilometers northeast 7.1 kilometers northwest 5. lab cart is loaded with different masses and

More information

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 *Read the following (20) questions and choose the right answer: 1 The figure below represents the speed-time graph for the motion of a vehicle during a 7.0-minute

More information

Dynamics Review Checklist

Dynamics Review Checklist Dynamics Review Checklist Newton s Laws 2.1.1 Explain Newton s 1 st Law (the Law of Inertia) and the relationship between mass and inertia. Which of the following has the greatest amount of inertia? (a)

More information

AP Physics C Summer Assignment Kinematics

AP Physics C Summer Assignment Kinematics AP Physics C Summer Assignment Kinematics 1. A car whose speed is 20 m/s passes a stationary motorcycle which immediately gives chase with a constant acceleration of 2.4 m/s 2. a. How far will the motorcycle

More information

Review Session 1. Page 1

Review Session 1. Page 1 Review Session 1 1. Which combination of fundamental units can be used to express the amount of work done on an object? 2. The height of a typical kitchen table is approximately A) 10-2 m B) 10 0 m C)

More information

energy, length, and time mass, energy, and time mass, length and time

energy, length, and time mass, energy, and time mass, length and time 1 All units in mechanics can be derived from what units? mass, length, and energy energy, length, and time mass, energy, and time mass, length and time 2 What is the fundamental SI units for time? minute

More information

Dynamics Review Checklist

Dynamics Review Checklist Dynamics Review Checklist Newton s Laws 2.1.1 Explain Newton s 1 st Law (the Law of Inertia) and the relationship between mass and inertia. Which of the following has the greatest amount of inertia? (a)

More information

r r Sample Final questions for PS 150

r r Sample Final questions for PS 150 Sample Final questions for PS 150 1) Which of the following is an accurate statement? A) Rotating a vector about an axis passing through the tip of the vector does not change the vector. B) The magnitude

More information

Science 20 Physics Review

Science 20 Physics Review Science 20 Physics Review Name 1. Which velocity-time graph below best represents the motion of an object sliding down a frictionless slope? a. b. c. d. Numerical response 1 The roadrunner is moving at

More information

UNIT 4: FORCES IN NATURE Test review: 4_1_ Forces in nature. Fundamentals

UNIT 4: FORCES IN NATURE Test review: 4_1_ Forces in nature. Fundamentals UNIT 4: FORCES IN NATURE Test review: 4_1_ Forces in nature. Fundamentals 1. Contact forces are examples of which of the fundamental forces? a. Strong c. Weak b. Electromagnetic d. Gravitational 2. The

More information

AP Physics First Nine Weeks Review

AP Physics First Nine Weeks Review AP Physics First Nine Weeks Review 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

Steps to Solving Newtons Laws Problems.

Steps to Solving Newtons Laws Problems. Mathematical Analysis With Newtons Laws similar to projectiles (x y) isolation Steps to Solving Newtons Laws Problems. 1) FBD 2) Axis 3) Components 4) Fnet (x) (y) 5) Subs 1 Visual Samples F 4 1) F 3 F

More information

Old Exam. Question Chapter 7 072

Old Exam. Question Chapter 7 072 Old Exam. Question Chapter 7 072 Q1.Fig 1 shows a simple pendulum, consisting of a ball of mass M = 0.50 kg, attached to one end of a massless string of length L = 1.5 m. The other end is fixed. If the

More information

5. The graph represents the net force acting on an object as a function of time. During which time interval is the velocity of the object constant?

5. The graph represents the net force acting on an object as a function of time. During which time interval is the velocity of the object constant? 1. A 0.50-kilogram cart is rolling at a speed of 0.40 meter per second. If the speed of the cart is doubled, the inertia of the cart is A) halved B) doubled C) quadrupled D) unchanged 2. A force of 25

More information

Physics: Momentum, Work, Energy, Power

Physics: Momentum, Work, Energy, Power Name: ate: 1. The momentum of a 5-kilogram object moving at 6 meters per second is. 1 kg m/sec. 5 kg m/sec. 11 kg m/sec. 30 kg m/sec 2. 60-kilogram student running at 3.0 meters per second has a kinetic

More information

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( )

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( ) AP PHYSICS 1 WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton (1643-1727) Isaac Newton was the greatest English mathematician of his generation. He laid the foundation for differential

More information

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above.

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above. 1. The magnitude of the gravitational force between two objects is 20. Newtons. If the mass of each object were doubled, the magnitude of the gravitational force between the objects would be A) 5.0 N B)

More information

PHYS 101 Previous Exam Problems. Kinetic Energy and

PHYS 101 Previous Exam Problems. Kinetic Energy and PHYS 101 Previous Exam Problems CHAPTER 7 Kinetic Energy and Work Kinetic energy Work Work-energy theorem Gravitational work Work of spring forces Power 1. A single force acts on a 5.0-kg object in such

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences

More information

Test Booklet. Subject: SC, Grade: HS 2008 Grade High School Physics. Student name:

Test Booklet. Subject: SC, Grade: HS 2008 Grade High School Physics. Student name: Test ooklet Subject: S, Grade: HS 2008 Grade High School Physics Student name: uthor: North arolina istrict: North arolina Released Tests Printed: Monday July 09, 2012 1 n object is launched across a room.

More information

3. How long must a 100 N net force act to produce a change in momentum of 200 kg m/s? (A) 0.25 s (B) 0.50 s (C) 1.0 s (D) 2.0 s (E) 4.

3. How long must a 100 N net force act to produce a change in momentum of 200 kg m/s? (A) 0.25 s (B) 0.50 s (C) 1.0 s (D) 2.0 s (E) 4. AP Physics Multiple Choice Practice Momentum and Impulse 1. A car of mass m, traveling at speed v, stops in time t when maximum braking force is applied. Assuming the braking force is independent of mass,

More information

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km Name: Physics I Mid Term Exam Review Multiple Choice Questions Date: Mr. Tiesler 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km

More information

s_3x03 Page 1 Physics Samples

s_3x03 Page 1 Physics Samples Physics Samples KE, PE, Springs 1. A 1.0-kilogram rubber ball traveling east at 4.0 meters per second hits a wall and bounces back toward the west at 2.0 meters per second. Compared to the kinetic energy

More information

3) 4) Which car has the greatest acceleration during the time interval 10. seconds to 15 seconds? 1) A 2) B 3) C 4) D

3) 4) Which car has the greatest acceleration during the time interval 10. seconds to 15 seconds? 1) A 2) B 3) C 4) D 1. A cart travels with a constant nonzero acceleration along a straight line. Which graph best represents the relationship between the distance the cart travels and time of travel? 1) 2) 3) 4) 2. On a

More information

AP Physics 1 Work Energy and Power Practice Test Name

AP Physics 1 Work Energy and Power Practice Test Name AP Physics 1 Work Energy and Power Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two objects, one of mass m and the other

More information

AP Physics II Summer Packet

AP Physics II Summer Packet Name: AP Physics II Summer Packet Date: Period: Complete this packet over the summer, it is to be turned it within the first week of school. Show all work were needed. Feel free to use additional scratch

More information

Center of Mass & Linear Momentum

Center of Mass & Linear Momentum PHYS 101 Previous Exam Problems CHAPTER 9 Center of Mass & Linear Momentum Center of mass Momentum of a particle Momentum of a system Impulse Conservation of momentum Elastic collisions Inelastic collisions

More information

Phys101 Second Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1

Phys101 Second Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1 Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1 Q1. Two forces are acting on a 2.00 kg box. In the overhead view of Figure 1 only one force F 1 and the acceleration of the box are shown.

More information

4. The diagram below shows a 4.0-kilogram object accelerating at 10. meters per second 2 on a rough horizontal surface.

4. The diagram below shows a 4.0-kilogram object accelerating at 10. meters per second 2 on a rough horizontal surface. 1. An 8.0-newton wooden block slides across a horizontal wooden floor at constant velocity. What is the magnitude of the force of kinetic friction between the block and the floor? A) 2.4 N B) 3.4 N C)

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

AP Physics 1 Lesson 9 Homework Outcomes. Name

AP Physics 1 Lesson 9 Homework Outcomes. Name AP Physics 1 Lesson 9 Homework Outcomes Name Date 1. Define uniform circular motion. 2. Determine the tangential velocity of an object moving with uniform circular motion. 3. Determine the centripetal

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the

More information

Regents Physics Most Missed Questions of 2014 Review

Regents Physics Most Missed Questions of 2014 Review Regents Physics Most Missed Questions of 2014 Review Answers And Explanations Here: http://youtu.be/meoporthklo 1. A sound wave traveling eastward through air causes the air molecules to 1) vibrate east

More information

1. A 7.0-kg bowling ball experiences a net force of 5.0 N. What will be its acceleration? a. 35 m/s 2 c. 5.0 m/s 2 b. 7.0 m/s 2 d. 0.

1. A 7.0-kg bowling ball experiences a net force of 5.0 N. What will be its acceleration? a. 35 m/s 2 c. 5.0 m/s 2 b. 7.0 m/s 2 d. 0. Newton's Laws 1. A 7.0-kg bowling ball experiences a net force of 5.0 N. What will be its acceleration? a. 35 m/s 2 c. 5.0 m/s 2 b. 7.0 m/s 2 d. 0.71 m/s 2 2. An astronaut applies a force of 500 N to an

More information

Physics-MC Page 1 of 29 Inertia, Force and Motion 1.

Physics-MC Page 1 of 29 Inertia, Force and Motion 1. Physics-MC 2006-7 Page 1 of 29 Inertia, Force and Motion 1. 3. 2. Three blocks of equal mass are placed on a smooth horizontal surface as shown in the figure above. A constant force F is applied to block

More information

Review PHYS114 Chapters 4-7

Review PHYS114 Chapters 4-7 Review PHYS114 Chapters 4-7 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 27 kg object is accelerated at a rate of 1.7 m/s 2. What force does

More information

Physics 23 Exam 2 March 3, 2009

Physics 23 Exam 2 March 3, 2009 Use the following to answer question 1: A stationary 4-kg shell explodes into three pieces. Two of the fragments have a mass of 1 kg each and move along the paths shown with a speed of 10 m/s. The third

More information

66 Chapter 6: FORCE AND MOTION II

66 Chapter 6: FORCE AND MOTION II Chapter 6: FORCE AND MOTION II 1 A brick slides on a horizontal surface Which of the following will increase the magnitude of the frictional force on it? A Putting a second brick on top B Decreasing the

More information

1. Which one of the following situations is an example of an object with a non-zero kinetic energy?

1. Which one of the following situations is an example of an object with a non-zero kinetic energy? Name: Date: 1. Which one of the following situations is an example of an object with a non-zero kinetic energy? A) a drum of diesel fuel on a parked truck B) a stationary pendulum C) a satellite in geosynchronous

More information