Newton s 3 Laws of Motion


 Drusilla Ellis
 1 years ago
 Views:
Transcription
1 Newton s 3 Laws of Motion 1. If F = 0 No change in motion 2. = ma Change in motion Fnet 3. F = F 1 on 2 2 on 1
2 Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of motion unless acted upon by external net forces.
3 Statics Problem Find the tensions in the wires. +y +x T T 2 W
4 Newton s 2nd Law F = ma a = F net m The acceleration of object is directly related to the net forces acting on it and inversely proportional to its mass.
5 Problem Starting from rest, Sally pulls Billy on the sled (total mass = 60kg) with a total force of 100 N at an angle of 40 degrees above the horizontal, as shown. After 5 seconds, how fast is the sled moving and how far has it traveled from where it started? F x = ma x F cos θ = ma x F cosθ ax = v f = v0 + at m Fcosθ 100Ncos 40 v f = v0 + at = t = 5 s = 6.38 m / s m 60kg
6 Frictional Forces Friction always opposes the applied force and is in the opposite direction of motion. The greater the normal force the greater the frictional force. f s = µ N s f k = µ k N
7 Statice vs Kinetic Friction f s > f k Fig. 5.16, p.131
8 Problem The magnitude of F 1 is 75.0N and F 2 is 50.0N. The coefficient of friction between the block and the floor is What is the acceleration of the block?
9 a) First of all, which way is the box going to go? You have to figure that out first. To do that compare the xcomponent of F2 to the xcomponent of F1. Which is larger? F = F cosθ = 75N cos 65 = 31.7N < 50N = F 1x 1 2 So the box is going to end up moving to the left!!! So I m going to make LEFT the positive x direction in my FBD. Also, since F1 is pushing down, the normal force is going to be larger than the weight!!! F2 should be longer than F1x too. Apply Newton s Second Law: a x Fx F2 F1x 50N 31.7N = = = = 3.66 m/ s m m 5kg b) Now there is friction which will slow it down. You have to know which direction the box is going without friction first because friction ALWAYS acts in the opposite direction to slow it down. You can draw the friction vector at the end of F1x or from the center, your choice. The frictional force is proportional to the normal force. To find that, apply Newton s second law in the y direction: F = N = mg + F = kg m s + N = f = N = N = N y 2 0 1y (5 )(9.8) / 75 sin N, µ 0.04(117 ) a x Fx F2 F1x f 50N 31.7N 4.68 = = = = 2.72 m/ s m m 5kg 2
10 At an instant when a 4.0kg object has an acceleration equal to (5i + 3j) m/s2, one of the two forces acting on the object is known to be (12i + 22j) N. Determine the magnitude of the other force acting on the object. a. 2.0 N b. 13 N c. 18 N d. 1.7 N e. 20 N
11 Newton s 3rd Law F hand on wall = F wall on hand To every force there is an equal but opposite reaction force.
12 Newton s 3rd Law F hand on wall = F wall on hand You can t TOUCH without being TOUCHED back!!
13 Newton s 3rd Law F hand on wall = F wall on hand To every force there is an equal but opposite reaction force.
14 Newton s 3rd Law F hand on wall = F wall on hand This is an INTERACTIVE Universe.
15
16 Gravity is an Interaction F Earth on Rock = F Rock on Earth
17 Gravity is an Interaction The Earth pulls on you, you pull on the Earth. You fall to the Earth, the Earth Falls to you. You accelerate towards the Earth with g =9.8m/s 2. With what acceleration is the Earth falling towards you? F This is your weight: Earth on You mg a = F = M a = mg You on Earth E M E (65 kg)(9.8 m / s 2 ) a = = 1.1x10 22 m/ s 2 E 5.98x10 24 kg E E
18 Force is not Acceleration Force is the Same! Acceleration is NOT! F Earth on You = F You on Earth a Earth to You = a You to Earth
19 An interaction requires a pair of forces acting on two objects. kick Gun Pushes Bullet out. Bullet Pushes back on Gun (& Man)
20 Action Reaction Pairs kick Gun Pushes Bullet out. Bullet Pushes back on Gun (& Man)
21 Rocket Thrust Rocket Pushes Gas Out. Gas Pushes Back on Rocket.
22 Newton s 3 rd Law Exploding Systems
23 Reading Question 7.3 The propulsion force on a car is due to A. Static friction. B. Kinetic friction. C. The car engine. D. Elastic energy Pearson Education, Inc. Slide 714
24 Reading Question 7.3 The propulsion force on a car is due to A. Static friction. B. Kinetic friction. C. The car engine. D. Elastic energy Pearson Education, Inc. Slide 715
25 In order to get an object moving, you must push harder on it than it pushes back on you. A) True B) False
26 Question You push a heavy car by hand. The car, in turn, pushes back with an opposite but equal force on you. Doesn t this mean the forces cancel one another, making acceleration impossible? How is it that the car moves? The System ActionReaction forces act on different objects. For F = ma, the forces must act on ONE object: the system.
27 Interacting Objects If object A exerts a force on object B, then object B exerts a force on object A. The pair of forces, as shown, is called an action/reaction pair. Slide 723
28 QuickCheck 7.11 Block A is accelerated across a frictionless table. The string is massless, and the pulley is both massless and frictionless. Which is true? A. Block A accelerates faster in case a than in case b. B. Block A has the same acceleration in case a and case b. C. Block A accelerates slower in case a than in case b Pearson Education, Inc. Slide 780
29 QuickCheck 7.11 Block A is accelerated across a frictionless table. The string is massless, and the pulley is both massless and frictionless. Which is true? A. Block A accelerates faster in case a than in case b. B. Block A has the same acceleration in case a and case b. C. Block A accelerates slower in case a than in case b Pearson Education, Inc. Slide 781
30 Problem m = 2 kg, m = 3 kg, m = 5kg The three blocks are pushed across a rough surface by a 40N force. If the coefficient of kinetic friction between each of the blocks and the surface is 0.20, determine the magnitude of the force exerted by m2 on m3. a) 20 N b) 30 N c) 10 N d) 15 N e) 25 N
31 QuickCheck 7.6 Boxes A and B are sliding to the right on a frictionless surface. Hand H is slowing them. Box A has a larger mass than B. Considering only the horizontal forces: A. F B on H = F H on B = F A on B = F B on A B. F B on H = F H on B > F A on B = F B on A C. F B on H = F H on B < F A on B = F B on A D. F H on B = F H on A > F A on B Slide 767
32 QuickCheck 7.6 Boxes A and B are sliding to the right on a frictionless surface. Hand H is slowing them. Box A has a larger mass than B. Considering only the horizontal forces: A. F B on H = F H on B = F A on B = F B on A B. F B on H = F H on B > F A on B = F B on A C. F B on H = F H on B < F A on B = F B on A D. F H on B = F H on A > F A on B Slide 767
33 Reading Question 7.4 Is the tension in rope 2 greater than, less than, or equal to the tension in rope 1? A. Greater than rope 2. B. Less than rope 2. C. Equal to rope Pearson Education, Inc. Slide 716
34 Reading Question 7.4 Is the tension in rope 2 greater than, less than, or equal to the tension in rope 1? A. Greater than rope 2. B. Less than rope 2. C. Equal to rope Pearson Education, Inc. Slide 717
35 QuickCheck 7.8 The two masses are at rest. The pulleys are frictionless. The scale is in kg. The scale reads A. 0 kg. B. 5 kg. C. 10 kg. Slide 773
36 QuickCheck 7.8 The two masses are at rest. The pulleys are frictionless. The scale is in kg. The scale reads A. 0 kg. B. 5 kg. C. 10 kg. Slide 774
37 Tension Forces Tension forces are transmitted undiminished through the rope. Different T Same T
38 QuickCheck 7.7 All three 50kg blocks are at rest. The tension in rope 2 is A. greater than the tension in rope 1. B. equal to the tension in rope 1. C. less than the tension in rope Pearson Education, Inc. Slide 771
39 QuickCheck 7.7 All three 50kg blocks are at rest. The tension in rope 2 is A. greater than the tension in rope 1. B. equal to the tension in rope 1. C. less than the tension in rope 1. Each block is in static equilibrium, with Pearson Education, Inc. Slide 772
40 Find the acceleration and tension of the system Pearson Education, Inc. Slide 775
41 QuickCheck 7.5 Boxes A and B are being pulled to the right on a frictionless surface. Box A has a larger mass than B. How do the two tension forces compare? A. T 1 > T 2 B. T 1 = T 2 C. T 1 < T 2 D. Not enough information to tell Pearson Education, Inc. Slide 761
42 QuickCheck 7.5 Boxes A and B are being pulled to the right on a frictionless surface. Box A has a larger mass than B. How do the two tension forces compare? A. T 1 > T 2 B. T 1 = T 2 C. T 1 < T 2 D. Not enough information to tell Pearson Education, Inc. Slide 762
43 Pulleys Block B drags block A across a frictionless table as it falls. The string and the pulley are both massless. There is no friction where the pulley turns on its axle. Therefore, T A on S = T B on S Pearson Education, Inc. Slide 769
44 Pulleys Since T A on B = T B on A, we can draw the simplified freebody diagram on the right, below. Forces and act as if they are in an action/reaction pair, even though they are not opposite in direction because the tension force gets turned by the pulley Pearson Education, Inc. Slide 770
45 Pulleys, Masses, Strings What is the acceleration of the system? (If they are connected, it is the same for both masses!) What is the tension in the string? 1. If it falls from rest 2. If it is dragged to the left 3. If the string is cut FIRST: Draw freebody diagrams for each mass!!! 2013 Pearson Education, Inc.
46 Problem A force F = 40 N pulls the two masses. If the table is frictionless, find the tension in the string. m = 3 kg, m = 1.5kg a) 13 N b) 36 N c) 23 N d) 15 N e) 28 N 1 2
47 QuickCheck 7.10 The top block is accelerated across a frictionless table by the falling mass m. The string is massless, and the pulley is both massless and frictionless. The tension in the string is A. T < mg. B. T = mg. C. T > mg Pearson Education, Inc. Slide 778
48 QuickCheck 7.10 The top block is accelerated across a frictionless table by the falling mass m. The string is massless, and the pulley is both massless and frictionless. The tension in the string is A. T < mg. B. T = mg. C. T > mg Tension has to be less than mg for the block to have a downward acceleration Pearson Education, Inc. Slide 779
49 Force Vector Diagrams Draw freebody diagrams for every object! Note: T and a are the same! Ropes connected by ideal pulleys have the same tension everywhere!
50 Pulleys, Masses, Strings What is the acceleration of the system? (If they are connected, it is the same for both masses!) What is the tension in the string? 1. If it falls from rest 2. If it is dragged to the left 3. If the string is cut FIRST: Draw freebody diagrams for each mass!!! 2013 Pearson Education, Inc.
51 Problem A constant force F pulls the system as shown. The pulleys are frictionless. The coefficient of kinetic friction between the block and the table is µ. a) Draw free body diagrams for both masses. b) Find an expression for the acceleration in terms of the given variables.
52 HW Problem In the figure shown, the coefficient of kinetic friction between the block and the incline is What is the magnitude of the acceleration of the suspended block as it falls? Disregard any pulley mass or friction in the pulley. Draw the free body diagrams for each mass. Derive a general solution for the acceleration in terms of M, and g, box it, then put the numbers in and get a numerical value then box that too. Then find a numerical value for the tension in the string. Box that. Show all your work and make it pretty! Use 3 significant figures. 2M 30 M
53 Tension Two 10 N weights are pulling on the spring scale as shown (the right side is attached to a hook, the left side is attached to the body of the scale) What does the scale read? a) 0 N b) 10 N c) 20 N
54 Force Vector Diagrams Align axes to simplify the problem!
55 QuickCheck 7.1 A mosquito runs headon into a truck. Splat! Which is true during the collision? A. The mosquito exerts more force on the truck than the truck exerts on the mosquito. B. The truck exerts more force on the mosquito than the mosquito exerts on the truck. C. The mosquito exerts the same force on the truck as the truck exerts on the mosquito. D. The truck exerts a force on the mosquito but the mosquito does not exert a force on the truck. E. The mosquito exerts a force on the truck but the truck does not exert a force on the mosquito. Slide 739
56 QuickCheck 7.1 A mosquito runs headon into a truck. Splat! Which is true during the collision? A. The mosquito exerts more force on the truck than the truck exerts on the mosquito. B. The truck exerts more force on the mosquito than the mosquito exerts on the truck. C. The mosquito exerts the same force on the truck as the truck exerts on the mosquito. D. The truck exerts a force on the mosquito but the mosquito does not exert a force on the truck. E. The mosquito exerts a force on the truck but the truck does not exert a force on the mosquito. Slide 740
57 QuickCheck 7.2 A mosquito runs headon into a truck. Which is true during the collision? A. The magnitude of the mosquito s acceleration is larger than that of the truck. B. The magnitude of the truck s acceleration is larger than that of the mosquito. C. The magnitude of the mosquito s acceleration is the same as that of the truck. D. The truck accelerates but the mosquito does not. E. The mosquito accelerates but the truck does not. Slide 741
58 QuickCheck 7.2 A mosquito runs headon into a truck. Which is true during the collision? A. The magnitude of the mosquito s acceleration is larger than that of the truck. B. The magnitude of the truck s acceleration is larger than that of the mosquito. C. The magnitude of the mosquito s acceleration is the same as that of the truck. D. The truck accelerates but the mosquito does not. E. The mosquito accelerates but the truck does not. Newton s second law: Don t confuse cause and effect! The same force can have very different effects. Slide 742
Chapter 7 Newton s Third Law
Chapter 7 Newton s Third Law Chapter Goal: To use Newton s third law to understand interacting objects. Slide 72 Chapter 7 Preview Slide 73 Chapter 7 Preview Slide 74 Chapter 7 Preview Slide 76 Chapter
More informationChapter Four Holt Physics. Forces and the Laws of Motion
Chapter Four Holt Physics Forces and the Laws of Motion Physics Force and the study of dynamics 1.Forces  a. Force  a push or a pull. It can change the motion of an object; start or stop movement; and,
More informationReading Quiz. Chapter 5. Physics 111, Concordia College
Reading Quiz Chapter 5 1. The coefficient of static friction is A. smaller than the coefficient of kinetic friction. B. equal to the coefficient of kinetic friction. C. larger than the coefficient of kinetic
More informationCHAPTER 4 TEST REVIEW  Answer Key
AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 MultiResponse Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST
More informationLecture Outline Chapter 6. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.
Lecture Outline Chapter 6 Physics, 4 th Edition James S. Walker Chapter 6 Applications of Newton s Laws Units of Chapter 6 Frictional Forces Strings and Springs Translational Equilibrium Connected Objects
More informationChapter 4: Newton s Second Law F = m a. F = m a (4.2)
Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.
More informationPhysics Mechanics. Lecture 11 Newton s Laws  part 2
Physics 170  Mechanics Lecture 11 Newton s Laws  part 2 Newton s Second Law of Motion An object may have several forces acting on it; the acceleration is due to the net force: Newton s Second Law of
More informationNewton s Laws. A force is simply a push or a pull. Forces are vectors; they have both size and direction.
Newton s Laws Newton s first law: An object will stay at rest or in a state of uniform motion with constant velocity, in a straight line, unless acted upon by an external force. In other words, the bodies
More informationHATZIC SECONDARY SCHOOL
HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT VECTOR DYNAMICS MULTIPLE CHOICE / 45 OPEN ENDED / 75 TOTAL / 120 NAME: 1. Unless acted on by an external net force, an object will stay at rest
More informationPractice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²)
Practice A car starts from rest and travels upwards along a straight road inclined at an angle of 5 from the horizontal. The length of the road is 450 m and the mass of the car is 800 kg. The speed of
More informationREVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions
REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions Question 1 (Adapted from DBE November 2014, Question 2) Two blocks of masses 20 kg and 5 kg respectively are connected by a light inextensible string,
More informationUniversity Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1
University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 Name: Date: 1. A crate resting on a rough horizontal floor is to be moved horizontally. The coefficient of static friction
More informationPHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.
PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.
More informationNewton s Laws PreTest
Newton s Laws PreTest 1.) Consider the following two statements and then select the option below that is correct. (i) It is possible for an object move in the absence of forces acting on the object. (ii)
More informationChapter 4. The Laws of Motion. 1. Force. 2. Newton s Laws. 3. Applications. 4. Friction
Chapter 4 The Laws of Motion 1. Force 2. Newton s Laws 3. Applications 4. Friction 1 Classical Mechanics What is classical Mechanics? Under what conditions can I use it? 2 Sir Isaac Newton 1642 1727 Formulated
More informationNewton s First Law and IRFs
Goals: Physics 207, Lecture 6, Sept. 22 Recognize different types of forces and know how they act on an object in a particle representation Identify forces and draw a Free Body Diagram Solve 1D and 2D
More informationForces. Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics
FORCES Forces Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics Inertia Tendency of an object to remain in the same state of motion. Resists a change in motion.
More informationCHAPTER 2. FORCE and Motion. CHAPTER s Objectives
19 CHAPTER 2 FORCE and Motion CHAPTER s Objectives To define a force To understand the relation between force and motion In chapter 1, we understood that the Greek philosopher Aristotle was the first who
More informationEndofChapter Exercises
EndofChapter Exercises For all these exercises, assume that all strings are massless and all pulleys are both massless and frictionless. We will improve our model and learn how to account for the mass
More informationNewton s Laws and FreeBody Diagrams General Physics I
Newton s Laws and FreeBody Diagrams In the next few sections, we will be exploring some of the most fundamental laws of our universe, laws that govern the relationship actions and motion. These laws are
More informationConnected Bodies 1. Two 10 kg bodies are attached to a spring balance as shown in figure. The reading of the balance will be 10 kg 10 kg 1) 0 kgwt ) 10 kgwt 3) Zero 4) 5 kgwt. In the given arrangement,
More informationPhys101 Lecture 5 Dynamics: Newton s Laws of Motion
Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Key points: Newton s second law is a vector equation Action and reaction are acting on different objects FreeBody Diagrams Ref: 41,2,3,4,5,6,7. Page
More informationLecture Presentation Chapter 5 Applying Newton s Laws
Lecture Presentation Chapter 5 Applying Newton s Laws Suggested Videos for Chapter 5 Prelecture Videos Static and Dynamic Equilibrium Weight and Apparent Weight Friction Video Tutor Solutions Applying
More informationThe Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples
The Laws of Motion Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples Gravitational Force Gravitational force is a vector Expressed by Newton s Law of Universal
More informationExample. F and W. Normal. F = 60cos 60 N = 30N. Block accelerates to the right. θ 1 F 1 F 2
Physic 3 Lecture 7 Newton s 3 d Law: When a body exerts a force on another, the second body exerts an equal oppositely directed force on the first body. Frictional forces: kinetic friction: fk = μk N static
More informationSteps to Solving Newtons Laws Problems.
Mathematical Analysis With Newtons Laws similar to projectiles (x y) isolation Steps to Solving Newtons Laws Problems. 1) FBD 2) Axis 3) Components 4) Fnet (x) (y) 5) Subs 1 Visual Samples F 4 1) F 3 F
More informationPHYS 101 Previous Exam Problems. Force & Motion I
PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0kg block is lowered with a downward
More informationLecture 4. Newton s 3rd law and Friction
Lecture 4 Newton s 3rd law and Friction Newtons First Law or Law of Inertia If no net external force is applied to an object, its velocity will remain constant ("inert"). OR A body cannot change its state
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
PH 105 Exam 2 VERSION A Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Is it possible for a system to have negative potential energy? A)
More informationTwo Hanging Masses. ) by considering just the forces that act on it. Use Newton's 2nd law while
Student View Summary View Diagnostics View Print View with Answers Edit Assignment Settings per Student Exam 2  Forces [ Print ] Due: 11:59pm on Tuesday, November 1, 2011 Note: To underst how points are
More informationChapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc.
Chapter 5 Newton s Laws of Motion Copyright 2010 Pearson Education, Inc. Force and Mass Copyright 2010 Pearson Education, Inc. Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion
More informationPhysics 1100: 2D Kinematics Solutions
Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Physics 1100: 2D Kinematics Solutions 1. In the diagrams below, a ball is on a flat horizontal surface. The initial velocity
More informationQ16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down)
Old Exam Question Ch. 5 T072 Q13.Two blocks of mass m 1 = 24.0 kg and m 2, respectively, are connected by a light string that passes over a massless pulley as shown in Fig. 2. If the tension in the string
More informationChapter 5 Force and Motion
Force F Chapter 5 Force and Motion is the interaction between objects is a vector causes acceleration Net force: vector sum of all the forces on an object. v v N v v v v v Ftotal Fnet = Fi = F1 + F2 +
More informationPart A Atwood Machines Please try this link:
LAST NAME FIRST NAME DATE Assignment 2 Inclined Planes, Pulleys and Accelerating Fluids Problems 83, 108 & 109 (and some handouts) Part A Atwood Machines Please try this link: http://www.wiley.com/college/halliday/0470469080/simulations/sim20/sim20.html
More informationPractice Test for Midterm Exam
A.P. Physics Practice Test for Midterm Exam Kinematics 1. Which of the following statements are about uniformly accelerated motion? Select two answers. a) If an object s acceleration is constant then it
More informationLECTURE 12 FRICTION, STRINGS & SPRINGS. Instructor: Kazumi Tolich
LECTURE 12 FRICTION, STRINGS & SPRINGS Instructor: Kazumi Tolich Lecture 12 2! Reading chapter 61 to 64! Friction " Static friction " Kinetic friction! Strings! Pulleys! Springs Origin of friction 3!!
More information7. Two forces are applied to a 2.0kilogram block on a frictionless horizontal surface, as shown in the diagram below.
1. Which statement about the movement of an object with zero acceleration is true? The object must be at rest. The object must be slowing down. The object may be speeding up. The object may be in motion.
More informationPS113 Chapter 4 Forces and Newton s laws of motion
PS113 Chapter 4 Forces and Newton s laws of motion 1 The concepts of force and mass A force is described as the push or pull between two objects There are two kinds of forces 1. Contact forces where two
More informationKinematics and Dynamics
AP PHYS 1 Test Review Kinematics and Dynamics Name: Other Useful Site: http://www.aplusphysics.com/ap1/ap1 supp.html 201516 AP Physics: Kinematics Study Guide The study guide will help you review all
More informationTue Sept 15. Dynamics  Newton s Laws of Motion. Forces: Identifying Forces Freebody diagram Affect on Motion
Tue Sept 15 Assignment 4 Friday Preclass Thursday Lab  Print, do prelab Closed toed shoes Exam Monday Oct 5 7:159:15 PM email me if class conflict or extended time Dynamics  Newton s Laws of Motion
More informationAP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force).
AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). 1981M1. A block of mass m, acted on by a force of magnitude F directed horizontally to the
More informationChapter 4. Dynamics: Newton s Laws of Motion
Chapter 4 Dynamics: Newton s Laws of Motion Types of Forces: An Overview Examples of Nonfundamental Forces  All of these are derived from the electroweak force: normal or support forces friction tension
More informationChapter 6: Work and Kinetic Energy
Chapter 6: Work and Kinetic Energy Suppose you want to find the final velocity of an object being acted on by a variable force. Newton s 2 nd law gives the differential equation (for 1D motion) dv dt =
More informationPhysics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line
Physics for Scientists and Engineers Chapter 6 Dynamics I: Motion Along a Line Spring, 008 Ho Jung Paik Applications of Newton s Law Objects can be modeled as particles Masses of strings or ropes are negligible
More information第 1 頁, 共 7 頁 Chap5 1. Test Bank, Question 9 The term "mass" refers to the same physical concept as: weight inertia force acceleration volume 2. Test Bank, Question 17 Acceleration is always in the direction:
More informationPHYSICS 231 Laws of motion PHY 231
PHYSICS 231 Laws of motion 1 Newton s Laws First Law: If the net force exerted on an object is zero the object continues in its original state of motion; if it was at rest, it remains at rest. If it was
More information+F N = F g. F g = m٠a g
Force Normal = F N Force Normal (or the Normal Force, abbreviated F N ) = F N = The contact force exerted by a surface on an object. The word Normal means perpendicular to Therefore, the Normal Force is
More informationPHYSICS 1 Forces & Newton s Laws
Advanced Placement PHYSICS 1 Forces & Newton s Laws Presenter 20142015 Forces & Newton s Laws What I Absolutel Have to Know to Survive the AP* Exam Force is an push or pull. It is a vector. Newton s Second
More informationPhys101 Second Major152 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 2016 Page: 1
Phys101 Second Major15 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 016 Page: 1 Q1. Figure 1 shows two masses; m 1 = 4.0 and m = 6.0 which are connected by a massless rope passing over a
More informationAP Physics First Nine Weeks Review
AP Physics First Nine Weeks Review 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the
More informationFreeBody Diagrams: Introduction
FreeBody Diagrams: Introduction Learning Goal: To learn to draw freebody diagrams for various reallife situations. Imagine that you are given a description of a reallife situation and are asked to
More informationCPS lesson Work and Energy ANSWER KEY
CPS lesson Work and Energy ANSWER KEY 1. A ball feeder slowly pushes a bowling ball up a 1m ramp to a height of 0.5 m above the floor. Neglecting friction, what constant force must be exerted on the 5kg
More informationUNIT07. Newton s Three Laws of Motion
1. Learning Objectives: UNIT07 Newton s Three Laws of Motion 1. Understand the three laws of motion, their proper areas of applicability and especially the difference between the statements of the first
More informationPhysics 2A Chapter 4: Forces and Newton s Laws of Motion
Physics 2A Chapter 4: Forces and Newton s Laws of Motion There is nothing either good or bad, but thinking makes it so. William Shakespeare It s not what happens to you that determines how far you will
More informationNewton. Galileo THE LAW OF INERTIA REVIEW
Galileo Newton THE LAW OF INERTIA REVIEW 1 MOTION IS RELATIVE We are moving 0 m/s and 30km/s Find the resultant velocities MOTION IS RELATIVE Position versus Time Graph. Explain how the car is moving.
More informationUnit 2: Vector Dynamics
Multiple Choice Portion Unit 2: Vector Dynamics 1. Which one of the following best describes the motion of a projectile close to the surface of the Earth? (Assume no friction) Vertical Acceleration Horizontal
More informationChapter 4. The Laws of Motion
Chapter 4 The Laws of Motion Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical Mechanics does not
More information66 Chapter 6: FORCE AND MOTION II
Chapter 6: FORCE AND MOTION II 1 A brick slides on a horizontal surface Which of the following will increase the magnitude of the frictional force on it? A Putting a second brick on top B Decreasing the
More informationPhys 1401: General Physics I
1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?
More informationPHYSICS FORMULAS. A. B = A x B x + A y B y + A z B z = A B cos (A,B)
PHYSICS FORMULAS A = A x i + A y j Φ = tan 1 A y A x A + B = (A x +B x )i + (A y +B y )j A. B = A x B x + A y B y + A z B z = A B cos (A,B) linear motion v = v 0 + at x  x 0 = v 0 t + ½ at 2 2a(x  x
More informationVersion PREVIEW Semester 1 Review Slade (22222) 1
Version PREVIEW Semester 1 Review Slade () 1 This printout should have 48 questions. Multiplechoice questions may continue on the next column or page find all choices before answering. Holt SF 0Rev 10A
More informationChapter Test A. Teacher Notes and Answers Forces and the Laws of Motion. Assessment
Assessment Chapter Test A Teacher Notes and Answers Forces and the Laws of Motion CHAPTER TEST A (GENERAL) 1. c 2. d 3. d 4. c 5. c 6. c 7. c 8. b 9. d 10. d 11. c 12. a 13. d 14. d 15. b 16. d 17. c 18.
More informationAP Physics Momentum Practice Test. Answers: A,E,E,A,E,B,D,C,B,A,B,E,D,C 16.(a)5450,5650 (b)2.25e7 (c)3 (d)1.5e7 17.(a)9 (b)2 (c)1.5 (d) (e).
AP Physics Momentum Practice Test Answers: A,E,E,A,E,B,D,C,B,A,B,E,D,C 16.(a)5450,5650 (b).5e7 (c)3 (d)1.5e7 17.(a)9 (b) (c)1.5 (d)4.75 (e).65 For multiple choice ( points) write the CAPITAL letter of
More informationNewton s Laws of Motion. Chapter 4
Newton s Laws of Motion Chapter 4 Newton s First Law of Motion Force A force is a push or pull. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. Force
More informationChapter 4 Dynamics: Newton s Laws of Motion
Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal
More informationMarch 10, P12 Inclined Planes.notebook. Physics 12. Inclined Planes. Push it Up Song
Physics 12 Inclined Planes Push it Up Song 1 Bell Work A box is pushed up a ramp at constant velocity. Draw a neatly labeled FBD showing all of the forces acting on the box. direction of motion θ F p F
More informationConcept of Force and Newton s Laws of Motion
Concept of Force and Newton s Laws of Motion 8.01 W02D2 Chapter 7 Newton s Laws of Motion, Sections 7.17.4 Chapter 8 Applications of Newton s Second Law, Sections 8.18.4.1 Announcements W02D3 Reading
More informationPOGIL: Newton s First Law of Motion and Statics. Part 1: Net Force Model: Read the following carefully and study the diagrams that follow.
POGIL: Newton s First Law of Motion and Statics Name Purpose: To become familiar with the forces acting on an object at rest Part 1: Net Force Model: Read the following carefully and study the diagrams
More informationName: Class: Date: so sliding friction is better so sliding friction is better d. µ k
Name: Class: Date: Exam 2PHYS 101F08 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. You put your book on the seat next to you. When the bus stops,
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the
More informationChapter 4 Dynamics: Newton s Laws of Motion
Chapter 4 Dynamics: Newton s Laws of Motion Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal Force Applications
More informationChapter 4. Forces and Mass. Classical Mechanics. Forces. Newton s First Law. Fundamental (Field) Forces. Contact and Field Forces
Chapter 4 Classical Mechanics Forces and Mass does not apply for very tiny objects (< atomic sizes) objects moving near the speed of light Newton s First Law Forces If the net force!f exerted on an object
More informationW = 750 m. PHYS 101 SP17 Exam 1 BASE (A) PHYS 101 Exams. The next two questions pertain to the situation described below.
PHYS 101 Exams PHYS 101 SP17 Exa BASE (A) The next two questions pertain to the situation described below. A boat is crossing a river with a speed to the water. The river is flowing at a speed W = 750
More informationTwentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test
Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, 2005 Mechanics Test Please answer the following questions on the supplied answer sheet. You may write on this test booklet,
More informationUniversity of Houston Mathematics Contest: Physics Exam 2017
Unless otherwise specified, please use g as the acceleration due to gravity at the surface of the earth. Vectors x, y, and z are unit vectors along x, y, and z, respectively. Let G be the universal gravitational
More informationPhysicsMC Page 1 of 29 Inertia, Force and Motion 1.
PhysicsMC 20067 Page 1 of 29 Inertia, Force and Motion 1. 3. 2. Three blocks of equal mass are placed on a smooth horizontal surface as shown in the figure above. A constant force F is applied to block
More informationApplying Newton s Laws
Applying Newton s Laws Free Body Diagrams Draw and label the forces acting on the object. Examples of forces: weight, normal force, air resistance, friction, applied forces (like a push or pull) Velocity
More informationForces I. Newtons Laws
Forces I Newtons Laws Kinematics The study of how objects move Dynamics The study of why objects move Newton s Laws and Forces What is force? What are they? Force A push or a pull Symbol is F Unit is N
More informationApplying Newton s Laws
Chapter 5 Applying Newton s Laws PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Goals for Chapter 5 To use and apply Newton s Laws
More informationWhich, if any, of the velocity versus time graphs below represent the movement of the sliding box?
Review Packet Name: _ 1. A box is sliding to the right along a horizontal surface with a velocity of 2 m/s. There is friction between the box and the horizontal surface. The box is tied to a hanging stone
More informationPhysics 111 Lecture 4 Newton`s Laws
Physics 111 Lecture 4 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com he Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law q Examples Isaac
More information4) Vector = and vector = What is vector = +? A) B) C) D) E)
1) Suppose that an object is moving with constant nonzero acceleration. Which of the following is an accurate statement concerning its motion? A) In equal times its speed changes by equal amounts. B) In
More information(a) On the dots below that represent the students, draw and label freebody diagrams showing the forces on Student A and on Student B.
2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on
More informationPhysics Lecture 12. P. Gutierrez. Department of Physics & Astronomy University of Oklahoma
Physics 2514 Lecture 12 P. Gutierrez Department of Physics & Astronomy University of Oklahoma P. Gutierrez (University of Oklahoma) Physics 2514 February 21, 2011 1 / 13 Goal Goals for today s lecture:
More informationDynamics Notes 1 Newton s Laws
Dynamics Notes 1 Newton s Laws In 1665 Sir Isaac Newton formulated three laws that dictate the motion of objects. These three laws are universal and apply to all forces in the universe. Newton s 1 st Law:
More informationDynamic equilibrium: object moves with constant velocity in a straight line. = 0, a x = i
Dynamic equilibrium: object moves with constant velocity in a straight line. We note that F net a s are both vector quantities, so in terms of their components, (F net ) x = i (F i ) x = 0, a x = i (a
More informationF = 0. x o F = k x o v = 0 F = 0. F = k x o v = 0 F = 0. x = 0 F = 0. F = k x 1. PHYSICS 151 Notes for Online Lecture 2.4.
PHYSICS 151 Notes for Online Lecture.4 Springs, Strings, Pulleys, and Connected Objects Hook s Law F = 0 F = k x 1 x = 0 x = x 1 Let s start with a horizontal spring, resting on a frictionless table.
More informationPRACTICE TEST for Midterm Exam
South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos
More informationIf the mass of the wrecking ball is 3700, what is the tension in the cable that makes an angle of 40 with the vertical?
Description: A large wrecking ball is held in place by two light steel cables. (a) If the mass m of the wrecking ball is m, what is the tension T_B in the cable that makes an angle of 40 degree(s) with
More informationChapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc.
Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions
More informationFriction Can Be Rough
8.1 Observe and Find a Pattern Friction Can Be Rough Perform the following experiment: Rest a brick on a rough surface. Tie a string around the brick and attach a large spring scale to it. Pull the scale
More informationDynamics; Newton s Laws of Motion
Dynamics; Newton s Laws of Motion Force A force is any kind of push or pull on an object. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude
More informationChapter 4. The Laws of Motion
Chapter 4 The Laws of Motion Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical Mechanics does not
More informationNewton s Law of Motion
Newton s Law of Motion Physics 211 Syracuse University, Physics 211 Spring 2017 Walter Freeman February 13, 2017 W. Freeman Newton s Law of Motion February 13, 2017 1 / 21 Announcements Homework 3 due
More informationStatic Equilibrium; Torque
Static Equilibrium; Torque The Conditions for Equilibrium An object with forces acting on it, but that is not moving, is said to be in equilibrium. The first condition for equilibrium is that the net force
More information1982B1. The first meters of a 100meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant
1982B1. The first meters of a 100meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The remaining 90 meters are run with the same velocity
More informationPHY218 SPRING 2016 Review for Final Exam: Week 14 Final Review: Chapters 111, 1314
Final Review: Chapters 111, 1314 These are selected problems that you are to solve independently or in a team of 23 in order to better prepare for your Final Exam 1 Problem 1: Chasing a motorist This
More informationWritten Homework problems. Spring (taken from Giancoli, 4 th edition)
Written Homework problems. Spring 014. (taken from Giancoli, 4 th edition) HW1. Ch1. 19, 47 19. Determine the conversion factor between (a) km / h and mi / h, (b) m / s and ft / s, and (c) km / h and m
More informationAP Physics 1 Review. On the axes below draw the horizontal force acting on this object as a function of time.
P Physics Review. Shown is the velocity versus time graph for an object that is moving in one dimension under the (perhaps intermittent) action of a single horizontal force. Velocity, m/s Time, s On the
More information