# Chapter 5 Force and Motion

Save this PDF as:
Size: px
Start display at page:

## Transcription

1 Chapter 5 Force and Motion Chapter Goal: To establish a connection between force and motion. Slide 5-2

2 Chapter 5 Preview Slide 5-3

3 Chapter 5 Preview Slide 5-4

4 Chapter 5 Preview Slide 5-5

5 Chapter 5 Preview Slide 5-6

6 Chapter 5 Preview Slide 5-7

7 What Is a Force? A force is a push or a pull. A force acts on an object. Pushes and pulls are applied to something. From the object s perspective, it has a force exerted on it. Slide 5-18

8 What Is a Force? A force requires an agent, something that acts or exerts power. If you throw a ball, your hand is the agent or cause of the force exerted on the ball. A force is a vector. To quantify a push or pull, we need to specify both magnitude and a direction. Slide 5-19

9 What Is a Force? Contact forces are forces that act on an object by touching it at a point of contact. The bat must touch the ball to hit it. Long-range forces are forces that act on an object without physical contact. A coffee cup released from your hand is pulled to the earth by the long-range force of gravity. Slide 5-20

10 Tactics: Drawing Force Vectors Slide 5-23

11 Example: Drawing a Force Vector A box is pulled to the right by a rope. Slide 5-24

12 Example: Drawing a Force Vector A box is pushed to the right by a spring. Slide 5-25

13 Example: Drawing a Force Vector A box is pulled down by gravity. Slide 5-26

14 Combining Forces A box is pulled by two ropes, as shown. When several forces are exerted on an object, they combine to form a net force given by the vector sum of all the forces: This is called a superposition of forces. Slide 5-27

15 Gravity The pull of a planet on an object near the surface is called the gravitational force. The agent for the gravitational force is the entire planet. Gravity acts on all objects, whether moving or at rest. The gravitational force vector always points vertically downward. Slide 5-30

16 Spring Force A spring can either push (when compressed) or pull (when stretched). Not all springs are metal coils. Whenever an elastic object is flexed or deformed in some way, and then springs back to its original shape when you let it go, this is a spring force. Slide 5-31

17 Tension Force When a string or rope or wire pulls on an object, it exerts a contact force called the tension force. The tension force is in the direction of the string or rope. A rope is made of atoms joined together by molecular bonds. Molecular bonds can be modeled as tiny springs holding the atoms together. Tension is a result of many molecular springs stretching ever so slightly. Slide 5-32

18 Normal Force When an object sits on a table, the table surface exerts an upward contact force on the object. This pushing force is directed perpendicular to the surface, and thus is called the normal force. A table is made of atoms joined together by molecular bonds which can be modeled as springs. Normal force is a result of many molecular springs being compressed ever so slightly. Slide 5-36

19 Examples of Normal Force Suppose you place your hand on a wall and lean against it. The wall exerts a horizontal normal force on your hand. Suppose a frog sits on an inclined surface. The surface exerts a tilted normal force on the frog. Slide 5-37

20 Kinetic Friction When an object slides along a surface, the surface can exert a contact force which opposes the motion. This is called sliding friction or kinetic friction. The kinetic friction force is directed tangent to the surface, and opposite to the velocity of the object relative to the surface. Kinetic friction tends to slow down the sliding motion of an object in contact with a surface. Slide 5-38

21 Static Friction Static friction is the contact force that keeps an object stuck on a surface, and prevents relative motion. The static friction force is directed tangent to the surface. Static friction points opposite the direction in which the object would move if there were no static friction. Slide 5-41

22 Drag Kinetic friction is a resistive force, which opposes or resists motion. Resistive forces are also experienced by objects moving through fluids. The resistive force of a fluid is called drag. Drag points opposite the direction of motion. For heavy and compact objects in air, drag force is fairly small. You can neglect air resistance in all problems unless a problem explicitly asks you to include it. Slide 5-42

23 Thrust A jet airplane or a rocket has a thrust force pushing it forward during takeoff. Thrust occurs when an engine expels gas molecules at high speed. This exhaust gas exerts a contact force on the engine. The direction of thrust is opposite the direction in which the exhaust gas is expelled. Slide 5-43

24 Electric and Magnetic Forces Electricity and magnetism, like gravity, exert long-range forces. Atoms and molecules are made of electrically charged particles. Molecular bonds are due to the electric force between these particles. Most forces, such as normal force and tension, are actually caused by electric forces between the charged particles in the atoms. Slide 5-44

25 Symbols for Forces Slide 5-45

26 Tactics: Identifying Forces Slide 5-46

27 Tactics: Identifying Forces Slide 5-47

28 EXAMPLE 5.1 Forces on a Bungee Jumper Slide 5-48

29 EXAMPLE 5.2 Forces on a Skier Slide 5-49

30 EXAMPLE 5.3 Forces on a Rocket Slide 5-50

31 What Do Forces Do? A Virtual Experiment Attach a stretched rubber band to a 1 kg block. Use the rubber band to pull the block across a horizontal, frictionless table. Keep the rubber band stretched by a fixed amount. We find that the block moves with a constant acceleration. Slide 5-53

32 What Do Forces Do? A Virtual Experiment A standard rubber band can be stretched to some standard length This will exert a reproducible spring force of magnitude F on whatever it is attached to N side-by-side rubber bands exert N times the standard force: F net = NF Slide 5-54

33 What Do Forces Do? A Virtual Experiment When a 1 kg block is pulled on a frictionless surface by a single elastic band stretched to the standard length, it accelerates with constant acceleration a 1. Repeat the experiment with 2, 3, 4, and 5 rubber bands attached side-by-side. The acceleration is directly proportional to the force. Slide 5-55

34 What Do Forces Do? A Virtual Experiment When a 1 kg block is pulled on a frictionless surface by a single elastic band stretched to the standard length, it accelerates with constant acceleration a 1. Repeat the experiment with a 2 kg, 3 kg and 4 kg block. The acceleration is inversely proportional to the mass. Slide 5-56

35 What Do Forces Do? A Virtual Experiment Force causes an object to accelerate! The result of the experiment is. The basic unit of force is the newton (N). 1 N = 1 kg m/s 2. Slide 5-57

36 Approximate Magnitude of Some Typical Forces Slide 5-60

37 Inertial Mass An object with twice the amount of matter accelerates only half as much in response to the same force. The more matter an object has, the more it resists accelerating in response to the same force. The tendency of an object to resist a change in its velocity is called inertia. The mass used in a = F/m is called inertial mass. Slide 5-61

38 Newton s Second Law When more than one force is acting on an object, the object accelerates in the direction of the net force vector. Slide 5-62

39 Newton s Second Law Slide 5-63

40 Newton s First Law Newton s first law is also known as the law of inertia. If an object is at rest, it has a tendency to stay at rest. If it is moving, it has a tendency to continue moving with the same velocity. Slide 5-66

41 Newton s First Law An object on which the net force is zero is said to be in mechanical equilibrium. There are two forms of mechanical equilibrium: If the object is at rest, then it is in static equilibrium. If the object is moving with constant velocity, it is in dynamic equilibrium. Slide 5-67

42 Inertial Reference Frames If a car stops suddenly, you may be thrown forward. You do have a forward acceleration relative to the car. However, there is no force pushing you forward. This guy thinks there s a force hurling him into the windshield. What a dummy! We define an inertial reference frame as one in which Newton s laws are valid. The interior of a crashing car is not an inertial reference frame! Slide 5-72

43 Inertial Reference Frames A physics student cruises at a constant velocity in an airplane. A ball placed on the floor stays at rest relative to the airplane. There are no horizontal forces on the ball, so when. Newton s first law is satisfied, so this airplane is an inertial reference frame. Slide 5-73

44 Inertial Reference Frames A physics student is standing up in an airplane during takeoff. A ball placed on the floor rolls toward the back of the plane. There are no horizontal forces on the ball, and yet the ball accelerates in the plane s reference frame. Newton s first law is violated, therefore this airplane is not an inertial reference frame. In general, accelerating reference frames are not inertial reference frames. Slide 5-74

45 Thinking About Force Every force has an agent which causes the force. Forces exist at the point of contact between the agent and the object (except for the few special cases of long-range forces). Forces exist due to interactions happening now, not due to what happened in the past. Consider a flying arrow. A pushing force was required to accelerate the arrow as it was shot. However, no force is needed to keep the arrow moving forward as it flies. It continues to move because of inertia. Slide 5-75

46 Tactics: Drawing a Free-body Diagram Slide 5-78

47 Tactics: Drawing a Free-body Diagram Slide 5-79

48 EXAMPLE 5.4 An Elevator Accelerates Upward Slide 5-84

49 EXAMPLE 5.4 An Elevator Accelerates Upward Slide 5-85

50 EXAMPLE 5.6 A Skier Is Pulled up a Hill Slide 5-88

51 EXAMPLE 5.6 A Skier Is Pulled up a Hill Slide 5-89

52 EXAMPLE 5.6 A Skier Is Pulled up a Hill Slide 5-90

53 Chapter 5 Summary Slides Slide 5-91

54 General Principles Slide 5-92

55 General Principles Slide 5-93

56 Important Concepts Slide 5-94

57 Important Concepts Slide 5-95

58 Important Concepts Slide 5-96

### Section /07/2013. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 5, pgs.

PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow Based on Knight 3 rd edition Ch. 5, pgs. 116-133 Section 5.1 A force is a push or a pull What is a force? What is a force? A force

### PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

### PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

### 3/10/2019. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors

What Is a Force? A force acts on an object. A force requires an agent, something that acts on the object. If you throw a ball, your hand is the agent or cause of the force exerted on the ball. A force

### What Is a Force? Slide Pearson Education, Inc.

What Is a Force? A force acts on an object. A force requires an agent, something that acts on the object. If you throw a ball, your hand is the agent or cause of the force exerted on the ball. A force

### Dynamics: Forces and Newton s Laws of Motion

Lecture 7 Chapter 5 Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass: Section 5.1

### Dynamics: Forces and Newton s Laws of Motion

Lecture 7 Chapter 5 Physics I Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass:

### Lecture Presentation. Chapter 4 Forces and Newton s Laws of Motion. Chapter 4 Forces and Newton s Laws of Motion. Reading Question 4.

Chapter 4 Forces and Newton s Laws of Motion Lecture Presentation Chapter 4 Forces and Newton s Laws of Motion Chapter Goal: To establish a connection between force and motion. Slide 4-2 Chapter 4 Preview

### Physics for Scientists and Engineers. Chapter 5 Force and Motion

Physics for Scientists and Engineers Chapter 5 Force and Motion Spring, 2008 Ho Jung Paik Force Forces are what cause any change in the velocity of an object The net force is the vector sum of all the

### 4.2. Visualize: Assess: Note that the climber does not touch the sides of the crevasse so there are no forces from the crevasse walls.

4.1. Solve: A force is basically a push or a pull on an object. There are five basic characteristics of forces. (i) A force has an agent that is the direct and immediate source of the push or pull. (ii)

### Circular Motion. A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No

Circular Motion A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No Circular Motion A car is traveling around a curve at a steady 45 mph. Which vector shows the

### Dynamics: Forces. Lecture 7. Chapter 5. Course website:

Lecture 7 Chapter 5 Dynamics: Forces Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Some leftovers from rotational motion Ch.4 Force,

### Physics Mechanics. Lecture 11 Newton s Laws - part 2

Physics 170 - Mechanics Lecture 11 Newton s Laws - part 2 Newton s Second Law of Motion An object may have several forces acting on it; the acceleration is due to the net force: Newton s Second Law of

### Introductory Physics PHYS101

Introductory Physics PHYS101 Dr Richard H. Cyburt Office Hours Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu TRF 9:30-11:00am

### Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life.

Forces and Newton s Laws Reading Notes Name: Section 4-1: Force What is force? Give an example of a force you have experienced continuously all your life. Give an example of a situation where an object

### Chapter 4 Force and Motion

Chapter 4 Force and Motion Units of Chapter 4 The Concepts of Force and Net Force Inertia and Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion More on Newton s Laws:

### What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion

Forces and Newton s Laws of Motion What is a Force? In generic terms: a force is a push or a pull exerted on an object that could cause one of the following to occur: A linear acceleration of the object

### FORCE AND MOTION. Conceptual Questions F G as seen in the figure. n, and a kinetic frictional force due to the rough table surface f k

FORCE AND MOTION 5 Conceptual Questions 5.1. Two forces are present, tension T in the cable and gravitational force 5.. F G as seen in the figure. Four forces act on the block: the push of the spring F

### Chapter Four Holt Physics. Forces and the Laws of Motion

Chapter Four Holt Physics Forces and the Laws of Motion Physics Force and the study of dynamics 1.Forces - a. Force - a push or a pull. It can change the motion of an object; start or stop movement; and,

### PS113 Chapter 4 Forces and Newton s laws of motion

PS113 Chapter 4 Forces and Newton s laws of motion 1 The concepts of force and mass A force is described as the push or pull between two objects There are two kinds of forces 1. Contact forces where two

### A force is could described by its magnitude and by the direction in which it acts.

8.2.a Forces Students know a force has both direction and magnitude. P13 A force is could described by its magnitude and by the direction in which it acts. 1. Which of the following could describe the

### PHY131H1F Introduction to Physics I Review of the first half Chapters Error Analysis

PHY131H1F Introduction to Physics I Review of the first half Chapters 1-8 + Error Analysis Position, Velocity, Acceleration Significant Figures, Measurements, Errors Equations of constant acceleration

### Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move

Chapter 4 Dynamics: Newton s Laws of Motion That is, describing why objects move orces Newton s 1 st Law Newton s 2 nd Law Newton s 3 rd Law Examples of orces: Weight, Normal orce, Tension, riction ree-body

### Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object.

Force The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Forces do not always give rise to motion. Forces can be equal and opposite. Force is a vector

### Chapter 5 Lecture. Pearson Physics. Newton's Laws of Motion. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 5 Lecture Pearson Physics Newton's Laws of Motion Prepared by Chris Chiaverina Chapter Contents Newton's Laws of Motion Applying Newton's Laws Friction Newton's Laws of Motion Two of the most important

### Forces. Brought to you by:

Forces Brought to you by: Objects have force because of their mass and inertia Mass is a measure of the amount of matter/particles in a substance. Mass is traditionally measured with a balance. Inertia

### Four naturally occuring forces

Forces System vs Environment: system the object the force is applied to environment the world around the object that exerts the force Type Forces: Contact is applied by touching Long range exerted without

### Topic: Force PHYSICS 231

Topic: Force PHYSICS 231 Current Assignments Homework Set 2 due this Thursday, Jan 27, 11 pm Reading for next week: Chapters 10.1-6,10.10,8.3 2/1/11 Physics 231 Spring 2011 2 Key Concepts: Force Free body

### Dynamics; Newton s Laws of Motion

Dynamics; Newton s Laws of Motion Force A force is any kind of push or pull on an object. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude

### Dynamics Multiple Choice Homework

Dynamics Multiple Choice Homework PSI Physics Name 1. In the absence of a net force, a moving object will A. slow down and eventually stop B. stop immediately C. turn right D. move with constant velocity

### Chapter 3 The Laws of motion. The Laws of motion

Chapter 3 The Laws of motion The Laws of motion The Concept of Force. Newton s First Law. Newton s Second Law. Newton s Third Law. Some Applications of Newton s Laws. 1 5.1 The Concept of Force Force:

### Chapters 5-6. Dynamics: Forces and Newton s Laws of Motion. Applications

Chapters 5-6 Dynamics: orces and Newton s Laws of Motion. Applications That is, describing why objects move orces Newton s 1 st Law Newton s 2 nd Law Newton s 3 rd Law Examples of orces: Weight, Normal,

### If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List:

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List: No Push No Go No Push No Stop No Push No Speed Up No Push No Slow Down

### 1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

### 1 In the absence of a net force, a moving object will. slow down and eventually stop stop immediately turn right move with constant velocity turn left

Slide 1 / 51 1 In the absence of a net force, a moving object will slow down and eventually stop stop immediately turn right move with constant velocity turn left Slide 2 / 51 2 When a cat sleeps on a

### Physics B Newton s Laws AP Review Packet

Force A force is a push or pull on an object. Forces cause an object to accelerate To speed up To slow down To change direction Unit: Newton (SI system) Newton s First Law The Law of Inertia. A body in

### Physics General Physics. Lecture 3 Newtonian Mechanics. Fall 2016 Semester. Prof. Matthew Jones

Physics 22000 General Physics Lecture 3 Newtonian Mechanics Fall 2016 Semester Prof. Matthew Jones 1 Review of Lectures 1 and 2 In the previous lectures we learned how to describe some special types of

### The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron.

Lecture 3 The Laws of Motion OUTLINE 5.1 The Concept of Force 5.2 Newton s First Law and Inertial Frames 5.3 Mass 5.4 Newton s Second Law 5.5 The Gravitational Force and Weight 5.6 Newton s Third Law 5.8

### Physics 2A Chapter 4: Forces and Newton s Laws of Motion

Physics 2A Chapter 4: Forces and Newton s Laws of Motion There is nothing either good or bad, but thinking makes it so. William Shakespeare It s not what happens to you that determines how far you will

### Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity

Isaac Newton (1642-1727) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

### POGIL: Newton s First Law of Motion and Statics. Part 1: Net Force Model: Read the following carefully and study the diagrams that follow.

POGIL: Newton s First Law of Motion and Statics Name Purpose: To become familiar with the forces acting on an object at rest Part 1: Net Force Model: Read the following carefully and study the diagrams

### Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book.

AP Physics 1- Dynamics Practice Problems FACT: Inertia is the tendency of an object to resist a change in state of motion. A change in state of motion means a change in an object s velocity, therefore

### s_3x03 Page 1 Physics Samples

Physics Samples KE, PE, Springs 1. A 1.0-kilogram rubber ball traveling east at 4.0 meters per second hits a wall and bounces back toward the west at 2.0 meters per second. Compared to the kinetic energy

### Friction forces. Lecture 8. Chapter 6. Physics I. Course website:

Lecture 8 Physics I Chapter 6 Friction forces Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 6: Some leftover (Ch.5) Kinetic/Static Friction:

### 4 Study Guide. Forces in One Dimension Vocabulary Review

Date Period Name CHAPTER 4 Study Guide Forces in One Dimension Vocabulary Review Write the term that correctly completes the statement. Use each term once. agent force Newton s second law apparent weight

### Concept of Force and Newton s Laws of Motion

Concept of Force and Newton s Laws of Motion 8.01 W02D2 Chapter 7 Newton s Laws of Motion, Sections 7.1-7.4 Chapter 8 Applications of Newton s Second Law, Sections 8.1-8.4.1 Announcements W02D3 Reading

### 3. What type of force is the woman applying to cart in the illustration below?

Name: Forces and Motion STUDY GUIDE Directions: Answer the following questions. 1. What is a force? a. A type of energy b. The rate at which an object performs work c. A push or a pull d. An object that

### Newton s 3 Laws of Motion

Newton s 3 Laws of Motion 1. If F = 0 No change in motion 2. = ma Change in motion Fnet 3. F = F 1 on 2 2 on 1 Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

### 7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

1. Which statement about the movement of an object with zero acceleration is true? The object must be at rest. The object must be slowing down. The object may be speeding up. The object may be in motion.

### Make sure you know the three laws inside and out! You must know the vocabulary too!

Newton's Laws Study Guide Test March 9 th The best plan is to study every night for 15 to 20 minutes. Make sure you know the three laws inside and out! You must know the vocabulary too! Newton s First

### Force Concept Inventory

Force Concept Inventory 1. Two metal balls are the same size but one weighs twice as much as the other. The balls are dropped from the roof of a single story building at the same instant of time. The time

### Newton s First Law. Newton s Second Law 9/29/11

Newton s First Law Any object remains at constant velocity unless acted upon by a net force. AND In order for an object to accelerate, there must be a net force acting on it. Constant velocity could mean

### 1N the force that a 100g bar of chocolate exerts on your hand.

Forces: - - > cause change in motions Newton's first law = law of inertia In absence of a net external force acting upon it, a body will either remain at rest or continue in its rectilinear uniform motion.

### Physics 12 Unit 2: Vector Dynamics

1 Physics 12 Unit 2: Vector Dynamics In this unit you will extend your study of forces. In particular, we will examine force as a vector quantity; this will involve solving problems where forces must be

### The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

### Section 1 Changes in Motion. Chapter 4. Preview. Objectives Force Force Diagrams

Section 1 Changes in Motion Preview Objectives Force Force Diagrams Section 1 Changes in Motion Objectives Describe how force affects the motion of an object. Interpret and construct free body diagrams.

### Physics 221, January 24

Key Concepts: Newton s 1 st law Newton s 2 nd law Weight Newton s 3 rd law Physics 221, January 24 Please find a seat. Keep all walkways free for safety reasons and to comply with the fire code. Matter

### SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION.

MOTION & FORCES SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION. A. CALCULATE VELOCITY AND ACCELERATION. B. APPLY NEWTON S THREE LAWS TO EVERYDAY SITUATIONS BY EXPLAINING THE

### Part I: Mechanics. Chapter 2 Inertia & Newton s First Law of Motion. Aristotle & Galileo. Lecture 2

Lecture 2 Part I: Mechanics Chapter 2 Inertia & Newton s First Law of Motion Some material courtesy Prof. A. Garcia, SJSU Aristotle & Galileo Aristotle was great philosopher but not such a good scientist.

### Newton s Contributions. Calculus Light is composed of rainbow colors Reflecting Telescope Laws of Motion Theory of Gravitation

Newton s Contributions Calculus Light is composed of rainbow colors Reflecting Telescope Laws of Motion Theory of Gravitation Newton s First Law (law of inertia) An object at rest tends to stay at rest

### Ch. 2 The Laws of Motion

Ch. 2 The Laws of Motion Lesson 1 Gravity and Friction Force - A push or pull we pull on a locker handle push a soccer ball or on the computer keys Contact force - push or pull on one object by another

### Question: Are distance and time important when describing motion? DESCRIBING MOTION. Motion occurs when an object changes position relative to a.

Question: Are distance and time important when describing motion? DESCRIBING MOTION Motion occurs when an object changes position relative to a. DISTANCE VS. DISPLACEMENT Distance Displacement distance

### PSI AP Physics B Dynamics

PSI AP Physics B Dynamics Multiple-Choice questions 1. After firing a cannon ball, the cannon moves in the opposite direction from the ball. This an example of: A. Newton s First Law B. Newton s Second

### The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples

The Laws of Motion Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples Gravitational Force Gravitational force is a vector Expressed by Newton s Law of Universal

### Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that

Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that moving objects eventually stop only because of a force

### Chapter 4. Forces in One Dimension

Chapter 4 Forces in One Dimension Chapter 4 Forces in One Dimension In this chapter you will: *VD Note Use Newton s laws to solve problems. Determine the magnitude and direction of the net force that causes

### Chapter 3, Problem 28. Agenda. Forces. Contact and Field Forces. Fundamental Forces. External and Internal Forces 2/6/14

Agenda Today: Homework Quiz, Chapter 4 (Newton s Laws) Thursday: Applying Newton s Laws Start reading Chapter 5 Chapter 3, Problem 28 A ball with a horizontal speed of 1.25 m/s rolls off a bench 1.00 m

### Concept of Force Concept Questions

Concept of Force Concept Questions Question 1: You are pushing a wooden crate across the floor at constant speed. You decide to turn the crate on end, reducing by half the surface area in contact with

### A Question about free-body diagrams

Free-body Diagrams To help us understand why something moves as it does (or why it remains at rest) it is helpful to draw a free-body diagram. The free-body diagram shows the various forces that act on

### The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis

The Laws of Motion The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis Models using Newton s Second Law Forces

### Unit 2: Vector Dynamics

Multiple Choice Portion Unit 2: Vector Dynamics 1. Which one of the following best describes the motion of a projectile close to the surface of the Earth? (Assume no friction) Vertical Acceleration Horizontal

### AP Physics I Summer Work

AP Physics I Summer Work 2018 (20 points) Please complete the following set of questions and word problems. Answers will be reviewed in depth during the first week of class followed by an assessment based

### Practice Honors Physics Test: Newtons Laws

Name: Class: Date: Practice Honors Physics Test: Newtons Laws Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Acceleration is defined as the CHANGE in

### CHAPTER 2. FORCE and Motion. CHAPTER s Objectives

19 CHAPTER 2 FORCE and Motion CHAPTER s Objectives To define a force To understand the relation between force and motion In chapter 1, we understood that the Greek philosopher Aristotle was the first who

### Forces and Motion. Reference: Prentice Hall Physical Science: Concepts in Action Chapter 12

Forces and Motion Reference: Prentice Hall Physical Science: Concepts in Action Chapter 12 What is Force? A push or pull that acts on an object Can cause a resting object to move Can accelerate a moving

### Chapter 5. The Laws of Motion

Chapter 5 The Laws of Motion The Laws of Motion The description of an object in motion included its position, velocity, and acceleration. There was no consideration of what might influence that motion.

### Chapter 4 Newton s Laws

Chapter 4 Newton s Laws Isaac Newton 1642-1727 Some inventions and discoveries: 3 laws of motion Universal law of gravity Calculus Ideas on: Sound Light Thermodynamics Reflecting telescope In this chapter,

### UNIT XX: DYNAMICS AND NEWTON S LAWS. DYNAMICS is the branch of mechanics concerned with the forces that cause motions of bodies

I. Definition of FORCE UNIT XX: DYNAMICS AND NEWTON S LAWS DYNAMICS is the branch of mechanics concerned with the forces that cause motions of bodies FORCE is a quantitative interaction between two (or

### General Physics I Spring Forces and Newton s Laws of Motion

General Physics I Spring 2011 Forces and Newton s Laws of Motion 1 Forces and Interactions The central concept in understanding why things move is force. If a tractor pushes or pulls a trailer, the tractor

### Chapter 7 Newton s Third Law

Chapter 7 Newton s Third Law Chapter Goal: To use Newton s third law to understand interacting objects. Slide 7-2 Chapter 7 Preview Slide 7-3 Chapter 7 Preview Slide 7-4 Chapter 7 Preview Slide 7-6 Chapter

### HSC PHYSICS ONLINE B F BA. repulsion between two negatively charged objects. attraction between a negative charge and a positive charge

HSC PHYSICS ONLINE DYNAMICS TYPES O ORCES Electrostatic force (force mediated by a field - long range: action at a distance) the attractive or repulsion between two stationary charged objects. AB A B BA

### Newton s Laws. A force is simply a push or a pull. Forces are vectors; they have both size and direction.

Newton s Laws Newton s first law: An object will stay at rest or in a state of uniform motion with constant velocity, in a straight line, unless acted upon by an external force. In other words, the bodies

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the

### Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Newtonian Mechanics Mass Mass is an intrinsic characteristic of a body The mass of a body is the characteristic that relates a force on the body to the resulting acceleration.

### CHAPTER 4 NEWTON S LAWS OF MOTION

62 CHAPTER 4 NEWTON S LAWS O MOTION CHAPTER 4 NEWTON S LAWS O MOTION 63 Up to now we have described the motion of particles using quantities like displacement, velocity and acceleration. These quantities

### Dynamic equilibrium: object moves with constant velocity in a straight line. = 0, a x = i

Dynamic equilibrium: object moves with constant velocity in a straight line. We note that F net a s are both vector quantities, so in terms of their components, (F net ) x = i (F i ) x = 0, a x = i (a

### Comprehensive Exam Session III Classical Mechanics Physics Department- Proctor: Dr. Jack Straton (Sun. Jan 11 th, 2015) (3 hours long 1:00 to 4:00 PM)

Letter Comprehensive Exam Session III Classical Mechanics Physics Department- Proctor: Dr. Jack Straton (Sun. Jan 11 th, 2015) (3 hours long 1:00 to 4:00 PM) If you cannot solve the whole problem, write

### Free-Body Diagrams: Introduction

Free-Body Diagrams: Introduction Learning Goal: To learn to draw free-body diagrams for various real-life situations. Imagine that you are given a description of a real-life situation and are asked to

### Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91

Review Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 The unit of work is the A. Newton B. Watt C. Joule D. Meter E. Second 2/91 The unit of work is the A. Newton

### Tue Sept 15. Dynamics - Newton s Laws of Motion. Forces: Identifying Forces Free-body diagram Affect on Motion

Tue Sept 15 Assignment 4 Friday Pre-class Thursday Lab - Print, do pre-lab Closed toed shoes Exam Monday Oct 5 7:15-9:15 PM email me if class conflict or extended time Dynamics - Newton s Laws of Motion

### An Introduction to Forces Forces-part 1. Forces are Interactions

An Introduction to Forces Forces-part 1 PHYS& 114: Eyres Forces are Interactions A force is an interaction between 2 objects Touching At a distance See the Fundamental Particle Chart (http://www.cpepphysics.org/images/2014-fund-chart.jpg)

### PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

### Forces. Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics

FORCES Forces Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics Inertia Tendency of an object to remain in the same state of motion. Resists a change in motion.

### Physics Chapter 4 Newton s Laws of Motion

Physics Chapter 4 Newton s Classical Mechanics Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In the diagram shown, the unknown vector is 1) Diagram 1 A) B - A. B) A - B. C) A + B.

### Yanbu University College. General Studies Department. Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions

1 Yanbu University College General Studies Department Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions 2 Chapter 2 Worksheet Part 1 Matching: Match the definitions with the given concepts. 1.

### Free Body Diagram Practice

Name: Free Body Diagram Practice Per: Read each scenario and draw a diagram of the forces acting upon the object(s). 1. A book is at rest on a table top. Diagram the forces acting on the book. 2. A girl

### Chapter 6 Dynamics I: Motion Along a Line

Chapter 6 Dynamics I: Motion Along a Line Chapter Goal: To learn how to solve linear force-and-motion problems. Slide 6-2 Chapter 6 Preview Slide 6-3 Chapter 6 Preview Slide 6-4 Chapter 6 Preview Slide