Cork Institute of Technology. Spring 2005 DCE 3.5 Thermodynamics & Heat Transfer (Time: 3 Hours) Section A

Size: px
Start display at page:

Download "Cork Institute of Technology. Spring 2005 DCE 3.5 Thermodynamics & Heat Transfer (Time: 3 Hours) Section A"

Transcription

1 Ck Insttute f echnlgy Bachel f Engneeng (Hnus) n Chemcal and Pcess Engneeng Stage 3 Bachel f Engneeng n Chemcal and Pcess Engneeng Stage 3 (NFQ Level 8) Spng 005 DCE 3.5 hemdynamcs & Heat ansfe (me: 3 Hus) Answe FOUR questns; WO questns fm Sectn A and WO questns fm Sectn B. Use sepaate answe bks f each lectue. Sectn A Examnes: Pf. R. Ocne M. D. O Cnn M. G. Pete M. I. O Sullvan Q. A VLE study s t be undetaken n a methanl () methyl acetate () system at 45 C. Assume that the vapu phase mxtue behaves as an deal gas, but that the lqud mxtue behaves as a nn-deal slutn that s assume the VLE system beys mdfed Rault s Law. ake t that lqud phase nn-dealtes can be adequately mdelled by the celatn: g E x x R B (a) Statng wth the expessn that geneally defnes a patal mla ppety g n t deve ne the f the actvty ceffcent expessns gven belw: lnγ Bx ln γ Bx (0 maks) Gven the fllwng Antne vapu pessue celatns f each cmpnent and a value f the actvty ceffcent paamete B at 45ºC: P sat ln ( ~ K and sat P ~ kpa) P sat ln ( ~ K and sat P ~ kpa)

2 B.07 (-) (b) Gven that the dew-pnt lqud cmpstn s x 0.87, calculate the dew-pnt pessue f the mxtue at 45 C. he ntal supeheated vapu cmpstn s z 0.6. (8 maks) (c) Calculate the bubble-pnt pessue f the mxtue at 45ºC and the cmpstn f vapu phase, gven that the ntal subcled lqud cmpstn s z 0.5. (7 maks) Q. Vaus ppetes f butane as a satuated vapu and a satuated lqud ae needed at 360 K. F enthalpy calculatns use the fllwng efeence state: the deal gas state; tempeatue 5ºC; pessue.035 ba; and set the efeence enthalpy t ze when the gas s n ths hypthetcal state. Assume that the Val EOS accuately celates vapu ppetes. F satuated lqud ppetes use a calculatn ute that s cnsstent wth the Actvty Ceffcent Methd. (a) Calculate the cmpessblty fact, the mla vlume and the mla enthalpy f satuated butane vapu at 360 K. (0 maks) (b) Calculate the mla enthalpy f satuated butane lqud at 360 K. (5 maks) Butane has the fllwng ctcal and the ppetes: Ctcal Pessue Ctcal empeatue 37.9 ba 45.5 K Acentc Fact (-) Satuatn Pessue at 360 K Nmal blng Pnt ( n ) Unvesal Gas Cnstant (R).7 ba 7.65 K kj / kml K he deal gas heat capacty celatn f butane, as a functn f abslute tempeatue (), s gven belw: C g p R (36.95 x 0 3 ) (.40 x0 6 )

3 he fllwng expessn f the esdual enthalpy may be deved fm the tw-tem Val EOS: R h R c P B db d + ω B db d Ptze s genealsed celatn f BPc Rc s gven by: BP R c c B + ωb B B he latent heat f vapusatn (h fg ) may be estmated at the Nmal Blng Pnt ( n ) usng the Redel equatn: ( h fg ) R n n.09(ln P.03) c n Whee (h fg ) n s the mla latent heat at n (kj /kml). n s the Nmal Blng Pnt (K). P c s ctcal pessue (ba). s the educed tempeatue at n n (-). R s the unvesal gas cnstant (kj / kml K). Estmates f h fg at a tempeatue the n can be fund fm Watsn s equatn: ( h ( h fg fg ) )

4 Q3. Sulphu dxde and a ae fed nt an adabatc eact at ba and 98.5 K. ake as the bass f the calculatn kml f SO n the feed and 0% excess a (mla bass). he vapu phase xdatn f SO t SO 3 pceeds n accdance wth the stchmetc eactn gven belw: SO ( g) + O ( g) SO 3( g) (a) Gven the geneal cten f equlbum shwn by equatn (3.) and, assumng that the vapu mxtue behaves as an deal-gas, deve the smplfed cten f equlbum gven by equatn (3.): K Π ( ˆ ν a )..(3.) ν v P Π ( y ) K..(3.) (5 maks) P (b) Assume the fllwng: the eact s at a unfm tempeatue; the ext gases leavng the eact ae n equlbum; the eact tempeatue s K; the eact pessue s 00 kpa. Calculate the equlbum extent f eactn ( ε e ), the cmpstn f the ext gas mxtue leavng the eact and the factnal cnvesn f the lmtng eactant (see belw f all elevant data and equatns). (7 maks) (c) Demnstate hw a heat balance culd be set up t vefy that the eact des ndeed peate adabatcally d nt slve ths heat balance. (3 maks) he mla cmpstn f a s 79% ntgen and % xygen. ake the Standad State Pessue t be 00 kpa. In the equatns belw has unts f (K) and bth I and J ae cnstants f ntegatn: J b c d ln K + a ln I R 6 G R ln K 4

5 H b J + R ( a) + c d Each f the a, b, c, d efe t the elevant a, b, c, d heat capacty cnstants, multpled by the apppate speces stchmetc ceffcent (v ), then summed ve the eactn. he deal-gas heat capacty elatn s gven belw: C R P a + b + c + d Whee s tempeatue (K), R s the unvesal gas cnstant (8.344 kj /kml K). he heat f fmatn (98.5 K), the Gbb s fee enegy f fmatn (98.5 K) and the deal-gas heat capacty cnstants, f each speces, ae all gven n able 3. belw: Cmpnent H f 98 (kj/kml) G f 98 (kj/kml) a b x03 c x06 d x0-5 (SO ) g -96, , (O) g (SO 3 ) g -395,70-37, (N ) g able 3. 5

6 Sectn B Q4. A duble ppe heat exchange s emplyed t heat 5 kg/s f Dwthem A fm 5 C t 65 C usng waste ht wate whch s n tun cled fm 95 C t 75 C. he ht wate flws n the nne tube n cunteflw t the Dwthem, whch flws n the annulus. ncease the effectveness f the heat exchange 3 lngtudnal cabn steel fns ae utlsed. Detemne the length f heat exchange equed t cay ut the equed duty gven the fllwng nfmatn. Inne damete f tube (d ) Oute damete f tube (d ) Inne damete f shell (d S ) Fn heght (H) Fn thckness (W) Wdth f the fn t (W ) mm 48.3 mm 75.0 mm.7 mm 0.89 mm 4.0 mm Dwthem A Wate CabnSteel ρ (kg/m 3 ) C p (J/kgK) λ (W/mK) η (Ns/m ) ν (m /s) κ (m /s) P f { α λ } { α/wλh} tanh / W H η Nu 0.03Re P

7 Q5. A shell and tube heat exchange has the fllwng gemety: Shell ntenal damete Ds m Numbe f tubes N 58 ube O.D. D.54 cm ube I.D. D.0574 cm ube ptch (squae) P 3.75 cm Baffle spacng L B.70 cm Shell Length L S m ube t baffle dametal cleaance tb 0.8 mm Shell t baffle dametal cleaance sb 5.0 mm Bundle t shell dametal cleaance b 35.0 mm Numbe f sealng stps pe css flw w N ss / NC /5 hckness f baffles t b 5 mm Numbe f tubesde passes n 4 Use the Ken methd t calculate the shell sde heat tansfe ceffcent and pessue dp f the flw f a lght hydcabn wth the fllwng specfcatn (at bulk tempeatue). Use the Bell-Delawae methd (wth the ad f Fgue Q5) t calculate the shell sde heat tansfe ceffcent. tal mass flw ate kg/s Densty 730 kg/m 3 hemal cnductvty 0.34 W/mK Specfc heat capacty.470 kj/kgk Vscsty 40 µns/m 7

8 Useful Equatns S L D D D + D P D ( ) OL O m B S OL O P Nu 0.36 Re P Nu 0.Re P ( ) D L D L D L FC π+ sn cs cs π DOL DOL DOL s C S C S C D L Ssb π cs DS S sb C S tb ( + F ) πdo tb N C JC FC Ds SS C'L P B 8

9 Q6. A feeze dyng chambe cnssts f a lng ectangula duct 0.3m n wdth. he mateal beng feeze ded s at a tempeatue f 0ºC and makes up the fl f the duct (suface ). he f f the duct (suface ) s a ht metal plate that s 0.5 m abve the fl, paallel t the fl and at a tempeatue f 350ºC. Heat s beng tansfeed by adatn fm the ht plate t the cld mateal that s beng ded. he walls f the chambe (suface R) ae themally nsulated and can be taken t have a unfm tempeatue. he chambe s lng enugh t gne end effects and any aea calculatns can be dne n a (m / m) bass. An end-elevatn f the chambe s shwn n Fgue 4. belw. Data: ε 0.88 ε 0.0 ε R σ W/ m K 4 (a) Calculate the adant heat tansfe (kw) fm the ht plate t the fzen mateal. (5 maks) (b) Calculate the unfm tempeatue f the sde walls. (0 maks) he vew fact fm the ht plate, wdth w t fzen mateal, sepaatn d s: d F + w d w 9

10 0

11

Combustion Chamber. (0.1 MPa)

Combustion Chamber. (0.1 MPa) ME 354 Tutial #10 Winte 001 Reacting Mixtues Pblem 1: Detemine the mle actins the pducts cmbustin when ctane, C 8 18, is buned with 00% theetical ai. Als, detemine the dew-pint tempeatue the pducts i the

More information

is needed and this can be established by multiplying A, obtained in step 3, by, resulting V = A x y =. = x, located in 1 st quadrant rotated about 2

is needed and this can be established by multiplying A, obtained in step 3, by, resulting V = A x y =. = x, located in 1 st quadrant rotated about 2 Ct Cllege f New Yk MATH (Calculus Ntes) Page 1 f 1 Essental Calculus, nd edtn (Stewat) Chapte 7 Sectn, and 6 auth: M. Pak Chapte 7 sectn : Vlume Suface f evlutn (Dsc methd) 1) Estalsh the tatn as and the

More information

A) 100 K B) 150 K C) 200 K D) 250 K E) 350 K

A) 100 K B) 150 K C) 200 K D) 250 K E) 350 K Phys10 Secnd Maj-09 Ze Vesin Cdinat: k Wednesday, May 05, 010 Page: 1 Q1. A ht bject and a cld bject ae placed in themal cntact and the cmbinatin is islated. They tansfe enegy until they each a final equilibium

More information

Outline. Steady Heat Transfer with Conduction and Convection. Review Steady, 1-D, Review Heat Generation. Review Heat Generation II

Outline. Steady Heat Transfer with Conduction and Convection. Review Steady, 1-D, Review Heat Generation. Review Heat Generation II Steady Heat ansfe ebuay, 7 Steady Heat ansfe wit Cnductin and Cnvectin ay Caett Mecanical Engineeing 375 Heat ansfe ebuay, 7 Outline eview last lectue Equivalent cicuit analyses eview basic cncept pplicatin

More information

Electric potential energy Electrostatic force does work on a particle : Potential energy (: i initial state f : final state):

Electric potential energy Electrostatic force does work on a particle : Potential energy (: i initial state f : final state): Electc ptental enegy Electstatc fce des wk n a patcle : v v v v W = F s = E s. Ptental enegy (: ntal state f : fnal state): Δ U = U U = W. f ΔU Electc ptental : Δ : ptental enegy pe unt chag e. J ( Jule)

More information

Lecture 12. Heat Exchangers. Heat Exchangers Chee 318 1

Lecture 12. Heat Exchangers. Heat Exchangers Chee 318 1 Lecture 2 Heat Exchangers Heat Exchangers Chee 38 Heat Exchangers A heat exchanger s used t exchange heat between tw fluds f dfferent temperatures whch are separated by a sld wall. Heat exchangers are

More information

4. The material balances for isothermal ideal reactor models

4. The material balances for isothermal ideal reactor models Summay Geneal mateal balane f eatng system Bath eat Cntnuus-flw eats: CST (Cntnuus Sted Tank eat) P (Plug lw eat) Steady state f CST and P Desgn tasks : utlet (fnal nvesn), gven vlume f eat x vlume f eat,

More information

Lecture (10) Reactor Sizing and Design

Lecture (10) Reactor Sizing and Design Lectue ( Rect Szng nd esgn. Genel Mle lnce Equtn Mle blnce n speces t ny nstnce n tme t ; lumn system te f flw te f genetn te f flw te f ccumultn f nt system f n systemby xn f ut f system f wthn system

More information

Chapter 6 : Gibbs Free Energy

Chapter 6 : Gibbs Free Energy Wnter 01 Chem 54: ntrductry hermdynamcs Chapter 6 : Gbbs Free Energy... 64 Defntn f G, A... 64 Mawell Relatns... 65 Gbbs Free Energy G(,) (ure substances)... 67 Gbbs Free Energy fr Mtures... 68 ΔG f deal

More information

Approach: (Equilibrium) TD analysis, i.e., conservation eqns., state equations Issues: how to deal with

Approach: (Equilibrium) TD analysis, i.e., conservation eqns., state equations Issues: how to deal with Schl f Aerspace Chemcal D: Mtvatn Prevus D Analyss cnsdered systems where cmpstn f flud was frzen fxed chemcal cmpstn Chemcally eactng Flw but there are numerus stuatns n prpulsn systems where chemcal

More information

Transient Conduction: Spatial Effects and the Role of Analytical Solutions

Transient Conduction: Spatial Effects and the Role of Analytical Solutions Transent Cnductn: Spatal Effects and the Rle f Analytcal Slutns Slutn t the Heat Equatn fr a Plane Wall wth Symmetrcal Cnvectn Cndtns If the lumped capactance apprxmatn can nt be made, cnsderatn must be

More information

Conduction Heat Transfer

Conduction Heat Transfer Cnductn Heat Transfer Practce prblems A steel ppe f cnductvty 5 W/m-K has nsde and utsde surface temperature f C and 6 C respectvely Fnd the heat flw rate per unt ppe length and flux per unt nsde and per

More information

Physic 231 Lecture 33

Physic 231 Lecture 33 Physc 231 Lecture 33 Man pnts f tday s lecture: eat and heat capacty: Q cm Phase transtns and latent heat: Q Lm ( ) eat flw Q k 2 1 t L Examples f heat cnductvty, R values fr nsulatrs Cnvectn R L / k Radatn

More information

The International Association for the Properties of Water and Steam

The International Association for the Properties of Water and Steam IAPWS R6-95(016) The Intenatnal Asscatn f the Ppetes f Wate and Steam Desden, Gemany Septeme 016 Revsed Release n the IAPWS Fmulatn 1995 f the Themdynamc Ppetes f Odnay Wate Sustance f Geneal and Scentfc

More information

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh Frst CIRCLE YOUR DIVISION: Dv. 1 (9:30 am) Dv. (11:30 am) Dv. 3 (:30 m) Prf. Ruan Prf. Na Mr. Sngh Schl f Mechancal Engneerng Purdue Unversty ME315 Heat and Mass ransfer Eam #3 Wednesday Nvember 17 010

More information

ME311 Machine Design

ME311 Machine Design ME311 Machne Desgn Lectue 8: Cylnes W Dnfel Nv017 Fafel Unvesty Schl f Engneeng Thn-Walle Cylnes (Yu aleay cvee ths n Bee & Jhnstn.) A essuze cylne s cnsee t be Thn-Walle f ts wall thckness s less than.5%

More information

Thermodynamics of Materials

Thermodynamics of Materials Thermdynamcs f Materals 14th Lecture 007. 4. 8 (Mnday) FUGACITY dg = Vd SdT dg = Vd at cnstant T Fr an deal gas dg = (RT/)d = RT dln Ths s true fr deal gases nly, but t wuld be nce t have a smlar frm fr

More information

LEAP FROG TECHNIQUE. Operational Simulation of LC Ladder Filters ECEN 622 (ESS) TAMU-AMSC

LEAP FROG TECHNIQUE. Operational Simulation of LC Ladder Filters ECEN 622 (ESS) TAMU-AMSC LEAP FOG TEHNQUE Opeatnal Smulatn f L Ladde Fltes L pttype lw senstvty One fm f ths technque s called Leapf Technque Fundamental Buldn Blcks ae - nteats - Secnd-de ealzatns Fltes cnsdeed - LP - BP - HP

More information

Physics Exam II Chapters 25-29

Physics Exam II Chapters 25-29 Physcs 114 1 Exam II Chaptes 5-9 Answe 8 of the followng 9 questons o poblems. Each one s weghted equally. Clealy mak on you blue book whch numbe you do not want gaded. If you ae not sue whch one you do

More information

A) N B) 0.0 N C) N D) N E) N

A) N B) 0.0 N C) N D) N E) N Cdinat: H Bahluli Sunday, Nvembe, 015 Page: 1 Q1. Five identical pint chages each with chage =10 nc ae lcated at the cnes f a egula hexagn, as shwn in Figue 1. Find the magnitude f the net electic fce

More information

Contact, information, consultations

Contact, information, consultations ontact, nfomaton, consultatons hemsty A Bldg; oom 07 phone: 058-347-769 cellula: 664 66 97 E-mal: wojtek_c@pg.gda.pl Offce hous: Fday, 9-0 a.m. A quote of the week (o camel of the week): hee s no expedence

More information

CHAPTER 24 GAUSS LAW

CHAPTER 24 GAUSS LAW CHAPTR 4 GAUSS LAW LCTRIC FLUX lectic flux is a measue f the numbe f electic filed lines penetating sme suface in a diectin pependicula t that suface. Φ = A = A csθ with θ is the angle between the and

More information

Chapter 3, Solution 1C.

Chapter 3, Solution 1C. COSMOS: Cmplete Onlne Slutns Manual Organzatn System Chapter 3, Slutn C. (a If the lateral surfaces f the rd are nsulated, the heat transfer surface area f the cylndrcal rd s the bttm r the tp surface

More information

A) (0.46 î ) N B) (0.17 î ) N

A) (0.46 î ) N B) (0.17 î ) N Phys10 Secnd Maj-14 Ze Vesin Cdinat: xyz Thusday, Apil 3, 015 Page: 1 Q1. Thee chages, 1 = =.0 μc and Q = 4.0 μc, ae fixed in thei places as shwn in Figue 1. Find the net electstatic fce n Q due t 1 and.

More information

Introduction of Two Port Network Negative Feedback (Uni lateral Case) Feedback Topology Analysis of feedback applications

Introduction of Two Port Network Negative Feedback (Uni lateral Case) Feedback Topology Analysis of feedback applications Lectue Feedback mple ntductn w Pt Netwk Negatve Feedback Un lateal Case Feedback plg nalss eedback applcatns Clse Lp Gan nput/output esstances e:83h 3 Feedback w-pt Netwk z-paametes Open-Ccut mpedance

More information

Lecture 2 Feedback Amplifier

Lecture 2 Feedback Amplifier Lectue Feedback mple ntductn w-pt Netwk Negatve Feedback Un-lateal Case Feedback plg nalss eedback applcatns Clse-Lp Gan nput/output esstances e:83hkn 3 Feedback mples w-pt Netwk z-paametes Open-Ccut mpedance

More information

Stellar Astrophysics. dt dr. GM r. The current model for treating convection in stellar interiors is called mixing length theory:

Stellar Astrophysics. dt dr. GM r. The current model for treating convection in stellar interiors is called mixing length theory: Stella Astophyscs Ovevew of last lectue: We connected the mean molecula weght to the mass factons X, Y and Z: 1 1 1 = X + Y + μ 1 4 n 1 (1 + 1) = X μ 1 1 A n Z (1 + ) + Y + 4 1+ z A Z We ntoduced the pessue

More information

Kobe University Repository : Kernel

Kobe University Repository : Kernel Kbe Unvesty Repsty : Kenel タイトル Ttle 著者 Auth(s) 掲載誌 巻号 ページ Ctatn 刊行日 Issue date 資源タイプ Resuce Type 版区分 Resuce Vesn 権利 Rghts DOI JaLCDOI URL Tansent ctcal heat fluxes f subcled wate flw blng n a SUS304-ccula

More information

4.4 Continuum Thermomechanics

4.4 Continuum Thermomechanics 4.4 Contnuum Themomechancs The classcal themodynamcs s now extended to the themomechancs of a contnuum. The state aables ae allowed to ay thoughout a mateal and pocesses ae allowed to be eesble and moe

More information

Electric Charge. Electric charge is quantized. Electric charge is conserved

Electric Charge. Electric charge is quantized. Electric charge is conserved lectstatics lectic Chage lectic chage is uantized Chage cmes in incements f the elementay chage e = ne, whee n is an intege, and e =.6 x 0-9 C lectic chage is cnseved Chage (electns) can be mved fm ne

More information

Fundamentals of Heat Transfer Muhammad Rashid Usman

Fundamentals of Heat Transfer Muhammad Rashid Usman Fundamentals of Heat ansfe Muhammad Rashid Usman Institute of Chemical Engineeing and echnology Univesity of the Punjab, ahoe. Figue taen fom: http:heatexchange-design.com0006heat-exchanges-6 Dated: 7-Jan-0

More information

Thermodynamics of solids 4. Statistical thermodynamics and the 3 rd law. Kwangheon Park Kyung Hee University Department of Nuclear Engineering

Thermodynamics of solids 4. Statistical thermodynamics and the 3 rd law. Kwangheon Park Kyung Hee University Department of Nuclear Engineering Themodynamcs of solds 4. Statstcal themodynamcs and the 3 d law Kwangheon Pak Kyung Hee Unvesty Depatment of Nuclea Engneeng 4.1. Intoducton to statstcal themodynamcs Classcal themodynamcs Statstcal themodynamcs

More information

A/2 l,k. Problem 1 STRATEGY. KNOWN Resistance of a complete spherical shell: r rk. Inner and outer radii

A/2 l,k. Problem 1 STRATEGY. KNOWN Resistance of a complete spherical shell: r rk. Inner and outer radii Prblem 1 STRATEGY KNOWN Resstance f a cmplete sphercal shell: R ( r r / (4 π r rk sphere Inner an uter ra r an r, SOLUTION Part 1: Resstance f a hemsphercal shell: T calculate the resstance f the hemsphere,

More information

Chem 204A, Fall 2004, Mid-term (II)

Chem 204A, Fall 2004, Mid-term (II) Frst tw letters f yur last name Last ame Frst ame McGll ID Chem 204A, Fall 2004, Md-term (II) Read these nstructns carefully befre yu start tal me: 2 hurs 50 mnutes (6:05 PM 8:55 PM) 1. hs exam has ttal

More information

Module 9 Thin and thick cylinders

Module 9 Thin and thick cylinders Mdule 9 Thn and thck cylndes Vesn 2 ME, IIT Khaagu Lessn 3 Desgn ncles f thck cylndes Vesn 2 ME, IIT Khaagu Instuctnal Objectves: At the end f ths lessn, the students shuld have the knwledge f: Falue thees

More information

Solution: (a) C 4 1 AI IC 4. (b) IBC 4

Solution: (a) C 4 1 AI IC 4. (b) IBC 4 C A C C R A C R C R C sin 9 sin. A cuent f is maintaine in a single cicula lp f cicumfeence C. A magnetic fiel f is iecte paallel t the plane f the lp. (a) Calculate the magnetic mment f the lp. (b) What

More information

5/20/2011. HITT An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement:

5/20/2011. HITT An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement: 5/0/011 Chapte 5 In the last lectue: CapacitanceII we calculated the capacitance C f a system f tw islated cnducts. We als calculated the capacitance f sme simple gemeties. In this chapte we will cve the

More information

which represents a straight line whose slope is C 1.

which represents a straight line whose slope is C 1. hapte, Slutin 5. Ye, thi claim i eanable ince in the abence any heat eatin the ate heat tane thugh a plain wall in teady peatin mut be cntant. But the value thi cntant mut be ze ince ne ide the wall i

More information

Phy 213: General Physics III

Phy 213: General Physics III Phy 1: Geneal Physics III Chapte : Gauss Law Lectue Ntes E Electic Flux 1. Cnside a electic field passing thugh a flat egin in space w/ aea=a. The aea vect ( A ) with a magnitude f A and is diected nmal

More information

Review of Vector Algebra and Vector Calculus Operations

Review of Vector Algebra and Vector Calculus Operations Revew of Vecto Algeba and Vecto Calculus Opeatons Tpes of vaables n Flud Mechancs Repesentaton of vectos Dffeent coodnate sstems Base vecto elatons Scala and vecto poducts Stess Newton s law of vscost

More information

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune Chapter 7 Flud Systems and Thermal Systems 7.1 INTODUCTION A. Bazune A flud system uses ne r mre fluds t acheve ts purpse. Dampers and shck absrbers are eamples f flud systems because they depend n the

More information

Electric Fields and Electric Forces

Electric Fields and Electric Forces Cpyight, iley 006 (Cutnell & Jhnsn 9. Ptential Enegy Chapte 9 mgh mgh GPE GPE Electic Fields and Electic Fces 9. Ptential Enegy 9. Ptential Enegy 9. The Electic Ptential Diffeence 9. The Electic Ptential

More information

A criterion of warpage about center-anchored deformable focusing micromirrors

A criterion of warpage about center-anchored deformable focusing micromirrors A cten f wapage abut cente-anched defmable fcusng mcms MENG-JU LIN Depatment f Mechancal and Cmpute Aded Engneeng Feng Cha Unvesty N., Wen-Hwa Rd., achung, awan 7, R. O. C. AIWAN, R.O.C. Abstact: - A cten

More information

Chapter 2 ONE DIMENSIONAL STEADY STATE CONDUCTION. Chapter 2 Chee 318 1

Chapter 2 ONE DIMENSIONAL STEADY STATE CONDUCTION. Chapter 2 Chee 318 1 hapte ONE DIMENSIONAL SEADY SAE ONDUION hapte hee 38 HEA ONDUION HOUGH OMPOSIE EANGULA WALLS empeatue pofile A B X X 3 X 3 4 X 4 Χ A Χ B Χ hapte hee 38 hemal conductivity Fouie s law ( is constant) A A

More information

DESIGN OF A SHELL AND TUBE HEAT EXCHANGER

DESIGN OF A SHELL AND TUBE HEAT EXCHANGER DESIGN OF A SHELL AND TUBE HEAT EXCHANGER Swarnotpal Kashyap Department of Chemical Engineering, IIT Guwahati, Assam, India 781039 ABSTRACT Often, in process industries the feed stream has to be preheated

More information

_J _J J J J J J J J _. 7 particles in the blue state; 3 particles in the red state: 720 configurations _J J J _J J J J J J J J _

_J _J J J J J J J J _. 7 particles in the blue state; 3 particles in the red state: 720 configurations _J J J _J J J J J J J J _ Dsrder and Suppse I have 10 partcles that can be n ne f tw states ether the blue state r the red state. Hw many dfferent ways can we arrange thse partcles amng the states? All partcles n the blue state:

More information

V. Principles of Irreversible Thermodynamics. s = S - S 0 (7.3) s = = - g i, k. "Flux": = da i. "Force": = -Â g a ik k = X i. Â J i X i (7.

V. Principles of Irreversible Thermodynamics. s = S - S 0 (7.3) s = = - g i, k. Flux: = da i. Force: = -Â g a ik k = X i. Â J i X i (7. Themodynamcs and Knetcs of Solds 71 V. Pncples of Ievesble Themodynamcs 5. Onsage s Teatment s = S - S 0 = s( a 1, a 2,...) a n = A g - A n (7.6) Equlbum themodynamcs detemnes the paametes of an equlbum

More information

The International Association for the Properties of Water and Steam

The International Association for the Properties of Water and Steam IAPWS R16-17(018) The Intenatnal Asscatn f the Petes f Wate and Steam Pague, Czech Reublc Setembe 018 Revsed Release n the IAPWS Fmulatn 017 f the Themdynamc Petes f Heavy Wate 018 Intenatnal Asscatn f

More information

A) 0.77 N B) 0.24 N C) 0.63 N D) 0.31 N E) 0.86 N. v = ω k = 80 = 32 m/s. Ans: (32) 2 = 0.77 N

A) 0.77 N B) 0.24 N C) 0.63 N D) 0.31 N E) 0.86 N. v = ω k = 80 = 32 m/s. Ans: (32) 2 = 0.77 N Q1. A transverse sinusidal wave travelling n a string is given by: y (x,t) = 0.20 sin (2.5 x 80 t) (SI units). The length f the string is 2.0 m and its mass is 1.5 g. What is the magnitude f the tensin

More information

March 15. Induction and Inductance Chapter 31

March 15. Induction and Inductance Chapter 31 Mach 15 Inductin and Inductance Chapte 31 > Fces due t B fields Lentz fce τ On a mving chage F B On a cuent F il B Cuent caying cil feels a tque = µ B Review > Cuents geneate B field Bit-Savat law = qv

More information

WYSE Academic Challenge Sectional Mathematics 2006 Solution Set

WYSE Academic Challenge Sectional Mathematics 2006 Solution Set WYSE Academic Challenge Sectinal 006 Slutin Set. Cect answe: e. mph is 76 feet pe minute, and 4 mph is 35 feet pe minute. The tip up the hill takes 600/76, 3.4 minutes, and the tip dwn takes 600/35,.70

More information

(5) Furthermore, the third constraint implies the following equation: (6)

(5) Furthermore, the third constraint implies the following equation: (6) T-Element Refactng System f Gaussan and Annula-Gaussan Beams Tansfmatn Abdallah K. Che *, Nabl I. Khachab, Mahmud K. Habb Electcal Engneeng Depatment, Cllege f Engneeng and Petleum, Kuat Unvesty, P. O.

More information

A. Thicknesses and Densities

A. Thicknesses and Densities 10 Lab0 The Eath s Shells A. Thcknesses and Denstes Any theoy of the nteo of the Eath must be consstent wth the fact that ts aggegate densty s 5.5 g/cm (ecall we calculated ths densty last tme). In othe

More information

Example

Example hapte Exaple.6-3. ---------------------------------------------------------------------------------- 5 A single hllw fibe is placed within a vey lage glass tube. he hllw fibe is 0 c in length and has a

More information

Comparison of Building Codes and Insulation in China and Iceland

Comparison of Building Codes and Insulation in China and Iceland Prceedngs Wrld Gethermal Cngress 00 Bal, Indnesa, 5-9 prl 00 Cmparsn f Buldng Cdes and Insulatn n Chna and Iceland Hayan Le and Pall Valdmarssn Tanjn Gethermal esearch & Tranng Centre, Tanjn Unversty,

More information

Process Engineering Thermodynamics E (4 sp) Exam

Process Engineering Thermodynamics E (4 sp) Exam Prcess Engineering Thermdynamics 42434 E (4 sp) Exam 9-3-29 ll supprt material is allwed except fr telecmmunicatin devices. 4 questins give max. 3 pints = 7½ + 7½ + 7½ + 7½ pints Belw 6 questins are given,

More information

Lecture 1 Chap.1. Fundamentals of Heat Transfer

Lecture 1 Chap.1. Fundamentals of Heat Transfer CH04 Heat Tansfe Op. Cemcal Engneeng Depatment, IT Lectue Cap.. Fundamentals f Heat Tansfe HEAT: It s enegy n a tanst fm, wc mves fm g t lw tempeatue level. It s tat quantty wc s tansfeed between bdes

More information

Shakedown Analysis of a Composite Cylinder with a Cross-hole

Shakedown Analysis of a Composite Cylinder with a Cross-hole hakedwn nalyss f a Cmpste Cylnde wth a Css-hle Hafeng Chen *, Wehang Chen, Tanba L, James Ue Depatment f Mechancal Engneeng, Unvesty f tathclyde, Glasgw, G XJ, UK bstact: In ths study, bth the lwe and

More information

End of Semester Details: Final Exam

End of Semester Details: Final Exam End of Semeste Details: Poject: By midnight Tuesday! - empty you bin Repot (MUST be pdf fomat) Pictues: device, team PDF of poste Web fom completed Team membe contibution Homewok Semeste homewok due Tuesday

More information

The Gradient and Applications This unit is based on Sections 9.5 and 9.6, Chapter 9. All assigned readings and exercises are from the textbook

The Gradient and Applications This unit is based on Sections 9.5 and 9.6, Chapter 9. All assigned readings and exercises are from the textbook The Gadient and Applicatins This unit is based n Sectins 9.5 and 9.6 Chapte 9. All assigned eadings and eecises ae fm the tetbk Objectives: Make cetain that u can define and use in cntet the tems cncepts

More information

Notes on Inductance and Circuit Transients Joe Wolfe, Physics UNSW. Circuits with R and C. τ = RC = time constant

Notes on Inductance and Circuit Transients Joe Wolfe, Physics UNSW. Circuits with R and C. τ = RC = time constant Nes n Inducance and cu Tansens Je Wlfe, Physcs UNSW cus wh and - Wha happens when yu clse he swch? (clse swch a 0) - uen flws ff capac, s d Acss capac: Acss ess: c d s d d ln + cns. 0, ln cns. ln ln ln

More information

Substances that are liquids or solids under ordinary conditions may also exist as gases. These are often referred to as vapors.

Substances that are liquids or solids under ordinary conditions may also exist as gases. These are often referred to as vapors. Chapte 0. Gases Chaacteistics of Gases All substances have thee phases: solid, liquid, and gas. Substances that ae liquids o solids unde odinay conditions may also exist as gases. These ae often efeed

More information

15-69C Under the conditions of complete combustion with stoichiometric amount of air.

15-69C Under the conditions of complete combustion with stoichiometric amount of air. 15-43 Adabatc Flame emperature 15-68C Fr the case f stchmetrc amunt f pure xy snce we have the same amunt f chemcal energy released but a smaller amunt f mass t absrb t. 15-69C Under the cndtns f cmplete

More information

Announcements Candidates Visiting Next Monday 11 12:20 Class 4pm Research Talk Opportunity to learn a little about what physicists do

Announcements Candidates Visiting Next Monday 11 12:20 Class 4pm Research Talk Opportunity to learn a little about what physicists do Wed., /11 Thus., /1 Fi., /13 Mn., /16 Tues., /17 Wed., /18 Thus., /19 Fi., / 17.7-9 Magnetic Field F Distibutins Lab 5: Bit-Savat B fields f mving chages (n quiz) 17.1-11 Pemanent Magnets 18.1-3 Mic. View

More information

Final Exam Spring 2014 SOLUTION

Final Exam Spring 2014 SOLUTION Appled Opts H-464/564 C 594 rtland State nverst A. La Rsa Fnal am Sprng 14 SOLTION Name There are tw questns 1%) plus an ptnal bnus questn 1%) 1. Quarter wave plates and half wave plates The fgures belw

More information

ELECTRIC & MAGNETIC FIELDS I (STATIC FIELDS) ELC 205A

ELECTRIC & MAGNETIC FIELDS I (STATIC FIELDS) ELC 205A LCTRIC & MAGNTIC FILDS I (STATIC FILDS) LC 05A D. Hanna A. Kils Assciate Pfess lectnics & Cmmnicatins ngineeing Depatment Faclty f ngineeing Cai Univesity Fall 0 f Static lecticity lectic & Magnetic Fields

More information

1 2 U CV. K dq I dt J nqv d J V IR P VI

1 2 U CV. K dq I dt J nqv d J V IR P VI o 5 o T C T F 9 T K T o C 7.5 L L T V VT Q mct nct Q F V ml F V dq A H k TH TC dt L pv nt Kt nt CV ideal monatomic gas 5 CV ideal diatomic gas w/o vibation V W pdv V U Q W W Q e Q Q e Canot H C T T S C

More information

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1 Monday, Mach 5, 019 Page: 1 Q1. Figue 1 shows thee pais of identical conducting sphees that ae to be touched togethe and then sepaated. The initial chages on them befoe the touch ae indicated. Rank the

More information

Autumn 2005 THERMODYNAMICS. Time: 3 Hours

Autumn 2005 THERMODYNAMICS. Time: 3 Hours CORK INSTITUTE OF TECHNOOGY Bachelor of Engineering (Honours) in Mechanical Engineering Stage 3 (Bachelor of Engineering in Mechanical Engineering Stage 3) (NFQ evel 8) Autumn 2005 THERMODYNAMICS Time:

More information

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer Prncples of Food and Boprocess Engneerng (FS 31) Solutons to Example Problems on Heat Transfer 1. We start wth Fourer s law of heat conducton: Q = k A ( T/ x) Rearrangng, we get: Q/A = k ( T/ x) Here,

More information

Magnetism. Chapter 21

Magnetism. Chapter 21 1.1 Magnetic Fields Chapte 1 Magnetism The needle f a cmpass is pemanent magnet that has a nth magnetic ple (N) at ne end and a suth magnetic ple (S) at the the. 1.1 Magnetic Fields 1.1 Magnetic Fields

More information

Examination Heat Transfer

Examination Heat Transfer Examination Heat Transfer code: 4B680 date: 17 january 2006 time: 14.00-17.00 hours NOTE: There are 4 questions in total. The first one consists of independent sub-questions. If necessary, guide numbers

More information

UNIT10 PLANE OF REGRESSION

UNIT10 PLANE OF REGRESSION UIT0 PLAE OF REGRESSIO Plane of Regesson Stuctue 0. Intoducton Ojectves 0. Yule s otaton 0. Plane of Regesson fo thee Vaales 0.4 Popetes of Resduals 0.5 Vaance of the Resduals 0.6 Summay 0.7 Solutons /

More information

T x. T k x. is a constant of integration. We integrate a second time to obtain an expression for the temperature distribution:

T x. T k x. is a constant of integration. We integrate a second time to obtain an expression for the temperature distribution: ME 336 Fall 8 HW solution Poblem - The geneal fom of the heat diffusion equation is: T cp = ( T) + eg t - one-dimensional conduction (along the x - diection only): = ˆi and T = T( x) x - steady state conditions:

More information

3-42. Chapter 15 Steady Heat Conduction. Heat Conduction in Cylinders and Spheres

3-42. Chapter 15 Steady Heat Conduction. Heat Conduction in Cylinders and Spheres Chapter 5 Steady Heat Cnductn Heat Cnductn n Cylnders and Spheres 3-64C When the dameter f cylnder s very small cmpared t ts length, t can be treated as an ndefntely lng cylnder. Cylndrcal rds can als

More information

Scalars and Vectors Scalar

Scalars and Vectors Scalar Scalas and ectos Scala A phscal quantt that s completel chaacteed b a eal numbe (o b ts numecal value) s called a scala. In othe wods a scala possesses onl a magntude. Mass denst volume tempeatue tme eneg

More information

Fri. 10/23 (C14) Linear Dielectrics (read rest at your discretion) Mon. (C 17) , E to B; Lorentz Force Law: fields

Fri. 10/23 (C14) Linear Dielectrics (read rest at your discretion) Mon. (C 17) , E to B; Lorentz Force Law: fields Fi. 0/23 (C4) 4.4. Linea ielectics (ead est at yu discetin) Mn. (C 7) 2..-..2, 2.3. t B; 5..-..2 Lentz Fce Law: fields Wed. and fces Thus. (C 7) 5..3 Lentz Fce Law: cuents Fi. (C 7) 5.2 Bit-Savat Law HW6

More information

6. ELUTRIATION OF PARTICLES FROM FLUIDIZED BEDS

6. ELUTRIATION OF PARTICLES FROM FLUIDIZED BEDS 6. ELUTRIATION OF PARTICLES FROM FLUIDIZED BEDS Elutratn s the prcess n whch fne partcles are carred ut f a fludzed bed due t the flud flw rate passng thrugh the bed. Typcally, fne partcles are elutrated

More information

Electromagnetic Waves

Electromagnetic Waves Chapte 3 lectmagnetic Waves 3.1 Maxwell s quatins and ectmagnetic Waves A. Gauss s Law: # clsed suface aea " da Q enc lectic fields may be geneated by electic chages. lectic field lines stat at psitive

More information

Energy & Work

Energy & Work rk Dne by a Cntant Frce 6.-6.4 Energy & rk F N m jule () J rk Dne by a Cntant Frce Example Pullng a Sutcae-n-heel Fnd the wrk dne the rce 45.0-N, the angle 50.0 degree, and the dplacement 75.0 m. 3 ( F

More information

Simulation of a steady state flash

Simulation of a steady state flash Smulaton of a steady state flash Descrpton: Statonary flash smulaton of an Ethanol(1) - Water(2) - mxture Wth followng assumptons: Apart from heater and mass flows, no energy s transferred across the system

More information

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER 70 CHAPTER 3 ANALYSIS OF KY BOOST CONERTER 3.1 Intrductn The KY Bst Cnverter s a recent nventn made by K.I.Hwu et. al., (2007), (2009a), (2009b), (2009c), (2010) n the nn-slated DC DC cnverter segment,

More information

User-friendly model of heat transfer in. preheating, cool down and casting

User-friendly model of heat transfer in. preheating, cool down and casting ANNUAL REPORT 2010 UIUC, August 12, 2010 Use-fendly model of heat tansfe n submeged enty nozzles dung peheatng, cool down and castng Vaun Kuma Sngh, B.G. Thomas Depatment of Mechancal Scence and Engneeng

More information

Active Load. Reading S&S (5ed): Sec. 7.2 S&S (6ed): Sec. 8.2

Active Load. Reading S&S (5ed): Sec. 7.2 S&S (6ed): Sec. 8.2 cte La ean S&S (5e: Sec. 7. S&S (6e: Sec. 8. In nteate ccuts, t s ffcult t fabcate essts. Instea, aplfe cnfuatns typcally use acte las (.e. las ae w acte eces. Ths can be ne usn a cuent suce cnfuatn,.e.

More information

In the previous section we considered problems where the

In the previous section we considered problems where the 5.4 Hydodynamically Fully Developed and Themally Developing Lamina Flow In the pevious section we consideed poblems whee the velocity and tempeatue pofile wee fully developed, so that the heat tansfe coefficient

More information

COMPLEMENTARY ENERGY METHOD FOR CURVED COMPOSITE BEAMS

COMPLEMENTARY ENERGY METHOD FOR CURVED COMPOSITE BEAMS ultscence - XXX. mcocd Intenatonal ultdscplnay Scentfc Confeence Unvesty of skolc Hungay - pl 06 ISBN 978-963-358-3- COPLEENTRY ENERGY ETHOD FOR CURVED COPOSITE BES Ákos József Lengyel István Ecsed ssstant

More information

General Thermodynamics for Process Simulation. Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University

General Thermodynamics for Process Simulation. Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University General Thermodynamcs for Process Smulaton Dr. Jungho Cho, Professor Department of Chemcal Engneerng Dong Yang Unversty Four Crtera for Equlbra μ = μ v Stuaton α T = T β α β P = P l μ = μ l1 l 2 Thermal

More information

Analysis of the chemical equilibrium of combustion at constant volume

Analysis of the chemical equilibrium of combustion at constant volume Analyss of the chemcal equlbum of combuston at constant volume Maus BEBENEL* *Coesondng autho LIEHNICA Unvesty of Buchaest Faculty of Aeosace Engneeng h. olzu Steet -5 6 Buchaest omana mausbeb@yahoo.com

More information

Lecture 2 - Thermodynamics Overview

Lecture 2 - Thermodynamics Overview 2.625 - Electochemical Systems Fall 2013 Lectue 2 - Themodynamics Oveview D.Yang Shao-Hon Reading: Chapte 1 & 2 of Newman, Chapte 1 & 2 of Bad & Faulkne, Chaptes 9 & 10 of Physical Chemisty I. Lectue Topics:

More information

ELECTROMAGNETIC INDUCTION PREVIOUS EAMCET BITS

ELECTROMAGNETIC INDUCTION PREVIOUS EAMCET BITS P P Methd EECTOMAGNETIC INDUCTION PEVIOUS EAMCET BITS [ENGINEEING PAPE]. A cnduct d f length tates with angula speed ω in a unifm magnetic field f inductin B which is pependicula t its mtin. The induced

More information

IGEE 401 Power Electronic Systems. Solution to Midterm Examination Fall 2004

IGEE 401 Power Electronic Systems. Solution to Midterm Examination Fall 2004 Jós, G GEE 401 wer Electrnc Systems Slutn t Mdterm Examnatn Fall 2004 Specal nstructns: - Duratn: 75 mnutes. - Materal allwed: a crb sheet (duble sded 8.5 x 11), calculatr. - Attempt all questns. Make

More information

Physics 1501 Lecture 19

Physics 1501 Lecture 19 Physcs 1501 ectue 19 Physcs 1501: ectue 19 Today s Agenda Announceents HW#7: due Oct. 1 Mdte 1: aveage 45 % Topcs otatonal Kneatcs otatonal Enegy Moents of Ineta Physcs 1501: ectue 19, Pg 1 Suay (wth copason

More information

y i x P vap 10 A T SOLUTION TO HOMEWORK #7 #Problem

y i x P vap 10 A T SOLUTION TO HOMEWORK #7 #Problem SOLUTION TO HOMEWORK #7 #roblem 1 10.1-1 a. In order to solve ths problem, we need to know what happens at the bubble pont; at ths pont, the frst bubble s formed, so we can assume that all of the number

More information

Work, Energy, and Power. AP Physics C

Work, Energy, and Power. AP Physics C k, Eneg, and Pwe AP Phsics C Thee ae man diffeent TYPES f Eneg. Eneg is expessed in JOULES (J) 4.19 J = 1 calie Eneg can be expessed me specificall b using the tem ORK() k = The Scala Dt Pduct between

More information

Optimization of the Electron Gun with a Permanent Ion Trap

Optimization of the Electron Gun with a Permanent Ion Trap 4.3.-178 Optmzatn f the Electn Gun wth a Pemanent In Tap We Le Xabng Zhang Jn Dng Fe Dpla Technlg R&D CenteSutheat Unvet Nangjng Chna Danel den Engelen Pduct and Pce Develpment(PPD)LG.Phlp Dpla 5600 MD

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

element k Using FEM to Solve Truss Problems

element k Using FEM to Solve Truss Problems sng EM t Slve Truss Prblems A truss s an engneerng structure cmpsed straght members, a certan materal, that are tpcall pn-ned at ther ends. Such members are als called tw-rce members snce the can nl transmt

More information

ME 3600 Control Systems Frequency Domain Analysis

ME 3600 Control Systems Frequency Domain Analysis ME 3600 Cntl Systems Fequency Dmain Analysis The fequency espnse f a system is defined as the steady-state espnse f the system t a sinusidal (hamnic) input. F linea systems, the esulting utput is itself

More information

SHELL-AND-TUBE TEST PROBLEMS

SHELL-AND-TUBE TEST PROBLEMS SHELL-AND-TUBE TEST PROBLEMS The problems that have been used to validate some of the capabilities in INSTED for the analysis of shell-and-tube heat exchanger are discussed in this chapter. You should

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Seies UG Examination 2015 16 FLUID DYNAMICS WITH ADVANCED TOPICS MTH-MD59 Time allowed: 3 Hous Attempt QUESTIONS 1 and 2, and THREE othe questions.

More information