Lecture 2 - Thermodynamics Overview

Size: px
Start display at page:

Download "Lecture 2 - Thermodynamics Overview"

Transcription

1 Electochemical Systems Fall 2013 Lectue 2 - Themodynamics Oveview D.Yang Shao-Hon Reading: Chapte 1 & 2 of Newman, Chapte 1 & 2 of Bad & Faulkne, Chaptes 9 & 10 of Physical Chemisty I. Lectue Topics: A. Review 1st and 2nd laws of themodynamics Fist law: du = δq δw Second law: δ IS 0 B. Chemical Equilibium ΔG = ΔG + nrt ln K a = 0; whee K a = µ i = µ + RT ln a i ; µ i ν i n = 0 i C. Electochemical Equilibium ΔG = ΔG + nrt ln K a + nz F E = 0 ν II a i pod i I ν a i eact i Nenst Equation: E = E + RT ln K a z F II. Review 1st and 2nd laws of themodynamics A. 1st Law of Themodynamics Fo a closed system of constant mass, i. intenal enegy is constant: δ IU = 0 ii. extenal enegy changes though wok and heat: δ EU = δq δw, whee δq is heat tansfeed into the system, and δw is wok done by the system. Note: in most (fluid) systems, δw is PdV; fo electochemical systems, we will expand this definition to include electochemical wok. iii. the total enegy change of the system is the sum the intenal and extenal enegy changes: du = δ IU + δ EU = δq δw δ IU and δ EU ae intensive popeties wheeas δq and δw ae extensive popeties A. Intensive popety: A physical popety which does not depend on the size (volume, mass, numbe, etc.) of the system B. Extensive popety: A physical popety which does depend on the size (volume, mass, numbe, etc.) of the system 1

2 Lectue 2 Themodynamics Oveview 2.625, Fall 13 System δ IU Envionment δ EU Figue 1: The canonical themodynamic system, with intenal enegy change δ IU and extenal enegy change δ EU. B. 2nd Law of Themodynamics i. change in intenal entopy is equal to geneated entopy, which is neve less than zeo: δ IS = δ gs 0 ii. extenal entopy change is the change in heat scaled by the tempeatue of the system: δq δ ES = T iii. the total entopy change is, similaly, the sum of the intenal and extenal entopy changes: δq ds = δ IS + δ ES = δ IS + T Multiplying though by T, we have: T ds = T δ IS + δq And since δ IS is always geate than o equal to zeo, T ds δq. These expessions can be mapped into state space. The change in entopy while U and V ae held constant, o H and P ae held constant, ae shown below. C. Combining the 1st and 2nd Laws, δq = du + P dv (whee δw is given as P dv ) Subbing in T ds δ IS fo δq and eaanging, we have T δ IS = du + P dv T ds 0 (1) Fo evesible pocesses, δ IS = 0, so T ds = du + P dv. This is Gibbs fundamental equation. Futhe, a closed system appoaches equilibium by maximizing entopy, S. 2

3 Lectue 2 Themodynamics Oveview 2.625, Fall 13 S At constant U, V equilibium States Figue 2: Equilibium is achieved when entopy is maximized fo a system whee U and V ae constant. D. Altenatively, we can define equilibium by using Gibbs fee enegy. i. Fist, we define enthalpy, H: H = U + P V ii. Then define Gibbs fee enegy, G: G = H T S iii. G = U + P V T S, and dg = du + d(p V ) d(t S) By consideing the combined fist and second law equation, we can now wite: δ IS = dg V dp + SdT 0. Thus, a system appoaches equilibium by minimizing G such that dg 0 : 3

4 Lectue 2 Themodynamics Oveview 2.625, Fall 13 G At constant P, T equilibium States Figue 3: With the pope choice of vaiables held constant, the Helmholtz and Gibbs functions show simila pofiles. Equilibium is achieved when Helmholtz o Gibbs functions ae minimized. Note: fo a evesible system, dg = V dp SdT III. Gibbs fee enegy of multicomponent systems The geneal fom of the Gibbs fee enegy fo a multicomponent system o phase is G(T, P, n 1, n 2,...n i ), whee n i is the numbe of moles of species i in the system o phase. ( ) ( ) ( ) G G G dg(p, T, n i ) = dt + dp + dn i (2) T P n i P,n T,n i T,P,n j We can define the patial diffeentials in the above equation as follows: G S = T P,n G V = P T,n g G µ i = n i T,P,nj=n i Then we can wite the diffeential fom of the Gibbs fee enegy fo a multicomponent system as: dg(p, T, n i ) = SdT + V dp + µ i dn i (3) i A. Compaing this to the expession fo dg above, we see that the intenal entopy is expessed hee as the sum of the chemical potentials: T δ IS = i µ idn i This entopy is ggeneated when a new component i is intoduced into the system, with a chemical G potential, µ i = n i T,P,nj=n i Looking back, ecall that at constant T and P, T δ I S = dg = i µ idn i 0 4

5 Lectue 2 Themodynamics Oveview 2.625, Fall 13 B. Themodynamic quantities ae typically tabulated on a mola basis, meaning that the quantity is povided in units pe mole of eactant/poduct. Examples ae: g : mola Gibbs fee enegy s : mola entopy h : mola enthalpy C. We define mole faction: X i = ini n i G = n i g i ; whee g i = X i g i ; and n = n i D. We define the patial mola Gibbs fee enegy with espect to composition as: g g g G ḡ i = = = µ i X i T,P,Xj =X i n i T,P,n j =n i E. Fo an ideal gas, we define the patial pessue as: P i = X i P F. We can define a moe convenient fom of the chemical potential, whee we wite the chemical potential of a species i in tems of its chemical potential in the efeence state, µ i and its activity, a i : µ i = µ i + RT ln a i Defining the chemical potential of a species in tems of its activity is slightly moe convenient because the activity can be descibed by simple models, which will be discussed next. G. Activity models Ideal (Raoultian) Solution: a i = X i An ideal solution assumes that the activity of species i is equal to the mole faction of species i. Ideal Gas: a i = P i Fo an ideal gas, the activity of species i is equal to the patial pessue of species i. This is an extension of the ideal solution model. i. Figue?? demonstates how activities can be calculated fom the patial pessues of gases in a mixtue. ii. The enthalpy of mixing can be found by calculating the enthalpy befoe and afte mixing: h init = i X i h i (T, P i ) h final = i X ih i (T, P i ) = i X ih i Δh mix = h final h init = 0 iii. The entopy of mixing can be found in a simila way: s init = i X is i = i X ( i s i R ln ) P i P s final = s i = i X i s R ln Pi i X ( ) i i P Δs mix = s final s init = i X ir ln X i Note that since ΔS mix is geate than zeo, mixing is ievesible. This should line up with you intuitive undestanding of gas behavio. iv. Next, the Gibbs fee enegy ( of a mixtue: ) g init = X i g i = X i g + RT ln Pi i i i P g final = i X iḡ i = i X ( ) Pi i g i + RT ln P Δg mix = g final g init = i X i RT ln X i 0 When Δg mix 0, mixing will occu spontaneously and wok will be geneated. 5

6 Lectue 2 Themodynamics Oveview 2.625, Fall 13 Befoe Mixing: P 1 = P 2 = P 3 = P i = P P 1 P 2 System P 3 P 4 n 1 n 2 n 3 n 4 Afte Mixing: P = p 1 + p 2 + p 3 + p i p 1, p 2, p 3,... p i n 1, n 2, n 3,... n i Figue 4: Initially, a box contains seveal species of a gas, each having the same pessue P i, the same as the oveall box pessue P. Afte the patitions ae emoved, the gases mix and P is the sum of each gas patial pessue P i. IV. Chemical Equilibium A. Condition fo chemical equilibium µ i dn i = 0, o ΔG = 0 at constant T and P. Whee ΔG = µ i ν i n, and ν i is the stoichiometic coefficient of species i. 6

7 Lectue 2 Themodynamics Oveview 2.625, Fall 13 µ i dn i At constant T, P equilibium States Figue 5: Equilibium is achieved at constant T and P when the sum of chemical potentials of components in the system is minimized. B. Example 1 i. Conside the fomation of wate: H 2(g) + 2 O 2(g) H 2 O ii. ν H2(g) = 1, ν O2(g) = 0.5, and ν H2O = 1 C. Deiving the condition fo chemical equilibium: i. ΔG = µ i ν i n = n ν i (µ + RT ln a i i) ii. ΔG = n µ i ν i + nrt ν i ln a i iii. Let ΔG = n µ i ν i iv. ΔG = ΔG + nrt ln v. Remembe that K a = II ν a i pod i I ν i eact a i II ν i pod a i I ν a i eact i vi. At equilibium: ΔG = ΔG + nrt ln K a = 0 vii. Thus, at we can define the chemical equilibium condition: D. Two inteesting elations ΔG = nrt ln K a i. The natual h logaithm of the h equilibium constant, K a, can be witten as follows: ΔG ΔH K a = exp = A exp nrt ΔH ln K a = lna nrt nrt 7

8 Lectue 2 Themodynamics Oveview 2.625, Fall 13 ln K a H O 2 H 2 O CO 2 CO + 0.5O 2 (high T) 1/T (low T) Figue 6: Example plot of ln K a vs. 1 1 T ln K a vaies appoximately linealy with T.. ii. Assuming that ΔH is not a function of tempeatue (this is a good assumption fo a wide ange of T), the following elationship can be developed: Since ΔG (T, P ) = ΔH T ΔS, ΔG = ΔS, assuming that ΔH = f(t ) T 1 Example: H 2(g) + O 2(g) H 2 O 2 T (K) Δh (kj/mol) Δg (kj/mol) E

9 Lectue 2 Themodynamics Oveview 2.625, Fall 13 ΔG 0 T -ΔS Figue 7: Visual epesentation of how the change in Gibbs fee enegy with tempeatue is appoximately equal to the change in entopy (i.e. the slope of ΔG as a function of tempeatue is equal to ΔS ). E. Electochemical Equilibium i. Relative to a chemical system, equilibium fo an electochemical system has an additional wok tem. ii. δw = Edq fo chaged paticles with a chage of dq iii. Condition fo electochemical equilibium (at constant T and P): µ i ν i + z F E = 0 9

10 MIT OpenCouseWae / J Electochemical Enegy Convesion and Stoage: Fundamentals, Mateials, and Applications Fall 2013 Fo infomation about citing these mateials o ou Tems of Use, visit:

Entropy and Free Energy: Predicting the direction of spontaneous change The approach to Chemical equilibrium

Entropy and Free Energy: Predicting the direction of spontaneous change The approach to Chemical equilibrium Lectue 8-9 Entopy and Fee Enegy: Pedicting the diection of spontaneous change The appoach to Chemical equilibium Absolute entopy and the thid law of themodynamics To define the entopy of a compound in

More information

Downloaded from

Downloaded from Chapte Notes Subject: Chemisty Class: XI Chapte: Themodynamics Top concepts 1. The banch of science which deals with study of diffeent foms of enegy and thei inteconvesion is called themodynamics. 2. A

More information

Partition Functions. Chris Clark July 18, 2006

Partition Functions. Chris Clark July 18, 2006 Patition Functions Chis Clak July 18, 2006 1 Intoduction Patition functions ae useful because it is easy to deive expectation values of paametes of the system fom them. Below is a list of the mao examples.

More information

The second law of thermodynamics - II.

The second law of thermodynamics - II. Januay 21, 2013 The second law of themodynamics - II. Asaf Pe e 1 1. The Schottky defect At absolute zeo tempeatue, the atoms of a solid ae odeed completely egulaly on a cystal lattice. As the tempeatue

More information

Substances that are liquids or solids under ordinary conditions may also exist as gases. These are often referred to as vapors.

Substances that are liquids or solids under ordinary conditions may also exist as gases. These are often referred to as vapors. Chapte 0. Gases Chaacteistics of Gases All substances have thee phases: solid, liquid, and gas. Substances that ae liquids o solids unde odinay conditions may also exist as gases. These ae often efeed

More information

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!!

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!! Physics 161 Fall 011 Exta Cedit Investigating Black Holes - olutions The Following is Woth 50 Points!!! This exta cedit assignment will investigate vaious popeties of black holes that we didn t have time

More information

Single Particle State AB AB

Single Particle State AB AB LECTURE 3 Maxwell Boltzmann, Femi, and Bose Statistics Suppose we have a gas of N identical point paticles in a box of volume V. When we say gas, we mean that the paticles ae not inteacting with one anothe.

More information

Supporting information

Supporting information Electonic Supplementay Mateial (ESI) fo Physical Chemisty Chemical Physics. This jounal is the Owne Societies 18 Suppoting infomation Nonstoichiometic oxides as a continuous homologous seies: linea fee-enegy

More information

Current, Resistance and

Current, Resistance and Cuent, Resistance and Electomotive Foce Chapte 25 Octobe 2, 2012 Octobe 2, 2012 Physics 208 1 Leaning Goals The meaning of electic cuent, and how chages move in a conducto. What is meant by esistivity

More information

5.4 Second Law of Thermodynamics Irreversible Flow 5

5.4 Second Law of Thermodynamics Irreversible Flow 5 5.4 Second Law of hemodynamics Ievesile Flow 5 5.4 Second Law of hemodynamics Ievesile Flow he second law of themodynamics fomalizes the notion of loss. he second law of themodynamics affods us with a

More information

2.25 Advanced Fluid Mechanics

2.25 Advanced Fluid Mechanics MIT Depatment of Mechanical Engineeing 2.25 Advanced Fluid Mechanics Poblem 4.27 This poblem is fom Advanced Fluid Mechanics Poblems by A.H. Shapio and A.A. Sonin u(,t) pg Gas Liquid, density Conside a

More information

A NEW VARIABLE STIFFNESS SPRING USING A PRESTRESSED MECHANISM

A NEW VARIABLE STIFFNESS SPRING USING A PRESTRESSED MECHANISM Poceedings of the ASME 2010 Intenational Design Engineeing Technical Confeences & Computes and Infomation in Engineeing Confeence IDETC/CIE 2010 August 15-18, 2010, Monteal, Quebec, Canada DETC2010-28496

More information

763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012

763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012 763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012 1. Continuous Random Walk Conside a continuous one-dimensional andom walk. Let w(s i ds i be the pobability that the length of the i th displacement

More information

Youn-Woo Lee School of Chemical and Biological Engineering Seoul National University , 599 Gwanangro, Gwanak-gu, Seoul, Korea

Youn-Woo Lee School of Chemical and Biological Engineering Seoul National University , 599 Gwanangro, Gwanak-gu, Seoul, Korea hemical Reacto esign Y W L Youn-Woo Lee School of hemical and iological Engineeing 55-74, 599 Gwanango, Gwana-gu, Seoul, Koea ywlee@snu.ac. http://sfpl.snu.ac. hapte 6 Multiple Reactions hemical Reaction

More information

Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics

Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics Fall 06 Semeste METR 33 Atmospheic Dynamics I: Intoduction to Atmospheic Kinematics Dynamics Lectue 7 Octobe 3 06 Topics: Scale analysis of the equations of hoizontal motion Geostophic appoximation eostophic

More information

Chem 453/544 Fall /08/03. Exam #1 Solutions

Chem 453/544 Fall /08/03. Exam #1 Solutions Chem 453/544 Fall 3 /8/3 Exam # Solutions. ( points) Use the genealized compessibility diagam povided on the last page to estimate ove what ange of pessues A at oom tempeatue confoms to the ideal gas law

More information

Three dimensional flow analysis in Axial Flow Compressors

Three dimensional flow analysis in Axial Flow Compressors 1 Thee dimensional flow analysis in Axial Flow Compessos 2 The ealie assumption on blade flow theoies that the flow inside the axial flow compesso annulus is two dimensional means that adial movement of

More information

9.2 Reaction rate and rate equation

9.2 Reaction rate and rate equation 9.2.1 Expession of eaction ate The ate () of a chemical eaction is defined as the concentation change of a eactant o a poduct pe unit time. mean ate [A] c c = t t t 2 1 2 1 c c 1 instantaneous ate: Physical

More information

Solution to HW 3, Ma 1a Fall 2016

Solution to HW 3, Ma 1a Fall 2016 Solution to HW 3, Ma a Fall 206 Section 2. Execise 2: Let C be a subset of the eal numbes consisting of those eal numbes x having the popety that evey digit in the decimal expansion of x is, 3, 5, o 7.

More information

Encapsulation theory: radial encapsulation. Edmund Kirwan *

Encapsulation theory: radial encapsulation. Edmund Kirwan * Encapsulation theoy: adial encapsulation. Edmund Kiwan * www.edmundkiwan.com Abstact This pape intoduces the concept of adial encapsulation, wheeby dependencies ae constained to act fom subsets towads

More information

Mobility of atoms and diffusion. Einstein relation.

Mobility of atoms and diffusion. Einstein relation. Mobility of atoms and diffusion. Einstein elation. In M simulation we can descibe the mobility of atoms though the mean squae displacement that can be calculated as N 1 MS ( t ( i ( t i ( 0 N The MS contains

More information

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 18: System of Particles II. Slide 18-1

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 18: System of Particles II. Slide 18-1 Physics 1501 Fall 2008 Mechanics, Themodynamics, Waves, Fluids Lectue 18: System of Paticles II Slide 18-1 Recap: cente of mass The cente of mass of a composite object o system of paticles is the point

More information

Module 18: Outline. Magnetic Dipoles Magnetic Torques

Module 18: Outline. Magnetic Dipoles Magnetic Torques Module 18: Magnetic Dipoles 1 Module 18: Outline Magnetic Dipoles Magnetic Toques 2 IA nˆ I A Magnetic Dipole Moment μ 3 Toque on a Cuent Loop in a Unifom Magnetic Field 4 Poblem: Cuent Loop Place ectangula

More information

THERMODYNAMIC OPTIMIZATION OF TUBULAR HEAT EXCHANGERS BASED ON MINIMUM IRREVERSIBILITY CRITERIA

THERMODYNAMIC OPTIMIZATION OF TUBULAR HEAT EXCHANGERS BASED ON MINIMUM IRREVERSIBILITY CRITERIA THERMODYNAMIC OPTIMIZATION OF TUBULAR HEAT EXCHANGER BAED ON MINIMUM IRREVERIBILITY CRITERIA As. dd. ing. Adina GHEORGHIAN, Pof. d. ing. Alexandu DOBROVICECU, As. dd. ing. Andeea MARIN,.l. d. ing. Claudia

More information

Some considerations about thermodynamic cycles

Some considerations about thermodynamic cycles Home Seach Collections Jounals About Contact us My IOPscience Some consideations about themodynamic cycles This aticle has been downloaded fom IOPscience. Please scoll down to see the full text aticle.

More information

Carbon Canister Modeling. Jon Brown Staff Engineer Exhaust Aftertreatment & Emissions CLEERS Workshop 2017

Carbon Canister Modeling. Jon Brown Staff Engineer Exhaust Aftertreatment & Emissions CLEERS Workshop 2017 Cabon Caniste Modeling Jon Bown Staff Enginee Exhaust Afteteatment & Emissions CLEERS Wokshop 2017 Agenda Cabon caniste and EVAP system oveview Motivation, Backgound, and Objective Adsoption isothem Reaction

More information

ABSTRACT SIMULATION OF DYNAMIC PRESSURE- Professor Timothy A. Barbari Department of Chemical Engineering

ABSTRACT SIMULATION OF DYNAMIC PRESSURE- Professor Timothy A. Barbari Department of Chemical Engineering ABSTRACT Title: SIMULATION OF DYNAMIC PRESSURE- SWING GAS SORPTION IN POLYMERS Heathe Jane St. Piee, Maste of Science, 2005 Diected By: Pofesso Timothy A. Babai Depatment of Chemical Engineeing A tanspot

More information

2 Governing Equations

2 Governing Equations 2 Govening Equations This chapte develops the govening equations of motion fo a homogeneous isotopic elastic solid, using the linea thee-dimensional theoy of elasticity in cylindical coodinates. At fist,

More information

1D2G - Numerical solution of the neutron diffusion equation

1D2G - Numerical solution of the neutron diffusion equation DG - Numeical solution of the neuton diffusion equation Y. Danon Daft: /6/09 Oveview A simple numeical solution of the neuton diffusion equation in one dimension and two enegy goups was implemented. Both

More information

On the integration of the equations of hydrodynamics

On the integration of the equations of hydrodynamics Uebe die Integation de hydodynamischen Gleichungen J f eine u angew Math 56 (859) -0 On the integation of the equations of hydodynamics (By A Clebsch at Calsuhe) Tanslated by D H Delphenich In a pevious

More information

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Rigid Body Dynamics 2 CSE169: Compute Animation nstucto: Steve Rotenbeg UCSD, Winte 2018 Coss Poduct & Hat Opeato Deivative of a Rotating Vecto Let s say that vecto is otating aound the oigin, maintaining

More information

Chapter Introduction to Finite Element Methods

Chapter Introduction to Finite Element Methods Chapte 1.4 Intoduction to Finite Element Methods Afte eading this chapte, you should e ale to: 1. Undestand the asics of finite element methods using a one-dimensional polem. In the last fifty yeas, the

More information

But for simplicity, we ll define significant as the time it takes a star to lose all memory of its original trajectory, i.e.,

But for simplicity, we ll define significant as the time it takes a star to lose all memory of its original trajectory, i.e., Stella elaxation Time [Chandasekha 1960, Pinciples of Stella Dynamics, Chap II] [Ostike & Davidson 1968, Ap.J., 151, 679] Do stas eve collide? Ae inteactions between stas (as opposed to the geneal system

More information

Entropy and reaction spontaneity

Entropy and reaction spontaneity A quote of the week (o camel of the week): Minds ae like paachutes they only function when open Thomas Dewa 1 Entopy and eaction spontaneity Back to the II law ot themodynamics A spontaneous change is

More information

From Gravitational Collapse to Black Holes

From Gravitational Collapse to Black Holes Fom Gavitational Collapse to Black Holes T. Nguyen PHY 391 Independent Study Tem Pape Pof. S.G. Rajeev Univesity of Rocheste Decembe 0, 018 1 Intoduction The pupose of this independent study is to familiaize

More information

6.4 Period and Frequency for Uniform Circular Motion

6.4 Period and Frequency for Uniform Circular Motion 6.4 Peiod and Fequency fo Unifom Cicula Motion If the object is constained to move in a cicle and the total tangential foce acting on the total object is zeo, F θ = 0, then (Newton s Second Law), the tangential

More information

established in the case of the model surfactant AM Br

established in the case of the model surfactant AM Br Topic 279 Sufactants and Miceles; Ionics An intense debate concens the stuctue of micelles, paticulaly those fomed by ionic sufactants such as SDS and CTAB. It seems geneally ageed that micelles ae essentially

More information

Diffusion and Transport. 10. Friction and the Langevin Equation. Langevin Equation. f d. f ext. f () t f () t. Then Newton s second law is ma f f f t.

Diffusion and Transport. 10. Friction and the Langevin Equation. Langevin Equation. f d. f ext. f () t f () t. Then Newton s second law is ma f f f t. Diffusion and Tanspot 10. Fiction and the Langevin Equation Now let s elate the phenomena of ownian motion and diffusion to the concept of fiction, i.e., the esistance to movement that the paticle in the

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G-type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this investigation

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 4: Toroidal Equilibrium and Radial Pressure Balance

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 4: Toroidal Equilibrium and Radial Pressure Balance .615, MHD Theoy of Fusion Systems Pof. Feidbeg Lectue 4: Tooidal Equilibium and Radial Pessue Balance Basic Poblem of Tooidal Equilibium 1. Radial pessue balance. Tooidal foce balance Radial Pessue Balance

More information

Section 11. Timescales Radiation transport in stars

Section 11. Timescales Radiation transport in stars Section 11 Timescales 11.1 Radiation tanspot in stas Deep inside stas the adiation eld is vey close to black body. Fo a black-body distibution the photon numbe density at tempeatue T is given by n = 2

More information

APPENDIX. For the 2 lectures of Claude Cohen-Tannoudji on Atom-Atom Interactions in Ultracold Quantum Gases

APPENDIX. For the 2 lectures of Claude Cohen-Tannoudji on Atom-Atom Interactions in Ultracold Quantum Gases APPENDIX Fo the lectues of Claude Cohen-Tannoudji on Atom-Atom Inteactions in Ultacold Quantum Gases Pupose of this Appendix Demonstate the othonomalization elation(ϕ ϕ = δ k k δ δ )k - The wave function

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 10 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1 Please ead this fist... AST S: The oigin and evolution of the Univese Intoduction to Mathematical Handout This is an unusually long hand-out and one which uses in places mathematics that you may not be

More information

Macromolecular Chemistry

Macromolecular Chemistry Macomolecula Chemisty R R O H 2 C CH + CO CH 2 CH C Lectue 13 Fee Radical Co-polymeization Fee Radical Copolymeization ~ ~ ~ ~ ~ ~ ~ ~ Assume chain end concentations ae constant at steady state If If 1

More information

-Δ u = λ u. u(x,y) = u 1. (x) u 2. (y) u(r,θ) = R(r) Θ(θ) Δu = 2 u + 2 u. r = x 2 + y 2. tan(θ) = y/x. r cos(θ) = cos(θ) r.

-Δ u = λ u. u(x,y) = u 1. (x) u 2. (y) u(r,θ) = R(r) Θ(θ) Δu = 2 u + 2 u. r = x 2 + y 2. tan(θ) = y/x. r cos(θ) = cos(θ) r. The Laplace opeato in pola coodinates We now conside the Laplace opeato with Diichlet bounday conditions on a cicula egion Ω {(x,y) x + y A }. Ou goal is to compute eigenvalues and eigenfunctions of the

More information

TheWaveandHelmholtzEquations

TheWaveandHelmholtzEquations TheWaveandHelmholtzEquations Ramani Duaiswami The Univesity of Mayland, College Pak Febuay 3, 2006 Abstact CMSC828D notes (adapted fom mateial witten with Nail Gumeov). Wok in pogess 1 Acoustic Waves 1.1

More information

THERMODYNAMICS OF SURFACES AND INTERFACES

THERMODYNAMICS OF SURFACES AND INTERFACES THERMODYNAMIC OF URFACE AND INTERFACE 1. Intoduction Eveything has to end somewhee. Fo solids, o liquids that "somewhee" is a suface, o an inteface between phases. Fo liquids, the inteface is between the

More information

Right-handed screw dislocation in an isotropic solid

Right-handed screw dislocation in an isotropic solid Dislocation Mechanics Elastic Popeties of Isolated Dislocations Ou study of dislocations to this point has focused on thei geomety and thei ole in accommodating plastic defomation though thei motion. We

More information

Chapter 16 Electrochemical Processes

Chapter 16 Electrochemical Processes Electo_chapte16.doc 3-31-5 Chapte 16 Electochemical Pocesses This chapte consides some applications of electochemical tanspot and eactions in envionmental engineeing. Fist we eview some application examples.

More information

15 Solving the Laplace equation by Fourier method

15 Solving the Laplace equation by Fourier method 5 Solving the Laplace equation by Fouie method I aleady intoduced two o thee dimensional heat equation, when I deived it, ecall that it taes the fom u t = α 2 u + F, (5.) whee u: [0, ) D R, D R is the

More information

A Most Useful Device of Studying Electrode Processes: The Rotating Disk Electrode

A Most Useful Device of Studying Electrode Processes: The Rotating Disk Electrode A Most Useful Device of Studying Electode Pocesses: The Rotating Disk Electode the theoetical basis Soma Vesztegom Laboatoy of Electochemisty & Electoanalytical Chemisty Eötvös Loánd Univesity of Budapest

More information

Scattering in Three Dimensions

Scattering in Three Dimensions Scatteing in Thee Dimensions Scatteing expeiments ae an impotant souce of infomation about quantum systems, anging in enegy fom vey low enegy chemical eactions to the highest possible enegies at the LHC.

More information

Chapter 5 Linear Equations: Basic Theory and Practice

Chapter 5 Linear Equations: Basic Theory and Practice Chapte 5 inea Equations: Basic Theoy and actice In this chapte and the next, we ae inteested in the linea algebaic equation AX = b, (5-1) whee A is an m n matix, X is an n 1 vecto to be solved fo, and

More information

you of a spring. The potential energy for a spring is given by the parabola U( x)

you of a spring. The potential energy for a spring is given by the parabola U( x) Small oscillations The theoy of small oscillations is an extemely impotant topic in mechanics. Conside a system that has a potential enegy diagam as below: U B C A x Thee ae thee points of stable equilibium,

More information

ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS

ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS L. MICU Hoia Hulubei National Institute fo Physics and Nuclea Engineeing, P.O. Box MG-6, RO-0775 Buchaest-Maguele, Romania, E-mail: lmicu@theoy.nipne.o (Received

More information

Electrostatic Potential

Electrostatic Potential Chapte 23 Electostatic Potential PowePoint Lectues fo Univesity Physics, Twelfth Edition Hugh D. Young and Roge A. Feedman Lectues by James Pazun Copyight 2008 Peason Education Inc., publishing as Peason

More information

Conservative Averaging Method and its Application for One Heat Conduction Problem

Conservative Averaging Method and its Application for One Heat Conduction Problem Poceedings of the 4th WSEAS Int. Conf. on HEAT TRANSFER THERMAL ENGINEERING and ENVIRONMENT Elounda Geece August - 6 (pp6-) Consevative Aveaging Method and its Application fo One Heat Conduction Poblem

More information

CHAPTER 3. Section 1. Modeling Population Growth

CHAPTER 3. Section 1. Modeling Population Growth CHAPTER 3 Section 1. Modeling Population Gowth 1.1. The equation of the Malthusian model is Pt) = Ce t. Apply the initial condition P) = 1. Then 1 = Ce,oC = 1. Next apply the condition P1) = 3. Then 3

More information

Physics 221 Lecture 41 Nonlinear Absorption and Refraction

Physics 221 Lecture 41 Nonlinear Absorption and Refraction Physics 221 Lectue 41 Nonlinea Absoption and Refaction Refeences Meye-Aendt, pp. 97-98. Boyd, Nonlinea Optics, 1.4 Yaiv, Optical Waves in Cystals, p. 22 (Table of cystal symmeties) 1. Intoductoy Remaks.

More information

Math 124B February 02, 2012

Math 124B February 02, 2012 Math 24B Febuay 02, 202 Vikto Gigoyan 8 Laplace s equation: popeties We have aleady encounteed Laplace s equation in the context of stationay heat conduction and wave phenomena. Recall that in two spatial

More information

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx.

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx. 9. LAGRANGIAN OF THE ELECTROMAGNETIC FIELD In the pevious section the Lagangian and Hamiltonian of an ensemble of point paticles was developed. This appoach is based on a qt. This discete fomulation can

More information

Lab #0. Tutorial Exercises on Work and Fields

Lab #0. Tutorial Exercises on Work and Fields Lab #0 Tutoial Execises on Wok and Fields This is not a typical lab, and no pe-lab o lab epot is equied. The following execises will emind you about the concept of wok (fom 1130 o anothe intoductoy mechanics

More information

5.61 Physical Chemistry Lecture #23 page 1 MANY ELECTRON ATOMS

5.61 Physical Chemistry Lecture #23 page 1 MANY ELECTRON ATOMS 5.6 Physical Chemisty Lectue #3 page MAY ELECTRO ATOMS At this point, we see that quantum mechanics allows us to undestand the helium atom, at least qualitatively. What about atoms with moe than two electons,

More information

Lecture 5 Solving Problems using Green s Theorem. 1. Show how Green s theorem can be used to solve general electrostatic problems 2.

Lecture 5 Solving Problems using Green s Theorem. 1. Show how Green s theorem can be used to solve general electrostatic problems 2. Lectue 5 Solving Poblems using Geen s Theoem Today s topics. Show how Geen s theoem can be used to solve geneal electostatic poblems. Dielectics A well known application of Geen s theoem. Last time we

More information

Lecture 10. Vertical coordinates General vertical coordinate

Lecture 10. Vertical coordinates General vertical coordinate Lectue 10 Vetical coodinates We have exclusively used height as the vetical coodinate but thee ae altenative vetical coodinates in use in ocean models, most notably the teainfollowing coodinate models

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

Handout: IS/LM Model

Handout: IS/LM Model Econ 32 - IS/L odel Notes Handout: IS/L odel IS Cuve Deivation Figue 4-4 in the textbook explains one deivation of the IS cuve. This deivation uses the Induced Savings Function fom Chapte 3. Hee, I descibe

More information

Related Rates - the Basics

Related Rates - the Basics Related Rates - the Basics In this section we exploe the way we can use deivatives to find the velocity at which things ae changing ove time. Up to now we have been finding the deivative to compae the

More information

Physics 121 Hour Exam #5 Solution

Physics 121 Hour Exam #5 Solution Physics 2 Hou xam # Solution This exam consists of a five poblems on five pages. Point values ae given with each poblem. They add up to 99 points; you will get fee point to make a total of. In any given

More information

Suppose the medium is not homogeneous (gravity waves impinging on a beach,

Suppose the medium is not homogeneous (gravity waves impinging on a beach, Slowly vaying media: Ray theoy Suppose the medium is not homogeneous (gavity waves impinging on a beach, i.e. a vaying depth). Then a pue plane wave whose popeties ae constant in space and time is not

More information

In the previous section we considered problems where the

In the previous section we considered problems where the 5.4 Hydodynamically Fully Developed and Themally Developing Lamina Flow In the pevious section we consideed poblems whee the velocity and tempeatue pofile wee fully developed, so that the heat tansfe coefficient

More information

PROBLEM SET #3A. A = Ω 2r 2 2 Ω 1r 2 1 r2 2 r2 1

PROBLEM SET #3A. A = Ω 2r 2 2 Ω 1r 2 1 r2 2 r2 1 PROBLEM SET #3A AST242 Figue 1. Two concentic co-axial cylindes each otating at a diffeent angula otation ate. A viscous fluid lies between the two cylindes. 1. Couette Flow A viscous fluid lies in the

More information

2.25 Advanced Fluid Mechanics

2.25 Advanced Fluid Mechanics MIT Depatment of Mechanical Engineeing.5 Advanced Fluid Mechanics Poblem 6.1 This poblem is fom Advanced Fluid Mechanics Poblems by A.H. Shapio and A.A. Sonin The sketch shows a cicula beaing pad which

More information

18.06 Problem Set 4 Solution

18.06 Problem Set 4 Solution 8.6 Poblem Set 4 Solution Total: points Section 3.5. Poblem 2: (Recommended) Find the lagest possible numbe of independent vectos among ) ) ) v = v 4 = v 5 = v 6 = v 2 = v 3 =. Solution (4 points): Since

More information

12.1 Introduction 12-1

12.1 Introduction 12-1 12.1 Intoduction So fa we have esticted ouselves to consideing systems consisting of discete objects o point-like objects that have fixed amounts of mass. We shall now conside systems in which mateial

More information

Antennas & Propagation

Antennas & Propagation Antennas & Popagation 1 Oveview of Lectue II -Wave Equation -Example -Antenna Radiation -Retaded potential THE KEY TO ANY OPERATING ANTENNA ot H = J +... Suppose: 1. Thee does exist an electic medium,

More information

arxiv: v1 [cond-mat.other] 15 Jan 2013

arxiv: v1 [cond-mat.other] 15 Jan 2013 axiv:1301.3213v1 [cond-mat.othe] 15 Jan 2013 Abstact Modified Associate Fomalism without Entopy Paadox: Pat I. Model Desciption Dmity N. Saulov,a, Igo G. Vladimiov a, A. Y. Klimenko a a School of Engineeing,

More information

On a quantity that is analogous to potential and a theorem that relates to it

On a quantity that is analogous to potential and a theorem that relates to it Su une quantité analogue au potential et su un théoème y elatif C R Acad Sci 7 (87) 34-39 On a quantity that is analogous to potential and a theoem that elates to it By R CLAUSIUS Tanslated by D H Delphenich

More information

An Exact Solution of Navier Stokes Equation

An Exact Solution of Navier Stokes Equation An Exact Solution of Navie Stokes Equation A. Salih Depatment of Aeospace Engineeing Indian Institute of Space Science and Technology, Thiuvananthapuam, Keala, India. July 20 The pincipal difficulty in

More information

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c Chapte 6 Geneal Relativity 6.1 Towads the Einstein equations Thee ae seveal ways of motivating the Einstein equations. The most natual is pehaps though consideations involving the Equivalence Pinciple.

More information

A thermodynamic degree of freedom solution to the galaxy cluster problem of MOND. Abstract

A thermodynamic degree of freedom solution to the galaxy cluster problem of MOND. Abstract A themodynamic degee of feedom solution to the galaxy cluste poblem of MOND E.P.J. de Haas (Paul) Nijmegen, The Nethelands (Dated: Octobe 23, 2015) Abstact In this pape I discus the degee of feedom paamete

More information

Chapter 2: Conversion and Reactor Sizing

Chapter 2: Conversion and Reactor Sizing CHEMICL RECTIO EGIEERIG (SK3223) Chapte 2: Convesion and Reacto Sizing W ORHRYTI W SLLEH hayati@petoleum.utm.my RIZI MD. KSMI afiziana@petoleum.utm.my Convesion, To quantify how fa a eaction has pogessed

More information

Universal Gravitation

Universal Gravitation Chapte 1 Univesal Gavitation Pactice Poblem Solutions Student Textbook page 580 1. Conceptualize the Poblem - The law of univesal gavitation applies to this poblem. The gavitational foce, F g, between

More information

Stress Intensity Factor

Stress Intensity Factor S 47 Factue Mechanics http://imechanicaog/node/7448 Zhigang Suo Stess Intensity Facto We have modeled a body by using the linea elastic theoy We have modeled a cack in the body by a flat plane, and the

More information

Hawking Radiation Seminar Talk

Hawking Radiation Seminar Talk Hawking Radiation Semina Talk Julius Eckhad, Max Lautsch June 9, 205 In this talk on Hawking Radiation we will fist motivate why we have to intoduce the counteintuitive concept of a black hole tempeatue

More information

Internet Appendix for A Bayesian Approach to Real Options: The Case of Distinguishing Between Temporary and Permanent Shocks

Internet Appendix for A Bayesian Approach to Real Options: The Case of Distinguishing Between Temporary and Permanent Shocks Intenet Appendix fo A Bayesian Appoach to Real Options: The Case of Distinguishing Between Tempoay and Pemanent Shocks Steven R. Genadie Gaduate School of Business, Stanfod Univesity Andey Malenko Gaduate

More information

Chapter 12: Kinematics of a Particle 12.8 CURVILINEAR MOTION: CYLINDRICAL COMPONENTS. u of the polar coordinate system are also shown in

Chapter 12: Kinematics of a Particle 12.8 CURVILINEAR MOTION: CYLINDRICAL COMPONENTS. u of the polar coordinate system are also shown in ME 01 DYNAMICS Chapte 1: Kinematics of a Paticle Chapte 1 Kinematics of a Paticle A. Bazone 1.8 CURVILINEAR MOTION: CYLINDRICAL COMPONENTS Pola Coodinates Pola coodinates ae paticlaly sitable fo solving

More information

2 x 8 2 x 2 SKILLS Determine whether the given value is a solution of the. equation. (a) x 2 (b) x 4. (a) x 2 (b) x 4 (a) x 4 (b) x 8

2 x 8 2 x 2 SKILLS Determine whether the given value is a solution of the. equation. (a) x 2 (b) x 4. (a) x 2 (b) x 4 (a) x 4 (b) x 8 5 CHAPTER Fundamentals When solving equations that involve absolute values, we usually take cases. EXAMPLE An Absolute Value Equation Solve the equation 0 x 5 0 3. SOLUTION By the definition of absolute

More information

Supplementary Figure 1. Circular parallel lamellae grain size as a function of annealing time at 250 C. Error bars represent the 2σ uncertainty in

Supplementary Figure 1. Circular parallel lamellae grain size as a function of annealing time at 250 C. Error bars represent the 2σ uncertainty in Supplementay Figue 1. Cicula paallel lamellae gain size as a function of annealing time at 50 C. Eo bas epesent the σ uncetainty in the measued adii based on image pixilation and analysis uncetainty contibutions

More information

EQUATIONS OF MOTION LUCA GUIDO MOLINARI

EQUATIONS OF MOTION LUCA GUIDO MOLINARI EQUATIONS OF MOTION LUCA GUIDO MOLINARI 1. Equation of motion of destuction opeatos Conside a system of bosons o femions descibed by a Hamiltonian H = H 1 + H 2, whee H 1 and H 2 ae espectively the one

More information

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31,

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, th WSEAS Int. Conf. on APPLIED MATHEMATICS, Caio, Egypt, Decembe 9-3, 7 5 Magnetostatic Field calculations associated with thick Solenoids in the Pesence of Ion using a Powe Seies expansion and the Complete

More information

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology Electomagnetic scatteing Gaduate Couse Electical Engineeing (Communications) 1 st Semeste, 1390-1391 Shaif Univesity of Technology Geneal infomation Infomation about the instucto: Instucto: Behzad Rejaei

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50 woking pages fo Paul Richads class notes; do not copy o ciculate without pemission fom PGR 2004/11/3 10:50 CHAPTER7 Solid angle, 3D integals, Gauss s Theoem, and a Delta Function We define the solid angle,

More information

PES 3950/PHYS 6950: Homework Assignment 6

PES 3950/PHYS 6950: Homework Assignment 6 PES 3950/PHYS 6950: Homewok Assignment 6 Handed out: Monday Apil 7 Due in: Wednesday May 6, at the stat of class at 3:05 pm shap Show all woking and easoning to eceive full points. Question 1 [5 points]

More information

Physics 506 Winter 2006 Homework Assignment #9 Solutions

Physics 506 Winter 2006 Homework Assignment #9 Solutions Physics 506 Winte 2006 Homewok Assignment #9 Solutions Textbook poblems: Ch. 12: 12.2, 12.9, 12.13, 12.14 12.2 a) Show fom Hamilton s pinciple that Lagangians that diffe only by a total time deivative

More information

Capacitors and Capacitance

Capacitors and Capacitance Capacitos and Capacitance Capacitos ae devices that can stoe a chage Q at some voltage V. The geate the capacitance, the moe chage that can be stoed. The equation fo capacitance, C, is vey simple: C Q

More information

12.1 INTRODUCTION: STATES OF MANY-PARTICLE SYSTEMS

12.1 INTRODUCTION: STATES OF MANY-PARTICLE SYSTEMS Chapte 1 2 : Many- Paticle Systems Chapte 12: Many-Paticle Systems...186 12.1 Intoduction: States of Many-Paticle Systems...186 12.2 Systems Divisible into Independent Subsystems...188 12.2.1 Distinguishable

More information