Simulation of a steady state flash

Size: px
Start display at page:

Download "Simulation of a steady state flash"

Transcription

1 Smulaton of a steady state flash Descrpton: Statonary flash smulaton of an Ethanol(1) - Water(2) - mxture Wth followng assumptons: Apart from heater and mass flows, no energy s transferred across the system boundary. Lqud and vapor phase are each deally mxed. Lqud and vapor phase are n equlbrum. The vapor phase behaves as an deal gas and the lqud as an ncompressble flud. VLE descrbed by extended Raoult s law. Vapor pressure calculaton by Antone. Evaporaton enthalpy calculaton by PPDS12. Real flud behavor of the lqud phase s expressed through Wlson s ge model. Excess varables neglected. Wlson and Antone parameter are taken from: Gmehlng, Kolbe; PPDS12 parameter are taken from: Equaton System: 86383: statflash.moseqs IndexSpecfcaton: e[0]86383.nc = 2 Varable Specfcaton: 86386: IV statflash.mosvar Parameter Specfcaton: none. Results Specfcaton: 86388: RE statflash CBzzMath Org.mosvar Herarchcal vew of equatons: Equaton System: 86383: statflash.moseqs Descrpton: Statonary flash wth followng addtonal assumpton to bascflash: 1. Apart from heater and mass flows, no energy s transferred across the system boundary. 2. flash geometry s cylndrc. 1

2 Connected Equatons: Eq: 86378: StatEnergyBalance.mosequ (usng Nota: 8639: not - Desc.: Energy balance (statonary) 0 = F F,n h F,n h B,n F B,n h D,n F D,n + Q (1) Eq: 86379: StatComponentBalance.mosequ (usng Nota: 8639: not Desc.: Component balance (statonary) 0 = x F F F,n x B F B,n y D F D,n (2) Connected EQ-Systems: 86375: bascflash.moseqs 8638: tankgeometry.moseqs Connecton Level (1) EQ-Systems connected to 86383: statflash.moseqs: Equaton System: 86375: bascflash.moseqs Descrpton: basc model of a flash wth followng assumptons: 1. lqud and vapor phase are each deally mxed. Lqud and vapor phase are n equlbrum. 2. The vapor phase behaves as an deal gas and the lqud as an ncompressble flud. 3. VLE descrpton by extended Raoult s law. Vapor pressure calculaton by Antone 5. Actvty calculatons n the lqud phase by Wlson s g E -Model Connected Equatons: 2

3 Eq: 86350: sumrelatonvapor.mosequ (usng Nota: 8639: not - Desc.: Molar summaton relaton (vapor) NC 1 = =1 y D (3) Eq: 86353: molarenthalpyvapor.mosequ (usng Nota: 8639: not - Desc.: Molar enthalpy (vapor) NC h D,n = =1 y D h D,n + h E,D,n () Eq: 86356: molarenthalpyfeed.mosequ (usng Nota: 8639: not - Desc.: Molar enthalpy (feed) NC h F,n = =1 x F h F,n + h E,F,n (5) Eq: 8636: molarevapenthalpylqud.mosequ (usng Nota: 8639: not Desc.: Molar evaporaton enthalpy (lqud, pure component), source: h B,LV,n = R T c (A P P DS12, (1 T T c ) BP P DS12, (1 T T c + C P P DS12, (1 T T c ) + D P P DS12, (1 T T c ) 2 3 ) 2 + E P P DS12, (1 T T c ) 6 ) Eq: 86368: molarenthalpycomponentvapor.mosequ (usng Nota: 8639: not Desc.: Molar enthalpy (vapor, pure component), assumptons: deal gas (6) h D,n = h o,n + C cp, 3 + A cp, (T T o ) + B cp, 2 ((T ) 3 (T o ) 3 ) + D cp, ((T ) 2 (T o ) 2 ) ((T ) (T o ) ) (7) 3

4 Eq: 86367: molarenthalpycomponentfeed.mosequ (usng Nota: 8639: not Desc.: Molar enthalpy (feed, pure component), assumptons: ncompressble flud deal gas behavor of correspondng vapor phase (pressure ndependency of h n V-phase) h F,n = h o,n + A cp, (T F T o ) + B cp, ((T F ) 2 (T o ) 2 ) 2 + C cp, ((T F ) 3 (T o ) 3 ) + D cp, 3 ((T F ) (T o ) ) + v L,n (p F p F,LV ) h F,LV,n (8) Eq: 8637: actvtycoeffwlsonparameterlqud.mosequ (usng Nota: 8639: not Desc.: Parameter calculaton (lqud) based on Wlson s g E -model (lqud), source: Gmehlng, Kolbe S.239 α B = NC =1 vl,n v L,n v L,n exp( λ T ) (9) Eq: 86372: volumeflowlqud.mosequ (usng Nota: 8639: not - Desc.: Volume flow (lqud) F B,n = F B,v ρ B,n (10) Eq: 86363: pressuredrop.mosequ (usng Nota: 8639: not - Desc.: Pressure drop (Feed > flash) p = p F p (11) Eq: 86361: volumelqud.mosequ (usng Nota: 8639: not - Desc.: Volume n flash (lqud) NC HU L,v = ( v L,n x B + v L,n,E ) HU L,n 1000 =1 (12)

5 Eq: 86351: sumrelatonlqud.mosequ (usng Nota: 8639: not - Desc.: Molar summaton relaton (lqud) NC 1 = =1 x B (13) Eq: 86352: molarenthalpylqud.mosequ (usng Nota: 8639: not - Desc.: Molar enthalpy (lqud) NC h B,n = =1 x B h B,n + h B,n,E (1) Eq: 86359: molarholdupcomponent.mosequ (usng Nota: 8639: not Desc.: Molar component holdup wthn flash HU n = x B HU L,n + y D HU V,n (15) Eq: 86357: levellqud.mosequ (usng Nota: 8639: not Desc.: Lqud level calculaton L L = HU L,v π (d) 2 (16) Eq: 86369: vaporpressureantonelqud.mosequ (usng Nota: 8639: not Desc.: Vapor pressure by Antone equaton (lqud, pure component), source: Kolbe, Mehlng p.59 p LV,B = (10) 3 (10) A Antone, B Antone, C Antone, +(T ) (17) Eq: 86371: molardenstylqud.mosequ (usng Nota: 8639: not - Desc.: Molar densty wth no excess volume (lqud) NC 1 = ρ B,n =1 x B v L,n (18) 5

6 Eq: 86370: vaporpressureantonefeed.mosequ (usng Nota: 8639: not Desc.: Vapor pressure by Antone equaton (feed, pure component), source: Kolbe, Mehlng p.59 p LV,F = (10) 3 (10) A Antone, B Antone, C Antone, +(T F ) (19) Eq: 86362: volume.mosequ (usng Nota: 8639: not Desc.: Volume of flash HU v = HU L,v + HU V,v (20) Eq: 86365: molarevapenthalpyfeed.mosequ (usng Nota: 8639: not Desc.: Molar evaporaton enthalpy (feed, pure component), source: h F,LV,n = R T c (A P P DS12, (1 T F ) BP P DS12, (1 T F T c T c ) CP P DS12, (1 T F ) + D P P DS12, (1 T F T c T c ) 2 + E P P DS12, (1 T F ) 6 ) T c (21) U Eq: 86358: nternalenergy.mosequ (usng Nota: 8639: not - Desc.: Internal energy wthn flash (22) = HU L,n (h B,n p ( NC =1 xb v L,n + v L,n,E )) + HU V,n (h D,n R T z) (10) 6 Eq: 86360: volumevapor.mosequ (usng Nota: 8639: not - Desc.: Volume n flash (vapor) HU V,v = HU V,n R T z p 1000 (23) 6

7 Eq: 8635: sumrelatonfeed.mosequ (usng Nota: 8639: not - Desc.: Molar summaton relaton (feed) NC 1 = =1 x F (2) Eq: 86373: actvtycoeffwlsonlqud.mosequ (usng Nota: 8639: not Desc.: Actvty coeffcent calculatons by Wlson s g E -model (lqud) γ B = 1 x B + α B (1 x B ) α B exp((1 x B ) ( x B + α B (1 x B ) NC =1 αb α B ( NC =1 αb α B) xb + (1 x B ))) (25) Eq: 86355: VLEextendedRaoult.mosequ (usng Nota: 8639: not - Desc.: Extended Raoult s law for VLE n flash y D = x B pb,lv p γ B (26) Eq: 86366: molarenthalpycomponentlqud.mosequ (usng Nota: 8639: not Desc.: Molar enthalpy (lqud, pure component), assumptons: ncompressble flud deal gas behavor of correspondng vapor phase (pressure ndependency of h n V-phase) h B,n = h o,n + A cp, (T T o ) + B cp, ((T ) 2 (T o ) 2 ) 2 + C cp, ((T ) 3 (T o ) 3 ) + D cp, 3 ((T ) (T o ) ) + v L,n (p p B,LV ) h B,LV,n (27) 7

8 Equaton System: 8638: tankgeometry.moseqs Descrpton: Tank geometry Connected Equatons: Eq: 86381: volumetank.mosequ (usng Nota: 8639: not - Desc.: Flash s volume HU v = A L (28) Eq: 86382: ratodameterlengthtank.mosequ (usng Nota: 8639: not Desc.: dameter to heght rato of tank r D,L = d L (29) Eq: 86380: crosssectonarea.mosequ (usng Nota: 8639: not - Desc.: Flash s cross secton area A = π (d)2 (30) Equaton nstances: Eq: 86378: StatEnergyBalance.mosequ (usng Nota: 8639: not. Descrpton: Energy balance (statonary). 0 = e0.f F,n e0.h F,n e0.h B,n e0.f B,n e0.h D,n e0.f D,n + e0.q (31) Eq: 86379: StatComponentBalance.mosequ (usng Nota: 8639: not. Descrpton: Component balance (statonary). 0 = e0.x F =1 e0.f F,n e0.x B =1 e0.f B,n e0.y D =1 e0.f D,n (32) 0 = e0.x F =2 e0.f F,n e0.x B =2 e0.f B,n e0.y D =2 e0.f D,n (33) Eq: 86350: sumrelatonvapor.mosequ (usng Nota: 8639: not. Descrpton: Molar summaton relaton (vapor). 1 = (e0.y D =1 + e0.y D =2) (3) 8

9 Eq: 86351: sumrelatonlqud.mosequ (usng Nota: 8639: not. Descrpton: Molar summaton relaton (lqud). 1 = (e0.x B =1 + e0.x B =2) (35) Eq: 8635: sumrelatonfeed.mosequ (usng Nota: 8639: not. Descrpton: Molar summaton relaton (feed). 1 = (e0.x F =1 + e0.x F =2) (36) Eq: 86355: VLEextendedRaoult.mosequ (usng Nota: 8639: not. Descrpton: Extended Raoult s law for VLE n flash. e0.y D =1 = e0.x B =1 e0.pb,lv =1 e0.γ B =1 e0.p (37) e0.y D =2 = e0.x B =2 e0.pb,lv =2 e0.γ B =2 e0.p (38) Eq: 86352: molarenthalpylqud.mosequ (usng Nota: 8639: not. Descrpton: Molar enthalpy (lqud). e0.h B,n = (e0.x B =1 e0.h B,n =1 + e0.xb =2 e0.h B,n =2 ) + e0.hb,e,n (39) Eq: 86353: molarenthalpyvapor.mosequ (usng Nota: 8639: not. Descrpton: Molar enthalpy (vapor). e0.h D,n = (e0.y D =1 e0.h D,n =1 + e0.yd =2 e0.h D,n =2 ) + e0.hd,e,n (0) Eq: 86356: molarenthalpyfeed.mosequ (usng Nota: 8639: not. Descrpton: Molar enthalpy (feed). e0.h F,n = (e0.x F =1 e0.h F,n =1 + e0.xf =2 e0.h F,n =2 ) + e0.he,f,n (1) Eq: 86357: levellqud.mosequ (usng Nota: 8639: not. Descrpton: Lqud level calculaton. e0.l L = e0.hu L,v e0.π (e0.d) (2) (2) Eq: 86358: nternalenergy.mosequ (usng Nota: 8639: not. Descrpton: Internal energy wthn flash. e0.u = e0.hu L,n (e0.h B,n e0.p ((e0.x B =1 e0.vl,n =1 + e0.xb =2 e0.vl,n =2 ) + e0.ve,l,n )) + e0.hu V,n (e0.h D,n (10) (6) Eq: 86359: molarholdupcomponent.mosequ (usng Nota: 8639: not. Descrpton: Molar component holdup wthn flash. (3) e0.hu n =1 = e0.x B =1 e0.hu L,n + e0.y D =1 e0.hu V,n () 9

10 e0.hu n =2 = e0.x B =2 e0.hu L,n + e0.y D =2 e0.hu V,n (5) Eq: 86360: volumevapor.mosequ (usng Nota: 8639: not. Descrpton: Volume n flash (vapor). e0.hu V,v = e0.hu V,n e0.r e0.t e0.z e0.p 1000 (6) Eq: 86361: volumelqud.mosequ (usng Nota: 8639: not. Descrpton: Volume n flash (lqud). e0.hu L,v = ((e0.v L,n =1 e0.xb =1 + e0.v L,n =2 e0.xb =2) + e0.v E,L,n ) e0.hu L,n 1000 (7) Eq: 86362: volume.mosequ (usng Nota: 8639: not. Descrpton: Volume of flash. e0.hu v = e0.hu L,v + e0.hu V,v (8) Eq: 86363: pressuredrop.mosequ (usng Nota: 8639: not. Descrpton: Pressure drop (Feed > flash). e0. p = e0.p F e0.p (9) Eq: 8636: molarevapenthalpylqud.mosequ (usng Nota: 8639: not. Descrpton: Molar evaporaton enthalpy (lqud, pure component), source: e0.h B,LV,n =1 = e0.r e0.t=1 c (e0.a P P DS12,=1 (1 e0.t e0.t=1 c ) ( 3) 1 + e0.b P P DS12,=1 (1 e0.t e0.t=1 c ) ( 2 3) + e0.cp P DS12,=1 (1 e0.t e0.t=1 c ) + e0.d P P DS12,=1 (1 e0.t e0.t=1 c ) (2) + e0.e P P DS12,=1 (1 e0.t e0.t=1 c ) (6) ) (50) e0.h B,LV,n =2 = e0.r e0.t=2 c (e0.a P P DS12,=2 (1 e0.t e0.t=2 c ) ( 3) 1 + e0.b P P DS12,=2 (1 e0.t e0.t=2 c ) ( 2 3) + e0.cp P DS12,=2 (1 e0.t e0.t=2 c ) + e0.d P P DS12,=2 (1 e0.t e0.t=2 c ) (2) + e0.e P P DS12,=2 (1 e0.t e0.t=2 c ) (6) ) (51) 10

11 Eq: 86365: molarevapenthalpyfeed.mosequ (usng Nota: 8639: not. Descrpton: Molar evaporaton enthalpy (feed, pure component), source: e0.h F,LV,n =1 = e0.r e0.t c =1 (e0.a P P DS12,=1 (1 e0.t F + e0.b P P DS12,=1 (1 e0.t F e0.t c =1 e0.t c =1 ) ( 1 3) ) ( 2 3) + e0.cp P DS12,=1 (1 e0.t F e0.t=1 c ) + e0.d P P DS12,=1 (1 e0.t F e0.t=1 c ) (2) + e0.e P P DS12,=1 (1 e0.t F ) (6) ) e0.t c =1 (52) e0.h F,LV,n =2 = e0.r e0.t c =2 (e0.a P P DS12,=2 (1 e0.t F + e0.b P P DS12,=2 (1 e0.t F e0.t c =2 e0.t c =2 ) ( 1 3) ) ( 2 3) + e0.cp P DS12,=2 (1 e0.t F e0.t=2 c ) + e0.d P P DS12,=2 (1 e0.t F e0.t=2 c ) (2) + e0.e P P DS12,=2 (1 e0.t F ) (6) ) e0.t c =2 (53) Eq: 86366: molarenthalpycomponentlqud.mosequ (usng Nota: 8639: not -. Descrpton: Molar enthalpy (lqud, pure component), assumptons:. ncompressble flud deal gas behavor of correspondng vapor phase (pressure ndependency of h n V-phase) e0.h B,n =1 = e0.hn,o =1 + e0.a cp,=1 (e0.t e0.t o =1) + e0.b cp,=1 2 ((e0.t ) (2) (e0.t o =1) (2) ) + e0.c cp,=1 3 + e0.d cp,=1 ((e0.t ) () (e0.t o =1) () ) + e0.v L,n =1 (e0.p e0.pb,lv =1 ) e0.h B,LV,n =1 ((e0.t ) (3) (e0.t o =1) (3) ) (5) 11

12 e0.h B,n =2 = e0.hn,o =2 + e0.a cp,=2 (e0.t e0.t o =2) + e0.b cp,=2 2 ((e0.t ) (2) (e0.t o =2) (2) ) + e0.c cp,=2 3 + e0.d cp,=2 ((e0.t ) () (e0.t o =2) () ) + e0.v L,n =2 (e0.p e0.pb,lv =2 ) e0.h B,LV,n =2 ((e0.t ) (3) (e0.t o =2) (3) ) (55) Eq: 86368: molarenthalpycomponentvapor.mosequ (usng Nota: 8639: not -. Descrpton: Molar enthalpy (vapor, pure component), assumptons:. deal gas e0.h D,n =1 = e0.hn,o =1 + e0.a cp,=1 (e0.t e0.t o =1) + e0.b cp,=1 2 ((e0.t ) (2) (e0.t o =1) (2) ) + e0.c cp,=1 3 + e0.d cp,=1 ((e0.t ) () (e0.t o =1) () ) e0.h D,n =2 = e0.hn,o =2 + e0.a cp,=2 (e0.t e0.t o =2) + e0.b cp,=2 2 ((e0.t ) (2) (e0.t o =2) (2) ) + e0.c cp,=2 3 + e0.d cp,=2 ((e0.t ) () (e0.t o =2) () ) ((e0.t ) (3) (e0.t o =1) (3) ) (56) ((e0.t ) (3) (e0.t o =2) (3) ) (57) Eq: 86367: molarenthalpycomponentfeed.mosequ (usng Nota: 8639: not -. Descrpton: Molar enthalpy (feed, pure component), assumptons:. ncompressble flud deal gas behavor of correspondng vapor phase (pressure ndependency of h n V-phase) e0.h F,n =1 = e0.hn,o =1 + e0.a cp,=1 (e0.t F e0.t o =1) + e0.b cp,=1 2 ((e0.t F ) (2) (e0.t o =1) (2) ) + e0.c cp,=1 3 + e0.d cp,=1 ((e0.t F ) () (e0.t o =1) () ) + e0.v L,n =1 (e0.pf e0.p F,LV =1 ) e0.hf,lv,n =1 ((e0.t F ) (3) (e0.t o =1) (3) ) (58) 12

13 e0.h F,n =2 = e0.hn,o =2 + e0.a cp,=2 (e0.t F e0.t o =2) + e0.b cp,=2 2 ((e0.t F ) (2) (e0.t o =2) (2) ) + e0.c cp,=2 3 + e0.d cp,=2 ((e0.t F ) () (e0.t o =2) () ) + e0.v L,n =2 (e0.pf e0.p F,LV =2 ) e0.hf,lv,n =2 ((e0.t F ) (3) (e0.t o =2) (3) ) (59) Eq: 86369: vaporpressureantonelqud.mosequ (usng Nota: 8639: not -. Descrpton: Vapor pressure by Antone equaton (lqud, pure component), source: Kolbe, Mehlng p.59. ( ) e0.p B,LV =1 = (10) (3) (10) e0.p B,LV =2 = (10) (3) (10) ( e0.b e0.a Antone,=1 Antone,=1 e0.c Antone,=1 +(e0.t ) e0.b e0.a Antone,=2 Antone,=2 e0.c Antone,=2 +(e0.t ) Eq: 86370: vaporpressureantonefeed.mosequ (usng Nota: 8639: not. Descrpton: Vapor pressure by Antone equaton (feed, pure component), source: Kolbe, Mehlng p.59. ( ) e0.p F,LV =1 = (10)(3) (10) e0.p F,LV =2 = (10)(3) (10) ( e0.b e0.a Antone,=1 Antone,=1 e0.c Antone,=1 +(e0.t F ) e0.b e0.a Antone,=2 Antone,=2 e0.c Antone,=2 +(e0.t F ) ) ) (60) (61) (62) (63) Eq: 86371: molardenstylqud.mosequ (usng Nota: 8639: not. Descrpton: Molar densty wth no excess volume (lqud). 1 = e0.ρ B,n (e0.x B =1 e0.v L,n =1 + e0.xb =2 e0.v L,n =2 ) (6) Eq: 86372: volumeflowlqud.mosequ (usng Nota: 8639: not. Descrpton: Volume flow (lqud). e0.f B,n = e0.f B,v e0.ρ B,n (65) Eq: 86373: actvtycoeffwlsonlqud.mosequ (usng Nota: 8639: not. Descrpton: Actvty coeffcent calculatons by Wlson s g E -model (lqud). e0.γ B 1 =1 = e0.x B =1 + e0.αb =1 (1 e0.xb =1 ( ) exp (1 e0.x B e0.α=1 B =1) ( e0.x B =1 + e0.αb =1 (1 e0.xb =1 ) (e0.α=1 B + e0.αb =2 ) ) e0.αb =1 ((e0.α=1 B + e0.αb =2 ) e0.αb =1 ) e0.xb =1 + (1 e0.xb =1 )) (66) 13

14 e0.γ B 1 =2 = e0.x B =2 + e0.αb =2 (1 e0.xb =2 ( ) exp (1 e0.x B e0.α=2 B =2) ( e0.x B =2 + e0.αb =2 (1 e0.xb =2 ) (e0.α=1 B + e0.αb =2 ) ) e0.αb =2 ((e0.α=1 B + e0.αb =2 ) e0.αb =2 ) e0.xb =2 + (1 e0.xb =2 )) (67) Eq: 8637: actvtycoeffwlsonparameterlqud.mosequ (usng Nota: 8639: not. Descrpton: Parameter calculaton (lqud) based on Wlson s g E -model (lqud), source: Gmehlng, Kolbe S.239. e0.α B =1 = (e0.vl,n =1 + e0.vl,n =2 ) ( ) e0.vl,n =1 e0.λ=1 e0.v L,n exp e0.t =1 e0.α B =2 = (e0.vl,n =1 + e0.vl,n =2 ) ( ) e0.vl,n =2 e0.λ=2 e0.v L,n exp e0.t =2 (68) (69) Eq: 86380: crosssectonarea.mosequ (usng Nota: 8639: not. Descrpton: Flash s cross secton area. e0.a = e0.π (e0.d) (2) (70) Eq: 86381: volumetank.mosequ (usng Nota: 8639: not. Descrpton: Flash s volume. e0.hu v = e0.a e0.l (71) Eq: 86382: ratodameterlengthtank.mosequ (usng Nota: 8639: not. Descrpton: dameter to heght rato of tank. e0.r D,L = e0.d e0.l (72) Varable Specs 86386: IV statflash.mosvar Desgn varables e0.a Antone,=1 = e0.a Antone,=2 = e0.a P P DS12,=1 = e0.a P P DS12,=2 = e0.a cp,=1 = e0.a cp,=2 = e0.b Antone,=1 = e0.b Antone,=2 =

15 e0.b P P DS12,=1 = e0.b P P DS12,=2 = e0.b cp,=1 = e0.b cp,=2 = e0.c Antone,=1 = e0.c Antone,=2 = e0.c P P DS12,=1 = e0.c P P DS12,=2 = e0.c cp,=1 = 8.386E 5 e0.c cp,=2 = 1.058E 5 e0.d P P DS12,=1 = e0.d P P DS12,=2 = e0.d cp,=1 = E 9 e0.d cp,=2 = 3.59E 9 e0.e P P DS12,=1 = e0.e P P DS12,=2 = e0.f F,n = 1.75 e0.l = 0.5 e0.l L = 0.25 e0.r = 8.31 e0.t = e0.t F = e0.t=1 c = e0.t=1 o = e0.t=2 c = 67.3 e0.t=2 o = e0. p = e0.λ =1 = e0.λ =2 = e0.π = e0.d = 0.16 e0.h B,E,n = 0.0 e0.h D,E,n = 0.0 e0.h E,F,n = 0.0 e0.h n,o =1 = e0.h n,o =2 = e0.p = e0.v E,L,n = 0.0 e0.v L,n =1 = 5.869E 5 e0.v L,n =2 = 1.807E 5 e0.x F =1 = 0.15 e0.z = 1.0 Iteraton varables e0.a =

16 e0.f B,n = 1.0 e0.f B,v = 1.0 e0.f D,n = 1.0 e0.hu L,n = 1.0 e0.hu L,v = 1.0 e0.hu V,n = 1.0 e0.hu V,v = 1.0 e0.hu v = 1.0 e0.hu=1 n = 1.0 e0.hu=2 n = 1.0 e0.q = 1.0 e0.u = 1.0 e0.α=1 B = 1.0 e0.α=2 B = 1.0 e0.γ=1 B = 1.0 e0.γ=2 B = 1.0 e0.ρ B,n = 1.0 e0.h B,n = 1.0 e0.h D,n = 1.0 e0.h F,n = 1.0 e0.h B,LV,n =1 = 1.0 e0.h B,n =1 = 1.0 e0.h D,n =1 = 1.0 e0.h F,LV,n =1 = 1.0 e0.h F,n =1 = 1.0 e0.h B,LV,n =2 = 1.0 e0.h B,n =2 = 1.0 e0.h D,n =2 = 1.0 e0.h F,LV,n =2 = 1.0 e0.h F,n =2 = 1.0 e0.p F = 1.0 e0.p B,LV =1 = 1.0 e0.p F,LV =1 = 1.0 e0.p B,LV =2 = 1.0 e0.p F,LV =2 = 1.0 e0.r D,L = 1.0 e0.x B =1 = 1.0 e0.x B =2 = 1.0 e0.x F =2 = 1.0 e0.y=1 D = 1.0 e0.y=2 D =

17 Results 86388: RE statflash CBzzMath Org.mosvar Desgn varables e0.a Antone,=1 = e0.a Antone,=2 = e0.a P P DS12,=1 = e0.a P P DS12,=2 = e0.a cp,=1 = e0.a cp,=2 = e0.b Antone,=1 = e0.b Antone,=2 = e0.b P P DS12,=1 = e0.b P P DS12,=2 = e0.b cp,=1 = e0.b cp,=2 = e0.c Antone,=1 = e0.c Antone,=2 = e0.c P P DS12,=1 = e0.c P P DS12,=2 = e0.c cp,=1 = 8.386E 5 e0.c cp,=2 = 1.058E 5 e0.d P P DS12,=1 = e0.d P P DS12,=2 = e0.d cp,=1 = E 9 e0.d cp,=2 = 3.59E 9 e0.e P P DS12,=1 = e0.e P P DS12,=2 = e0.f F,n = 1.75 e0.l = 0.5 e0.l L = 0.25 e0.r = 8.31 e0.t = e0.t F = e0.t=1 c = e0.t=1 o = e0.t=2 c = 67.3 e0.t=2 o = e0. p = e0.λ =1 = e0.λ =2 = e0.π = e0.d = 0.16 e0.h B,E,n = 0.0 e0.h D,E,n = 0.0 e0.h E,F,n =

18 e0.h n,o =1 = e0.h n,o =2 = e0.p = e0.v E,L,n = 0.0 e0.v L,n =1 = 5.869E 5 e0.v L,n =2 = 1.807E 5 e0.x F =1 = 0.15 e0.z = 1.0 Iteraton varables e0.a = e0.f B,n = e0.f B,v = E 5 e0.f D,n = e0.hu L,n = e0.hu L,v = e0.hu V,n = E e0.hu V,v = e0.hu v = e0.hu=1 n = e0.hu=2 n = e0.q = e0.u = e0.α=1 B = e0.α=2 B = e0.γ=1 B = e0.γ=2 B = e0.ρ B,n = e0.h B,n = e0.h D,n = e0.h F,n = e0.h B,LV,n =1 = e0.h B,n =1 = e0.h D,n =1 = e0.h F,LV,n =1 = e0.h F,n =1 = e0.h B,LV,n =2 = e0.h B,n =2 = e0.h D,n =2 = e0.h F,LV,n =2 = e0.h F,n =2 = e0.p F = e0.p B,LV =1 =

19 e0.p F,LV e0.p B,LV e0.p F,LV =1 = =2 = =2 = e0.r D,L = 0.32 e0.x B =1 = e0.x B =2 = e0.x F =2 = 0.85 e0.y=1 D = e0.y=2 D = Notaton 8639: not flash.mosnot Base lne symbols A Area [m]; Parameter B Parameter C Parameter D Parameter E Parameter F Flow[mol/s] HU Holdup I Integral (by tme) K Equlbrum constant [1]; Control constant L Heght [m] M Molar mass [g/mol] Q Heat flow [W] R Ideal gas constant [J/mol/K] T Temperature [K]; Tme constant [s] U Internal Energy [J] F Flow dfference L Level dfference [m] Q Heat flow dfference [J/s] T Temperature dfference [K] p Pressure dfference [Pa] α Wlson Parameter [1] γ Actvty coeffcent [1] λ Interacton parameter (Wlson Modell) π Natural constant π [1] ρ Densty [mol/m] d Dameter [m] h Specfc enthalpy[j/mol]; p Pressure [Pa] r rato [1] t Tme [s] 19

20 v Specfc molar volume [mol/m] x Mol fracton (lqud) [1] y Mol fracton (vapor) [1] z Compressblty factor [1] Superscrpts B D E F L LV V c max n o v Bottom Dstllate Excess Feed Lqud; Heght Lqud/Vapor Vapor Crtcal Maxmum Molar Reference volumetrc Subscrpts Antone P P DS12 cp Antone equaton PPDS12 equaton ( molar heat capacty Indces 1..N C Komponentenndex 20

General Thermodynamics for Process Simulation. Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University

General Thermodynamics for Process Simulation. Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University General Thermodynamcs for Process Smulaton Dr. Jungho Cho, Professor Department of Chemcal Engneerng Dong Yang Unversty Four Crtera for Equlbra μ = μ v Stuaton α T = T β α β P = P l μ = μ l1 l 2 Thermal

More information

Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model

Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model Lecture 4. Thermodynamcs [Ch. 2] Energy, Entropy, and Avalablty Balances Phase Equlbra - Fugactes and actvty coeffcents -K-values Nondeal Thermodynamc Property Models - P-v-T equaton-of-state models -

More information

PETE 310 Lectures # 24 & 25 Chapter 12 Gas Liquid Equilibrium

PETE 310 Lectures # 24 & 25 Chapter 12 Gas Liquid Equilibrium ETE 30 Lectures # 24 & 25 Chapter 2 Gas Lqud Equlbrum Thermal Equlbrum Object A hgh T, Object B low T Intal contact tme Intermedate tme. Later tme Mechancal Equlbrum ressure essels Vale Closed Vale Open

More information

Equation of State Modeling of Phase Equilibrium in the Low-Density Polyethylene Process

Equation of State Modeling of Phase Equilibrium in the Low-Density Polyethylene Process Equaton of State Modelng of Phase Equlbrum n the Low-Densty Polyethylene Process H. Orbey, C. P. Boks, and C. C. Chen Ind. Eng. Chem. Res. 1998, 37, 4481-4491 Yong Soo Km Thermodynamcs & Propertes Lab.

More information

10.34 Numerical Methods Applied to Chemical Engineering Fall Homework #3: Systems of Nonlinear Equations and Optimization

10.34 Numerical Methods Applied to Chemical Engineering Fall Homework #3: Systems of Nonlinear Equations and Optimization 10.34 Numercal Methods Appled to Chemcal Engneerng Fall 2015 Homework #3: Systems of Nonlnear Equatons and Optmzaton Problem 1 (30 ponts). A (homogeneous) azeotrope s a composton of a multcomponent mxture

More information

I wish to publish my paper on The International Journal of Thermophysics. A Practical Method to Calculate Partial Properties from Equation of State

I wish to publish my paper on The International Journal of Thermophysics. A Practical Method to Calculate Partial Properties from Equation of State I wsh to publsh my paper on The Internatonal Journal of Thermophyscs. Ttle: A Practcal Method to Calculate Partal Propertes from Equaton of State Authors: Ryo Akasaka (correspondng author) 1 and Takehro

More information

A Self-Consistent Gibbs Excess Mixing Rule for Cubic Equations of State: derivation and fugacity coefficients

A Self-Consistent Gibbs Excess Mixing Rule for Cubic Equations of State: derivation and fugacity coefficients A Self-Consstent Gbbs Excess Mxng Rule for Cubc Equatons of State: dervaton and fugacty coeffcents Paula B. Staudt, Rafael de P. Soares Departamento de Engenhara Químca, Escola de Engenhara, Unversdade

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

y i x P vap 10 A T SOLUTION TO HOMEWORK #7 #Problem

y i x P vap 10 A T SOLUTION TO HOMEWORK #7 #Problem SOLUTION TO HOMEWORK #7 #roblem 1 10.1-1 a. In order to solve ths problem, we need to know what happens at the bubble pont; at ths pont, the frst bubble s formed, so we can assume that all of the number

More information

Supplementary Notes for Chapter 9 Mixture Thermodynamics

Supplementary Notes for Chapter 9 Mixture Thermodynamics Supplementary Notes for Chapter 9 Mxture Thermodynamcs Key ponts Nne major topcs of Chapter 9 are revewed below: 1. Notaton and operatonal equatons for mxtures 2. PVTN EOSs for mxtures 3. General effects

More information

The ChemSep Book. Harry A. Kooijman Consultant. Ross Taylor Clarkson University, Potsdam, New York University of Twente, Enschede, The Netherlands

The ChemSep Book. Harry A. Kooijman Consultant. Ross Taylor Clarkson University, Potsdam, New York University of Twente, Enschede, The Netherlands The ChemSep Book Harry A. Koojman Consultant Ross Taylor Clarkson Unversty, Potsdam, New York Unversty of Twente, Enschede, The Netherlands Lbr Books on Demand www.bod.de Copyrght c 2000 by H.A. Koojman

More information

Implicit Integration Henyey Method

Implicit Integration Henyey Method Implct Integraton Henyey Method In realstc stellar evoluton codes nstead of a drect ntegraton usng for example the Runge-Kutta method one employs an teratve mplct technque. Ths s because the structure

More information

Adiabatic Sorption of Ammonia-Water System and Depicting in p-t-x Diagram

Adiabatic Sorption of Ammonia-Water System and Depicting in p-t-x Diagram Adabatc Sorpton of Ammona-Water System and Depctng n p-t-x Dagram J. POSPISIL, Z. SKALA Faculty of Mechancal Engneerng Brno Unversty of Technology Techncka 2, Brno 61669 CZECH REPUBLIC Abstract: - Absorpton

More information

Process Modeling. Improving or understanding chemical process operation is a major objective for developing a dynamic process model

Process Modeling. Improving or understanding chemical process operation is a major objective for developing a dynamic process model Process Modelng Improvng or understandng chemcal process operaton s a major objectve for developng a dynamc process model Balance equatons Steady-state balance equatons mass or energy mass or energy enterng

More information

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2.

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2. Chemstry 360 Dr. Jean M. Standard Problem Set 9 Solutons. The followng chemcal reacton converts sulfur doxde to sulfur troxde. SO ( g) + O ( g) SO 3 ( l). (a.) Wrte the expresson for K eq for ths reacton.

More information

between standard Gibbs free energies of formation for products and reactants, ΔG! R = ν i ΔG f,i, we

between standard Gibbs free energies of formation for products and reactants, ΔG! R = ν i ΔG f,i, we hermodynamcs, Statstcal hermodynamcs, and Knetcs 4 th Edton,. Engel & P. ed Ch. 6 Part Answers to Selected Problems Q6.. Q6.4. If ξ =0. mole at equlbrum, the reacton s not ery far along. hus, there would

More information

LNG CARGO TRANSFER CALCULATION METHODS AND ROUNDING-OFFS

LNG CARGO TRANSFER CALCULATION METHODS AND ROUNDING-OFFS CARGO TRANSFER CALCULATION METHODS AND ROUNDING-OFFS CONTENTS 1. Method for determnng transferred energy durng cargo transfer. Calculatng the transferred energy.1 Calculatng the gross transferred energy.1.1

More information

CinChE Problem-Solving Strategy Chapter 4 Development of a Mathematical Model. formulation. procedure

CinChE Problem-Solving Strategy Chapter 4 Development of a Mathematical Model. formulation. procedure nhe roblem-solvng Strategy hapter 4 Transformaton rocess onceptual Model formulaton procedure Mathematcal Model The mathematcal model s an abstracton that represents the engneerng phenomena occurrng n

More information

Non-Commercial Use Only

Non-Commercial Use Only Plottng P-x-y dagram for bnary system Acetone/water at temperatures 25,100,and 200 C usng UNIFAC method and comparng t wth expermental results. Unfac Method: The UNIFAC method s based on the UNIQUAC equaton,

More information

Irreversibility of Processes in Closed System

Irreversibility of Processes in Closed System Unversty of Segen Insttute of Flud- & hermodynamcs 5 2/1 Irreversblty of Processes n Closed System m G 2 m c 2 2, p, V m g h h 1 mc 1 1 p, p, V G J.P. Joule Strrng experment v J.B. Fourer Heat transfer

More information

Lecture. Polymer Thermodynamics 0331 L Chemical Potential

Lecture. Polymer Thermodynamics 0331 L Chemical Potential Prof. Dr. rer. nat. habl. S. Enders Faculty III for Process Scence Insttute of Chemcal Engneerng Department of Thermodynamcs Lecture Polymer Thermodynamcs 033 L 337 3. Chemcal Potental Polymer Thermodynamcs

More information

Estimation of the composition of the liquid and vapor streams exiting a flash unit with a supercritical component

Estimation of the composition of the liquid and vapor streams exiting a flash unit with a supercritical component Department of Energ oltecnco d Mlano Va Lambruschn - 05 MILANO Eercses of Fundamentals of Chemcal rocesses rof. Ganpero Gropp Eercse 8 Estmaton of the composton of the lqud and vapor streams etng a unt

More information

3. Be able to derive the chemical equilibrium constants from statistical mechanics.

3. Be able to derive the chemical equilibrium constants from statistical mechanics. Lecture #17 1 Lecture 17 Objectves: 1. Notaton of chemcal reactons 2. General equlbrum 3. Be able to derve the chemcal equlbrum constants from statstcal mechancs. 4. Identfy how nondeal behavor can be

More information

UNIFAC. Documentation. DDBSP Dortmund Data Bank Software Package

UNIFAC. Documentation. DDBSP Dortmund Data Bank Software Package UNIFAC Documentaton DDBSP Dortmund Data Ban Software Pacage DDBST Dortmund Data Ban Software & Separaton Technology GmbH Mare-Cure-Straße 10 D-26129 Oldenburg Tel.: +49 441 361819 0 Fax: +49 441 361819

More information

Not at Steady State! Yes! Only if reactions occur! Yes! Ideal Gas, change in temperature or pressure. Yes! Class 15. Is the following possible?

Not at Steady State! Yes! Only if reactions occur! Yes! Ideal Gas, change in temperature or pressure. Yes! Class 15. Is the following possible? Chapter 5-6 (where we are gong) Ideal gae and lqud (today) Dente Partal preure Non-deal gae (next tme) Eqn. of tate Reduced preure and temperature Compreblty chart (z) Vapor-lqud ytem (Ch. 6) Vapor preure

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014 Lecture 16 8/4/14 Unversty o Washngton Department o Chemstry Chemstry 452/456 Summer Quarter 214. Real Vapors and Fugacty Henry s Law accounts or the propertes o extremely dlute soluton. s shown n Fgure

More information

If two volatile and miscible liquids are combined to form a solution, Raoult s law is not obeyed. Use the experimental data in Table 9.

If two volatile and miscible liquids are combined to form a solution, Raoult s law is not obeyed. Use the experimental data in Table 9. 9.9 Real Solutons Exhbt Devatons from Raoult s Law If two volatle and mscble lquds are combned to form a soluton, Raoult s law s not obeyed. Use the expermental data n Table 9.3: Physcal Chemstry 00 Pearson

More information

No! Yes! Only if reactions occur! Yes! Ideal Gas, change in temperature or pressure. Survey Results. Class 15. Is the following possible?

No! Yes! Only if reactions occur! Yes! Ideal Gas, change in temperature or pressure. Survey Results. Class 15. Is the following possible? Survey Reult Chapter 5-6 (where we are gong) % of Student 45% 40% 35% 30% 25% 20% 15% 10% 5% 0% Hour Spent on ChE 273 1-2 3-4 5-6 7-8 9-10 11+ Hour/Week 2008 2009 2010 2011 2012 2013 2014 2015 2017 F17

More information

Number of cases Number of factors Number of covariates Number of levels of factor i. Value of the dependent variable for case k

Number of cases Number of factors Number of covariates Number of levels of factor i. Value of the dependent variable for case k ANOVA Model and Matrx Computatons Notaton The followng notaton s used throughout ths chapter unless otherwse stated: N F CN Y Z j w W Number of cases Number of factors Number of covarates Number of levels

More information

Solution Thermodynamics

Solution Thermodynamics Soluton hermodynamcs usng Wagner Notaton by Stanley. Howard Department of aterals and etallurgcal Engneerng South Dakota School of nes and echnology Rapd Cty, SD 57701 January 7, 001 Soluton hermodynamcs

More information

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential Open Systems: Chemcal Potental and Partal Molar Quanttes Chemcal Potental For closed systems, we have derved the followng relatonshps: du = TdS pdv dh = TdS + Vdp da = SdT pdv dg = VdP SdT For open systems,

More information

Appendix II Summary of Important Equations

Appendix II Summary of Important Equations W. M. Whte Geochemstry Equatons of State: Ideal GasLaw: Coeffcent of Thermal Expanson: Compressblty: Van der Waals Equaton: The Laws of Thermdynamcs: Frst Law: Appendx II Summary of Important Equatons

More information

CHEMICAL REACTIONS AND DIFFUSION

CHEMICAL REACTIONS AND DIFFUSION CHEMICAL REACTIONS AND DIFFUSION A.K.A. NETWORK THERMODYNAMICS BACKGROUND Classcal thermodynamcs descrbes equlbrum states. Non-equlbrum thermodynamcs descrbes steady states. Network thermodynamcs descrbes

More information

(1) The saturation vapor pressure as a function of temperature, often given by the Antoine equation:

(1) The saturation vapor pressure as a function of temperature, often given by the Antoine equation: CE304, Sprng 2004 Lecture 22 Lecture 22: Topcs n Phase Equlbra, part : For the remander of the course, we wll return to the subject of vapor/lqud equlbrum and ntroduce other phase equlbrum calculatons

More information

INTRODUCTION TO CHEMICAL PROCESS SIMULATORS

INTRODUCTION TO CHEMICAL PROCESS SIMULATORS INTRODUCTION TO CHEMICAL PROCESS SIMULATORS DWSIM Chemcal Process Smulator A. Carrero, N. Qurante, J. Javaloyes October 2016 Introducton to Chemcal Process Smulators Contents Monday, October 3 rd 2016

More information

Lecture 8. Chapter 7. - Thermodynamic Web - Departure Functions - Review Equations of state (chapter 4, briefly)

Lecture 8. Chapter 7. - Thermodynamic Web - Departure Functions - Review Equations of state (chapter 4, briefly) Lecture 8 Chapter 5 - Thermodynamc Web - Departure Functons - Revew Equatons of state (chapter 4, brefly) Chapter 6 - Equlbrum (chemcal potental) * Pure Component * Mxtures Chapter 7 - Fugacty (chemcal

More information

Design Equations. ν ij r i V R. ν ij r i. Q n components. = Q f c jf Qc j + Continuous Stirred Tank Reactor (steady-state and constant phase)

Design Equations. ν ij r i V R. ν ij r i. Q n components. = Q f c jf Qc j + Continuous Stirred Tank Reactor (steady-state and constant phase) Desgn Equatons Batch Reactor d(v R c j ) dt = ν j r V R n dt dt = UA(T a T) r H R V R ncomponents V R c j C pj j Plug Flow Reactor d(qc j ) dv = ν j r 2 dt dv = R U(T a T) n r H R Q n components j c j

More information

Vapor-Liquid Equilibria for Water+Hydrochloric Acid+Magnesium Chloride and Water+Hydrochloric Acid+Calcium Chloride Systems at Atmospheric Pressure

Vapor-Liquid Equilibria for Water+Hydrochloric Acid+Magnesium Chloride and Water+Hydrochloric Acid+Calcium Chloride Systems at Atmospheric Pressure Chnese J. Chem. Eng., 4() 76 80 (006) RESEARCH OES Vapor-Lqud Equlbra for Water+Hydrochlorc Acd+Magnesum Chlorde and Water+Hydrochlorc Acd+Calcum Chlorde Systems at Atmospherc Pressure ZHAG Yng( 张颖 ) and

More information

Experimental and Modeling Studies for a Reactive Batch Distillation Column

Experimental and Modeling Studies for a Reactive Batch Distillation Column Expermental and Modelng Studes for a Reactve Batch Dstllaton Column Almıla Bahar*. Canan Özgen** Department of Chemcal Engneerng, Mddle East Techncal Unversty, Ankara, 0653, Turkey e-mal: *abahar@metu.edu.tr,

More information

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st EN40: Dynamcs and bratons Homework 4: Work, Energy and Lnear Momentum Due Frday March 1 st School of Engneerng Brown Unversty 1. The fgure (from ths publcaton) shows the energy per unt area requred to

More information

A Modulated Hydrothermal (MHT) Approach for the Facile. Synthesis of UiO-66-Type MOFs

A Modulated Hydrothermal (MHT) Approach for the Facile. Synthesis of UiO-66-Type MOFs Supplementary Informaton A Modulated Hydrothermal (MHT) Approach for the Facle Synthess of UO-66-Type MOFs Zhgang Hu, Yongwu Peng, Zx Kang, Yuhong Qan, and Dan Zhao * Department of Chemcal and Bomolecular

More information

V T for n & P = constant

V T for n & P = constant Pchem 365: hermodynamcs -SUMMARY- Uwe Burghaus, Fargo, 5 9 Mnmum requrements for underneath of your pllow. However, wrte your own summary! You need to know the story behnd the equatons : Pressure : olume

More information

9.2 Seismic Loads Using ASCE Standard 7-93

9.2 Seismic Loads Using ASCE Standard 7-93 CHAPER 9: Wnd and Sesmc Loads on Buldngs 9.2 Sesmc Loads Usng ASCE Standard 7-93 Descrpton A major porton of the Unted States s beleved to be subject to sesmc actvty suffcent to cause sgnfcant structural

More information

The influence of non-ideal vapor-liquid-equilibrium on vaporization of multicomponent hydrocarbon fuels

The influence of non-ideal vapor-liquid-equilibrium on vaporization of multicomponent hydrocarbon fuels ICLASS 202, 2 th Trennal Internatonal Conference on Lqud Atomzaton and Spray Systems, Hedelberg, Germany, September 2-6, 202 The nfluence of non-deal vapor-lqud-equlbrum on vaporzaton of multcomponent

More information

Mass Transfer Processes

Mass Transfer Processes Mass Transfer Processes S. Majd Hassanzadeh Department of Earth Scences Faculty of Geoscences Utrecht Unversty Outlne: 1. Measures of Concentraton 2. Volatlzaton and Dssoluton 3. Adsorpton Processes 4.

More information

and Statistical Mechanics Material Properties

and Statistical Mechanics Material Properties Statstcal Mechancs and Materal Propertes By Kuno TAKAHASHI Tokyo Insttute of Technology, Tokyo 15-855, JAPA Phone/Fax +81-3-5734-3915 takahak@de.ttech.ac.jp http://www.de.ttech.ac.jp/~kt-lab/ Only for

More information

DETERMINATION OF CO 2 MINIMUM MISCIBILITY PRESSURE USING SOLUBILITY PARAMETER

DETERMINATION OF CO 2 MINIMUM MISCIBILITY PRESSURE USING SOLUBILITY PARAMETER DETERMINATION OF CO 2 MINIMUM MISCIBILITY PRESSURE USING SOLUBILITY PARAMETER Rocha, P. S. 1, Rbero, A. L. C. 2, Menezes, P. R. F. 2, Costa, P. U. O. 2, Rodrgues, E. A. 2, Costa, G. M. N. 2 *, glora.costa@unfacs.br,

More information

Summary Correlations from Feedstocks & Products

Summary Correlations from Feedstocks & Products Summary Correlatons from Feedstocks & Products. API gravty (G) & specfc gravty ( o ). Hgher densty lower API 4.5 4.5 G.5 o.5g o. atson characterzaton factor. endences: (paraffnc) to 0 (aromatc) K o n unts

More information

is the calculated value of the dependent variable at point i. The best parameters have values that minimize the squares of the errors

is the calculated value of the dependent variable at point i. The best parameters have values that minimize the squares of the errors Multple Lnear and Polynomal Regresson wth Statstcal Analyss Gven a set of data of measured (or observed) values of a dependent varable: y versus n ndependent varables x 1, x, x n, multple lnear regresson

More information

Non-Ideality Through Fugacity and Activity

Non-Ideality Through Fugacity and Activity Non-Idealty Through Fugacty and Actvty S. Patel Deartment of Chemstry and Bochemstry, Unversty of Delaware, Newark, Delaware 19716, USA Corresondng author. E-mal: saatel@udel.edu 1 I. FUGACITY In ths dscusson,

More information

Problem Points Score Total 100

Problem Points Score Total 100 Physcs 450 Solutons of Sample Exam I Problem Ponts Score 1 8 15 3 17 4 0 5 0 Total 100 All wor must be shown n order to receve full credt. Wor must be legble and comprehensble wth answers clearly ndcated.

More information

Exercises of Fundamentals of Chemical Processes

Exercises of Fundamentals of Chemical Processes Department of Energ Poltecnco d Mlano a Lambruschn 4 2056 MILANO Exercses of undamentals of Chemcal Processes Prof. Ganpero Gropp Exercse 7 ) Estmaton of the composton of the streams at the ext of an sothermal

More information

Thermodynamics II. Department of Chemical Engineering. Prof. Kim, Jong Hak

Thermodynamics II. Department of Chemical Engineering. Prof. Kim, Jong Hak Thermodynamcs II Department of Chemcal Engneerng Prof. Km, Jong Hak Soluton Thermodynamcs : theory Obectve : lay the theoretcal foundaton for applcatons of thermodynamcs to gas mxture and lqud soluton

More information

Prediction of the flash point of ternary ideal mixtures

Prediction of the flash point of ternary ideal mixtures Electronc Journal of New Materals, Energy and Envronment Volume No. (25), -5 url: http://ejnmee.eu/ eissn: 2367-6868 redcton of the flash pont of ternary deal mxtures M. Hrstova Unversty of Chemcal Technology

More information

Chemical Engineering Department University of Washington

Chemical Engineering Department University of Washington Chemcal Engneerng Department Unversty of Washngton ChemE 60 - Exam I July 4, 003 - Mass Flow Rate of Steam Through a Turbne (5 onts) Steam enters a turbne at 70 o C and.8 Ma and leaves at 00 ka wth a qualty

More information

Review of Classical Thermodynamics

Review of Classical Thermodynamics Revew of Classcal hermodynamcs Physcs 4362, Lecture #1, 2 Syllabus What s hermodynamcs? 1 [A law] s more mpressve the greater the smplcty of ts premses, the more dfferent are the knds of thngs t relates,

More information

Thermodynamics General

Thermodynamics General Thermodynamcs General Lecture 1 Lecture 1 s devoted to establshng buldng blocks for dscussng thermodynamcs. In addton, the equaton of state wll be establshed. I. Buldng blocks for thermodynamcs A. Dmensons,

More information

Prediction of steady state input multiplicities for the reactive flash separation using reactioninvariant composition variables

Prediction of steady state input multiplicities for the reactive flash separation using reactioninvariant composition variables Insttuto Tecnologco de Aguascalentes From the SelectedWorks of Adran Bonlla-Petrcolet 2 Predcton of steady state nput multplctes for the reactve flash separaton usng reactonnvarant composton varables Jose

More information

ORIGIN 1. PTC_CE_BSD_3.2_us_mp.mcdx. Mathcad Enabled Content 2011 Knovel Corp.

ORIGIN 1. PTC_CE_BSD_3.2_us_mp.mcdx. Mathcad Enabled Content 2011 Knovel Corp. Clck to Vew Mathcad Document 2011 Knovel Corp. Buldng Structural Desgn. homas P. Magner, P.E. 2011 Parametrc echnology Corp. Chapter 3: Renforced Concrete Slabs and Beams 3.2 Renforced Concrete Beams -

More information

Computation of Phase Equilibrium and Phase Envelopes

Computation of Phase Equilibrium and Phase Envelopes Downloaded from orbt.dtu.dk on: Sep 24, 2018 Computaton of Phase Equlbrum and Phase Envelopes Rtschel, Tobas Kasper Skovborg; Jørgensen, John Bagterp Publcaton date: 2017 Document Verson Publsher's PDF,

More information

Lab 4: Two-level Random Intercept Model

Lab 4: Two-level Random Intercept Model BIO 656 Lab4 009 Lab 4: Two-level Random Intercept Model Data: Peak expratory flow rate (pefr) measured twce, usng two dfferent nstruments, for 17 subjects. (from Chapter 1 of Multlevel and Longtudnal

More information

Assignment 4. Adsorption Isotherms

Assignment 4. Adsorption Isotherms Insttute of Process Engneerng Assgnment 4. Adsorpton Isotherms Part A: Compettve adsorpton of methane and ethane In large scale adsorpton processes, more than one compound from a mxture of gases get adsorbed,

More information

Thermodynamics. Section 4

Thermodynamics. Section 4 Secton 4 Thermodynamcs Hendrck C. Van Ness, D.Eng., Howard. Isermann Department of Chemcal Engneerng, Rensselaer olytechnc Insttute; Fellow, Amercan Insttute of Chemcal Engneers; Member, Amercan Chemcal

More information

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices Amplfcaton and Relaxaton of Electron Spn Polarzaton n Semconductor Devces Yury V. Pershn and Vladmr Prvman Center for Quantum Devce Technology, Clarkson Unversty, Potsdam, New York 13699-570, USA Spn Relaxaton

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

Physics 4C. Chapter 19: Conceptual Questions: 6, 8, 10 Problems: 3, 13, 24, 31, 35, 48, 53, 63, 65, 78, 87

Physics 4C. Chapter 19: Conceptual Questions: 6, 8, 10 Problems: 3, 13, 24, 31, 35, 48, 53, 63, 65, 78, 87 Physcs 4C Solutons to Chater 9 HW Chater 9: Concetual Questons: 6, 8, 0 Problems:,, 4,,, 48,, 6, 6, 78, 87 Queston 9-6 (a) 0 (b) 0 (c) negate (d) oste Queston 9-8 (a) 0 (b) 0 (c) negate (d) oste Queston

More information

Interval Regression with Sample Selection

Interval Regression with Sample Selection Interval Regresson wth Sample Selecton Géraldne Hennngsen, Arne Hennngsen, Sebastan Petersen May 3, 07 Ths vgnette s largely based on Petersen et al. 07. Model Specfcaton The general specfcaton of an nterval

More information

Determination of Structure and Formation Conditions of Gas Hydrate by Using TPD Method and Flash Calculations

Determination of Structure and Formation Conditions of Gas Hydrate by Using TPD Method and Flash Calculations nd atonal Iranan Conference on Gas Hydrate (ICGH) Semnan Unersty Determnaton of Structure and Formaton Condtons of Gas Hydrate by Usng TPD Method and Flash Calculatons H. Behat Rad, F. Varamnan* Department

More information

Chapter 18, Part 1. Fundamentals of Atmospheric Modeling

Chapter 18, Part 1. Fundamentals of Atmospheric Modeling Overhead Sldes for Chapter 18, Part 1 of Fundamentals of Atmospherc Modelng by Mark Z. Jacobson Department of Cvl & Envronmental Engneerng Stanford Unversty Stanford, CA 94305-4020 January 30, 2002 Types

More information

Games and Market Imperfections

Games and Market Imperfections Games and Market Imperfectons Q: The mxed complementarty (MCP) framework s effectve for modelng perfect markets, but can t handle mperfect markets? A: At least part of the tme A partcular type of game/market

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

Title: Radiative transitions and spectral broadening

Title: Radiative transitions and spectral broadening Lecture 6 Ttle: Radatve transtons and spectral broadenng Objectves The spectral lnes emtted by atomc vapors at moderate temperature and pressure show the wavelength spread around the central frequency.

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

Solution Thermodynamics

Solution Thermodynamics CH2351 Chemcal Engneerng Thermodynamcs II Unt I, II www.msubbu.n Soluton Thermodynamcs www.msubbu.n Dr. M. Subramanan Assocate Professor Department of Chemcal Engneerng Sr Svasubramanya Nadar College of

More information

NAME and Section No. it is found that 0.6 mol of O

NAME and Section No. it is found that 0.6 mol of O NAME and Secton No. Chemstry 391 Fall 7 Exam III KEY 1. (3 Ponts) ***Do 5 out of 6***(If 6 are done only the frst 5 wll be graded)*** a). In the reacton 3O O3 t s found that.6 mol of O are consumed. Fnd

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

Influence Of Operating Conditions To The Effectiveness Of Extractive Distillation Columns

Influence Of Operating Conditions To The Effectiveness Of Extractive Distillation Columns Influence Of Operatng Condtons To The Effectveness Of Extractve Dstllaton Columns N.A. Vyazmna Moscov State Unversty Of Envrnmental Engneerng, Department Of Chemcal Engneerng Ul. Staraya Basmannaya 21/4,

More information

Parts Manual. EPIC II Critical Care Bed REF 2031

Parts Manual. EPIC II Critical Care Bed REF 2031 EPIC II Critical Care Bed REF 2031 Parts Manual For parts or technical assistance call: USA: 1-800-327-0770 2013/05 B.0 2031-109-006 REV B www.stryker.com Table of Contents English Product Labels... 4

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta 4-12, , Bucharest, Romania

Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta 4-12, , Bucharest, Romania ISOTHERMAL LIQUID-VAOR EQUILIBRIUM IN ACETONITRILE-WATER SYSTEM Rodca Vlcu, Zoca Cenuse abstact: The study of ths system started from the mportance that acetontrle has as the component of some mxtures

More information

Optimization of the thermodynamic model of a solar driven Aqua - ammonia absorption refrigeration system

Optimization of the thermodynamic model of a solar driven Aqua - ammonia absorption refrigeration system nd WSEAS/IASME Internatonal Conference on RENEWABLE ENERGY SOURCES (RES') Corfu, Greece, October -, Optmzaton of the thermodynamc model of a solar drven Aqua - ammona absorpton refrgeraton system J. ABDULATEEF,

More information

Three-Phase Distillation in Packed Towers: Short-Cut Modelling and Parameter Tuning

Three-Phase Distillation in Packed Towers: Short-Cut Modelling and Parameter Tuning European Symposum on Computer Arded Aded Process Engneerng 15 L. Pugjaner and A. Espuña (Edtors) 2005 Elsever Scence B.V. All rghts reserved. Three-Phase Dstllaton n Packed Towers: Short-Cut Modellng and

More information

Second Order Analysis

Second Order Analysis Second Order Analyss In the prevous classes we looked at a method that determnes the load correspondng to a state of bfurcaton equlbrum of a perfect frame by egenvalye analyss The system was assumed to

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Physical Chemistry I for Biochemists. Chem340. Lecture 16 (2/18/11)

Physical Chemistry I for Biochemists. Chem340. Lecture 16 (2/18/11) hyscal Chemstry I or Bochemsts Chem34 Lecture 16 (/18/11) Yoshtaka Ish Ch4.6, Ch5.1-5.5 & HW5 4.6 Derental Scannng Calormetry (Derental hermal Analyss) sample = C p, s d s + dh uson = ( s )Kdt, [1] where

More information

Particle Deposition in AERMOD: Overview

Particle Deposition in AERMOD: Overview Partcle Deposton n AERMOD: Overvew 2018 Regonal/State/Locals Modelng Workshop Boston, MA James Thurman U.S. EPA/OAQPS/AQAD/AQMG 6/19/2018 U.S. Envronmental Protecton Agency 1 Background Recent nterest

More information

THE IGNITION PARAMETER - A quantification of the probability of ignition

THE IGNITION PARAMETER - A quantification of the probability of ignition THE IGNITION PARAMETER - A quantfcaton of the probablty of ton INFUB9-2011 Topc: Modellng of fundamental processes Man author Nels Bjarne K. Rasmussen Dansh Gas Technology Centre (DGC) NBR@dgc.dk Co-author

More information

The International Association for the Properties of Water and Steam

The International Association for the Properties of Water and Steam IAPWS G11-15 The Internatonal Assocaton for the Propertes of Water and Steam Stockholm, Sweden July 015 Gudelne on a Vral Equaton for the Fugacty of HO n Humd Ar 015 Internatonal Assocaton for the Propertes

More information

Numerical Investigation of Electroosmotic Flow. in Convergent/Divergent Micronozzle

Numerical Investigation of Electroosmotic Flow. in Convergent/Divergent Micronozzle Appled Mathematcal Scences, Vol. 5, 2011, no. 27, 1317-1323 Numercal Investgaton of Electroosmotc Flow n Convergent/Dvergent Mcronozzle V. Gnanaraj, V. Mohan, B. Vellakannan Thagarajar College of Engneerng

More information

Module 3: The Whole-Process Perspective for Thermochemical Hydrogen

Module 3: The Whole-Process Perspective for Thermochemical Hydrogen "Thermodynamc Analyss of Processes for Hydrogen Generaton by Decomposton of Water" by John P. O'Connell Department of Chemcal Engneerng Unversty of Vrgna Charlottesvlle, VA 2294-4741 A Set of Energy Educaton

More information

McCabe-Thiele Diagrams for Binary Distillation

McCabe-Thiele Diagrams for Binary Distillation McCabe-Thele Dagrams for Bnary Dstllaton Tore Haug-Warberg Dept. of Chemcal Engneerng August 31st, 2005 F V 1 V 2 L 1 V n L n 1 V n+1 L n V N L N 1 L N L 0 VN+1 Q < 0 D Q > 0 B FIGURE 1: Smplfed pcture

More information

Problem Set #6 solution, Chem 340, Fall 2013 Due Friday, Oct 11, 2013 Please show all work for credit

Problem Set #6 solution, Chem 340, Fall 2013 Due Friday, Oct 11, 2013 Please show all work for credit Problem Set #6 soluton, Chem 340, Fall 2013 Due Frday, Oct 11, 2013 Please show all work for credt To hand n: Atkns Chap 3 Exercses: 3.3(b), 3.8(b), 3.13(b), 3.15(b) Problems: 3.1, 3.12, 3.36, 3.43 Engel

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 19 hemcal Reacton Engneerng (RE) s the feld that studes the rates and mechansms of chemcal reactons and the desgn of the reactors n whch they take place. Web Lecture 19 lass Lecture 17 uesday 3/19/2013

More information

Structure and Property Prediction of Sub- and Super-Critical Water

Structure and Property Prediction of Sub- and Super-Critical Water Structure and Property Predcton of Sub- and Super-Crtcal Water Hassan Touba and G.Al Mansoor Department of Chemcal Engneerng, Unversty of Illnos at Chcago, (M/C 63), Chcago, Illnos 667-75, U.S.A. Paper

More information

Lecture 12. Transport in Membranes (2)

Lecture 12. Transport in Membranes (2) Lecture 12. Transport n embranes (2) odule Flow Patterns - Perfect mxng - Countercurrent flow - Cocurrent flow - Crossflow embrane Cascades External ass-transfer Resstances Concentraton Polarzaton and

More information

Quantitative Genetic Models Least Squares Genetic Model. Hardy-Weinberg (1908) Principle. change of allele & genotype frequency over generations

Quantitative Genetic Models Least Squares Genetic Model. Hardy-Weinberg (1908) Principle. change of allele & genotype frequency over generations Quanttatve Genetc Models Least Squares Genetc Model Hardy-Wenberg (1908) Prncple partton of effects P = G + E + G E P s phenotypc effect G s genetc effect E s envronmental effect G E s nteracton effect

More information

Modelli Clamfim Equazione del Calore Lezione ottobre 2014

Modelli Clamfim Equazione del Calore Lezione ottobre 2014 CLAMFIM Bologna Modell 1 @ Clamfm Equazone del Calore Lezone 17 15 ottobre 2014 professor Danele Rtell danele.rtell@unbo.t 1/24? Convoluton The convoluton of two functons g(t) and f(t) s the functon (g

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

PROBABILITY PRIMER. Exercise Solutions

PROBABILITY PRIMER. Exercise Solutions PROBABILITY PRIMER Exercse Solutons 1 Probablty Prmer, Exercse Solutons, Prncples of Econometrcs, e EXERCISE P.1 (b) X s a random varable because attendance s not known pror to the outdoor concert. Before

More information