Irreversibility of Processes in Closed System

Size: px
Start display at page:

Download "Irreversibility of Processes in Closed System"

Transcription

1 Unversty of Segen Insttute of Flud- & hermodynamcs 5 2/1 Irreversblty of Processes n Closed System m G 2 m c 2 2, p, V m g h h 1 mc 1 1 p, p, V G J.P. Joule Strrng experment v J.B. Fourer Heat transfer m g h h = mc > < 1 2 Gay-Lussac Gas expanson = > < U(,V,m) = U(,V + V,m) V > < I.G. : =

2 Unversty of Segen Insttute of Flud- & hermodynamcs Gas Expanson Process Irreversblty VELO > 5 2/2 Σ REV EQ Σ F > VELO Σ REV EQ = Σ F = Reversblty

3 Unversty of Segen Insttute of Flud- & hermodynamcs 2 nd Law (1): Clausus Entropy (t) I e (t) B 1234 U e (t) PC dq rev S S ( )...d Clausus Equalty dq rev ( = ) 5 = + = 2/3 Q dq Entropymeter = 2 I R dt Carnot-Relaton Q Q W =, η = = 1 Q Q c W= Q Q Q

4 Unversty of Segen Insttute of Flud- & hermodynamcs Gbbs Equaton (Smple System) 5 2/4 st 1 Law : nd 2 Law: du = dq pdv rev ds = dq rev p,,v Σ dw = pdv Gbbs: 1 p ds = du + dv dq rev = m = const C S S d' dv' 2 2 V S S V p,v' = = + + V V ' (V ) V () Calorc EOS hermal EOS

5 Unversty of Segen Insttute of Flud- & hermodynamcs 5 2/5 Entropy of Ideal Substances Ideal Gas Ideal Lqud EOS: pv= CEOS: m M R H= H + mc p R p S = S + m cp ln ln M p R V S = S + m cv ln ln + M V EOS: ρ= const = 1 v CEOS: c= const H= H + mc + mv p p S= S + mcln

6 Unversty of Segen Insttute of Flud- & hermodynamcs 5 2/6 U U S(U,n...n ) S c ln 1 n 1 = + + = 1 cn 1 = = 1 1 = = 1 1 = = 1 = 1 = 1 = 1 S(U,n...n ) S (s Rln x )n G(,n...n ) G (c s Rln x )( ) c ln n G(,n...n ) G ( s Rln x ) n U pv U = U = U + c ( )n,v = v n H = H = H + c ( ) + pv n µ (,n...n ) = µ + ( )s + c ln R( )lnx 1 µ (,n...n ) µ = s R ln x 1 Incompressble, deal flud mxture (c = const,v = const, = 1...)

7 Unversty of Segen Entropy of Water (H 2 O) K. Stephan, W. Wagner IAPS (1985) Insttute of Flud- & hermodynamcs 5 2/7

8 Unversty of Segen Insttute of Flud- & hermodynamcs 2 nd Law (2): Clausus Inequalty 5 2/8 dm Σ Σ dw = pdv IRR : REV : Σ: dq S S + s dm ( ) ( ) dq Exchange of mass heat work Quasstatc changes of state ( +d) Closed Systems: IRR : REV : A dq ds s dn dq + ( ) =, dm = S S = 1 ( ) ( )... World Statement?

9 Unversty of Segen Insttute of Flud- & hermodynamcs 5 2/9 Interpretatons of the Clausus Entropy (S()) 1. M. Planck (1885) Measure for probablty, tendency, preference of a system to actually realze a certan equlbrum state (). ( 2 -gas n steel bottle) 2. L. Boltzmann (189) Measure for molecular dsorder n a system n state (). (Crystal, lqud, gas, plasma...) 3. C. Shannon (1948) Measure for lack of knowledge of the mcro-.e. molecular state of a system (Σ) n a gven macroscopc state ()

10 Unversty of Segen Insttute of Flud- & hermodynamcs Strrng Experment of J.P Joule 5 2/1 st 1 Law: U + m gh = U+ m gh w w m m w g h h CEOS: nd 2 Law (1), I.G.: U= U + mc v = + S S mcv ln :,h :, h nd 2 Law (2): S> S > h< h ( <,h> h ) Reversed process not possble!

11 Unversty of Segen Insttute of Flud- & hermodynamcs 5 2/11 Maxmum Work of a Mass Flow (H. von Helmholtz (189)) Smple open system m dm dw t Σ : h,s,,p, ρ dm ( ) Σ = dq : h,s, =,p, ρ m ( ) Statonary State = s t st 1 Law : U = Q + W + h h m = Q nd 2 Law: S = + ( s s ) m + Ps = P Wt h h s s m Ps W = e (, )m + P P ex = t x ex = Ps

12 Unversty of Segen Insttute of Flud- & hermodynamcs hermodynamcs of Processes (1) 5 2/12 Dscrete System, Exchange of Heat, Work, Mass Balance Equatons : Gbbs Equaton : n ( ) A U = Q p V + h n n 1 p ds = du + dv µ dn dq Clausus Inequalty : S S = + s dn Fundamental Inequalty: ( ) ( ) t,a 1 1 p p U µ µ + V + n dt... all t, hermal energy work mass exchange = dq dw U Σ V, n p ( ) ( ) = dn J dt

13 Unversty of Segen Insttute of Flud- & hermodynamcs 5 2/13 Process Equatons (Flux-Force-Relatons) (Eckart Onsager Mexner Prgogne) hermal energy Heat transfer Ut = F(%) u Mechancal work Vt = F(%) v Mass transfer n t = F (%) = 1..., = 1...A ( ) 1 1 p p µ k µ k (%) =,,,k = 1..., = 1...A F... Functons or Functonals s t of ther arguments

14 Unversty of Segen Insttute of Flud- & hermodynamcs Classfcaton of Process Equatons 5 2/14 F(%) t Functon (t) Functonal (- <s t) s ( ) ( ) ( ) nd Fundamental Inequalty 2 Law, () heorem JUK, 1968 xf x,x dt... all t F x,x = =, = 1... Lnearty IP LPS P = x F x,x on-lnearty IP PS (?) IP ( ) = F x,x L x x ( ) ( ) k k k Onsager-Casmr-Relatons L =εε L, ε, ε =± 1 IP k k k k F x,x = L x x + LPS k k k F x,x klm ( x) x x x ( 5) + M + klm k l m... Lnear Passve Functonal (J. Mexner, H. Köng, 1964)

15 Unversty of Segen Insttute of Flud- & hermodynamcs 5 2/15 Dmensonal Analyss Phenomenologcal Coeffcents and Functons: Buckngham s heorem (π heorem): Y = Y( 1... M) Dmensonal Matrx Basc Unts System (SI-System) [ Y] G 1, G 2, G g M = Π φ π π Y (... ) = 1 M = Π = 1 1 M r Rank: [ ] M βjk k j= 1 j k π =Π, π = 1 µ r ln φ =φ + φ ln π = 1

16 Unversty of Segen Dmensonal Analyss Insttute of Flud- & hermodynamcs 5 2/16 ln φ π... π =ψ ln π...ln π... π 1 M r 1 M r M r M r k k,k M r (... ) C ( ln ln ln...) 1 M r k k kl k l k k,l M r M r γ ln π k k β k C..., C e =ψ + β ln π + γ ln π ln π + O 3 φ π π = π β + γ π + δ π π + π π ψ (... π ) aylor seres expanson of the reduced functon φ π : Energy: Scale shft nvarance! 1 M r

17 Unversty of Segen Insttute of Flud- & hermodynamcs Example 1: Velocty of Molecules n an Ideal Gas 5 2/17 Lst of relevant varables, parameters, constants: w = w (, p, V m, M, R) M = 5 G = 5 r = 5 M r = w R = Const, Calbraton Experment: M Const = 3, w = 3R M

18 Unversty of Segen Insttute of Flud- & hermodynamcs 5 2/18 Process Calculaton (Intal value problem, ODE) A Σ : (t) = U(t), V(t), n (t) = n Accompanyng equlbrum ntensve parameters at tme (t): S = S(U,v,n...n ) 1 p µ ds = du + dv dn (t), p(t), µ (t) Process equatons for U, V,n, aylor-seres expanson: 1 2 Σ : (t + t) = U(t + t) = U(t) + F u(t) t + F u( t) ( ) ( ) ( ) 1 ( ) 2 n (t + t) = n (t) + F (t) t + F (t)( t) +... Iteraton procedure 2

19 Unversty of Segen Insttute of Flud- & hermodynamcs 5 2/19 Statonary Processes and States U =,V = = A = = 1 n n, 1... Fundamental Inequalty,A ( ) µ µ ( ) Ps = n, Process Equatons (Flux Force Relatons) Mass transfer: n = F (./.), = 1..., = 1...A ( ) ( ) µ µ ( ) (./.) =, = 1..., = 1...A

Introduction to Statistical Methods

Introduction to Statistical Methods Introducton to Statstcal Methods Physcs 4362, Lecture #3 hermodynamcs Classcal Statstcal Knetc heory Classcal hermodynamcs Macroscopc approach General propertes of the system Macroscopc varables 1 hermodynamc

More information

Lecture. Polymer Thermodynamics 0331 L Chemical Potential

Lecture. Polymer Thermodynamics 0331 L Chemical Potential Prof. Dr. rer. nat. habl. S. Enders Faculty III for Process Scence Insttute of Chemcal Engneerng Department of Thermodynamcs Lecture Polymer Thermodynamcs 033 L 337 3. Chemcal Potental Polymer Thermodynamcs

More information

Review of Classical Thermodynamics

Review of Classical Thermodynamics Revew of Classcal hermodynamcs Physcs 4362, Lecture #1, 2 Syllabus What s hermodynamcs? 1 [A law] s more mpressve the greater the smplcty of ts premses, the more dfferent are the knds of thngs t relates,

More information

V T for n & P = constant

V T for n & P = constant Pchem 365: hermodynamcs -SUMMARY- Uwe Burghaus, Fargo, 5 9 Mnmum requrements for underneath of your pllow. However, wrte your own summary! You need to know the story behnd the equatons : Pressure : olume

More information

Appendix II Summary of Important Equations

Appendix II Summary of Important Equations W. M. Whte Geochemstry Equatons of State: Ideal GasLaw: Coeffcent of Thermal Expanson: Compressblty: Van der Waals Equaton: The Laws of Thermdynamcs: Frst Law: Appendx II Summary of Important Equatons

More information

Thermodynamics Second Law Entropy

Thermodynamics Second Law Entropy Thermodynamcs Second Law Entropy Lana Sherdan De Anza College May 8, 2018 Last tme the Boltzmann dstrbuton (dstrbuton of energes) the Maxwell-Boltzmann dstrbuton (dstrbuton of speeds) the Second Law of

More information

and Statistical Mechanics Material Properties

and Statistical Mechanics Material Properties Statstcal Mechancs and Materal Propertes By Kuno TAKAHASHI Tokyo Insttute of Technology, Tokyo 15-855, JAPA Phone/Fax +81-3-5734-3915 takahak@de.ttech.ac.jp http://www.de.ttech.ac.jp/~kt-lab/ Only for

More information

Introduction Statistical Thermodynamics. Monday, January 6, 14

Introduction Statistical Thermodynamics. Monday, January 6, 14 Introduction Statistical Thermodynamics 1 Molecular Simulations Molecular dynamics: solve equations of motion Monte Carlo: importance sampling r 1 r 2 r n MD MC r 1 r 2 2 r n 2 3 3 4 4 Questions How can

More information

Thermodynamics II. Department of Chemical Engineering. Prof. Kim, Jong Hak

Thermodynamics II. Department of Chemical Engineering. Prof. Kim, Jong Hak Thermodynamcs II Department of Chemcal Engneerng Prof. Km, Jong Hak Soluton Thermodynamcs : theory Obectve : lay the theoretcal foundaton for applcatons of thermodynamcs to gas mxture and lqud soluton

More information

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential Open Systems: Chemcal Potental and Partal Molar Quanttes Chemcal Potental For closed systems, we have derved the followng relatonshps: du = TdS pdv dh = TdS + Vdp da = SdT pdv dg = VdP SdT For open systems,

More information

Thermodynamics General

Thermodynamics General Thermodynamcs General Lecture 1 Lecture 1 s devoted to establshng buldng blocks for dscussng thermodynamcs. In addton, the equaton of state wll be establshed. I. Buldng blocks for thermodynamcs A. Dmensons,

More information

V. Principles of Irreversible Thermodynamics. s = S - S 0 (7.3) s = = - g i, k. "Flux": = da i. "Force": = -Â g a ik k = X i. Â J i X i (7.

V. Principles of Irreversible Thermodynamics. s = S - S 0 (7.3) s = = - g i, k. Flux: = da i. Force: = -Â g a ik k = X i. Â J i X i (7. Themodynamcs and Knetcs of Solds 71 V. Pncples of Ievesble Themodynamcs 5. Onsage s Teatment s = S - S 0 = s( a 1, a 2,...) a n = A g - A n (7.6) Equlbum themodynamcs detemnes the paametes of an equlbum

More information

Chapter 5 rd Law of Thermodynamics

Chapter 5 rd Law of Thermodynamics Entropy and the nd and 3 rd Chapter 5 rd Law o hermodynamcs homas Engel, hlp Red Objectves Introduce entropy. Derve the condtons or spontanety. Show how S vares wth the macroscopc varables,, and. Chapter

More information

Introduction. Statistical physics: microscopic foundation of thermodynamics degrees of freedom 2 3 state variables!

Introduction. Statistical physics: microscopic foundation of thermodynamics degrees of freedom 2 3 state variables! Introduction Thermodynamics: phenomenological description of equilibrium bulk properties of matter in terms of only a few state variables and thermodynamical laws. Statistical physics: microscopic foundation

More information

Chemistry. Lecture 10 Maxwell Relations. NC State University

Chemistry. Lecture 10 Maxwell Relations. NC State University Chemistry Lecture 10 Maxwell Relations NC State University Thermodynamic state functions expressed in differential form We have seen that the internal energy is conserved and depends on mechanical (dw)

More information

General Formulas applicable to ALL processes in an Ideal Gas:

General Formulas applicable to ALL processes in an Ideal Gas: Calormetrc calculatons: dq mcd or dq ncd ( specc heat) Q ml ( latent heat) General Formulas applcable to ALL processes n an Ideal Gas: P nr du dq dw dw Pd du nc d C R ( monoatomc) C C R P Specc Processes:

More information

3. Be able to derive the chemical equilibrium constants from statistical mechanics.

3. Be able to derive the chemical equilibrium constants from statistical mechanics. Lecture #17 1 Lecture 17 Objectves: 1. Notaton of chemcal reactons 2. General equlbrum 3. Be able to derve the chemcal equlbrum constants from statstcal mechancs. 4. Identfy how nondeal behavor can be

More information

...Thermodynamics. If Clausius Clapeyron fails. l T (v 2 v 1 ) = 0/0 Second order phase transition ( S, v = 0)

...Thermodynamics. If Clausius Clapeyron fails. l T (v 2 v 1 ) = 0/0 Second order phase transition ( S, v = 0) If Clausus Clapeyron fals ( ) dp dt pb =...Thermodynamcs l T (v 2 v 1 ) = 0/0 Second order phase transton ( S, v = 0) ( ) dp = c P,1 c P,2 dt Tv(β 1 β 2 ) Two phases ntermngled Ferromagnet (Excess spn-up

More information

(a) How much work is done by the gas? (b) Assuming the gas behaves as an ideal gas, what is the final temperature? V γ+1 2 V γ+1 ) pdv = K 1 γ + 1

(a) How much work is done by the gas? (b) Assuming the gas behaves as an ideal gas, what is the final temperature? V γ+1 2 V γ+1 ) pdv = K 1 γ + 1 P340: hermodynamics and Statistical Physics, Exam#, Solution. (0 point) When gasoline explodes in an automobile cylinder, the temperature is about 2000 K, the pressure is is 8.0 0 5 Pa, and the volume

More information

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physcs 607 Exam 1 Please be well-organzed, and show all sgnfcant steps clearly n all problems. You are graded on your wor, so please do not just wrte down answers wth no explanaton! Do all your wor on

More information

Simulation of a steady state flash

Simulation of a steady state flash Smulaton of a steady state flash Descrpton: Statonary flash smulaton of an Ethanol(1) - Water(2) - mxture Wth followng assumptons: Apart from heater and mass flows, no energy s transferred across the system

More information

Chemical Equilibrium. Chapter 6 Spontaneity of Reactive Mixtures (gases) Taking into account there are many types of work that a sysem can perform

Chemical Equilibrium. Chapter 6 Spontaneity of Reactive Mixtures (gases) Taking into account there are many types of work that a sysem can perform Ths chapter deals wth chemcal reactons (system) wth lttle or no consderaton on the surroundngs. Chemcal Equlbrum Chapter 6 Spontanety of eactve Mxtures (gases) eactants generatng products would proceed

More information

A quote of the week (or camel of the week): There is no expedience to which a man will not go to avoid the labor of thinking. Thomas A.

A quote of the week (or camel of the week): There is no expedience to which a man will not go to avoid the labor of thinking. Thomas A. A quote of the week (or camel of the week): here s no expedence to whch a man wll not go to avod the labor of thnkng. homas A. Edson Hess law. Algorthm S Select a reacton, possbly contanng specfc compounds

More information

Some Useful Formulae

Some Useful Formulae ME - hrmodynamcs I Som Usful Formula Control Mass Contnuty Equaton m constant Frst Law Comprsson-xpanson wor U U m V V mg Z Z Q W For polytropc procs, PV n c, Scond Law W W PdV P V P V n n P V ln V V n

More information

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14 APPROXIMAE PRICES OF BASKE AND ASIAN OPIONS DUPON OLIVIER Prema 14 Contents Introducton 1 1. Framewor 1 1.1. Baset optons 1.. Asan optons. Computng the prce 3. Lower bound 3.1. Closed formula for the prce

More information

Mass Transfer Processes

Mass Transfer Processes Mass Transfer Processes S. Majd Hassanzadeh Department of Earth Scences Faculty of Geoscences Utrecht Unversty Outlne: 1. Measures of Concentraton 2. Volatlzaton and Dssoluton 3. Adsorpton Processes 4.

More information

Now that we have laws or better postulates we should explore what they imply

Now that we have laws or better postulates we should explore what they imply I-1 Theorems from Postulates: Now that we have laws or better postulates we should explore what they mply about workng q.m. problems -- Theorems (Levne 7.2, 7.4) Thm 1 -- egen values of Hermtan operators

More information

Lecture. Polymer Thermodynamics 0331 L First and Second Law of Thermodynamics

Lecture. Polymer Thermodynamics 0331 L First and Second Law of Thermodynamics 1 Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science Institute of Chemical Engineering Department of hermodynamics Lecture Polymer hermodynamics 0331 L 337 2.1. First Law of hermodynamics

More information

2. Thermodynamics. Introduction. Understanding Molecular Simulation

2. Thermodynamics. Introduction. Understanding Molecular Simulation 2. Thermodynamics Introduction Molecular Simulations Molecular dynamics: solve equations of motion r 1 r 2 r n Monte Carlo: importance sampling r 1 r 2 r n How do we know our simulation is correct? Molecular

More information

Introduction to the lattice Boltzmann method

Introduction to the lattice Boltzmann method Introducton to LB Introducton to the lattce Boltzmann method Burkhard Dünweg Max Planck Insttute for Polymer Research Ackermannweg 10, D-55128 Manz, Germany duenweg@mpp-manz.mpg.de Introducton Naver-Stokes

More information

Entropy generation in a chemical reaction

Entropy generation in a chemical reaction Entropy generaton n a chemcal reacton E Mranda Área de Cencas Exactas COICET CCT Mendoza 5500 Mendoza, rgentna and Departamento de Físca Unversdad aconal de San Lus 5700 San Lus, rgentna bstract: Entropy

More information

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity 1 Module 1 : The equaton of contnuty Lecture 1: Equaton of Contnuty 2 Advanced Heat and Mass Transfer: Modules 1. THE EQUATION OF CONTINUITY : Lectures 1-6 () () () (v) (v) Overall Mass Balance Momentum

More information

Thermodynamics and Gases

Thermodynamics and Gases hermodynamcs and Gases Last tme Knetc heory o Gases or smple (monatomc) gases Atomc nature o matter Demonstrate deal gas law Atomc knetc energy nternal energy Mean ree path and velocty dstrbutons From

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015 Lecture 2. 1/07/15-1/09/15 Unversty of Washngton Department of Chemstry Chemstry 453 Wnter Quarter 2015 We are not talkng about truth. We are talkng about somethng that seems lke truth. The truth we want

More information

Chapter 2 Carnot Principle

Chapter 2 Carnot Principle Chapter 2 Carnot Principle 2.1 Temperature 2.1.1 Isothermal Process When two bodies are placed in thermal contact, the hotter body gives off heat to the colder body. As long as the temperatures are different,

More information

Chapter 7 Channel Capacity and Coding

Chapter 7 Channel Capacity and Coding Wreless Informaton Transmsson System Lab. Chapter 7 Channel Capacty and Codng Insttute of Communcatons Engneerng atonal Sun Yat-sen Unversty Contents 7. Channel models and channel capacty 7.. Channel models

More information

Problem 4 (a) This process is irreversible because it does not occur though a set of equilibrium states. (b) The heat released by the meteor is Q = mc T. To calculate the entropy of an irreversible process

More information

Thermodynamics and statistical mechanics in materials modelling II

Thermodynamics and statistical mechanics in materials modelling II Course MP3 Lecture 8/11/006 (JAE) Course MP3 Lecture 8/11/006 Thermodynamcs and statstcal mechancs n materals modellng II A bref résumé of the physcal concepts used n materals modellng Dr James Ellott.1

More information

3-1 Introduction: 3-2 Spontaneous (Natural) Process:

3-1 Introduction: 3-2 Spontaneous (Natural) Process: - Introducton: * Reversble & Irreversble processes * Degree of rreversblty * Entropy S a state functon * Reversble heat engne Carnot cycle (Engne) * Crteron for Eulbrum SU,=Smax - Spontaneous (Natural)

More information

Unit 7 (B) Solid state Physics

Unit 7 (B) Solid state Physics Unit 7 (B) Solid state Physics hermal Properties of solids: Zeroth law of hermodynamics: If two bodies A and B are each separated in thermal equilibrium with the third body C, then A and B are also in

More information

Perfect Gases Transport Phenomena

Perfect Gases Transport Phenomena Perfect Gases Transport Phenomena We have been able to relate quite a few macroscopic properties of gasses such as P, V, T to molecular behaviour on microscale. We saw how macroscopic pressure is related

More information

Physical Chemistry I for Biochemists. Chem340. Lecture 16 (2/18/11)

Physical Chemistry I for Biochemists. Chem340. Lecture 16 (2/18/11) hyscal Chemstry I or Bochemsts Chem34 Lecture 16 (/18/11) Yoshtaka Ish Ch4.6, Ch5.1-5.5 & HW5 4.6 Derental Scannng Calormetry (Derental hermal Analyss) sample = C p, s d s + dh uson = ( s )Kdt, [1] where

More information

Group Analysis of Ordinary Differential Equations of the Order n>2

Group Analysis of Ordinary Differential Equations of the Order n>2 Symmetry n Nonlnear Mathematcal Physcs 997, V., 64 7. Group Analyss of Ordnary Dfferental Equatons of the Order n> L.M. BERKOVICH and S.Y. POPOV Samara State Unversty, 4430, Samara, Russa E-mal: berk@nfo.ssu.samara.ru

More information

The mathematical description of the motion of Atoms, Molecules & Other Particles. University of Rome La Sapienza - SAER - Mauro Valorani (2007)

The mathematical description of the motion of Atoms, Molecules & Other Particles. University of Rome La Sapienza - SAER - Mauro Valorani (2007) The mathematical description of the motion of Atoms, Molecules Other Particles Particle Dynamics Mixture of gases are made of different entities: atoms, molecules, ions, electrons. In principle, the knowledge

More information

Chapter 7 Channel Capacity and Coding

Chapter 7 Channel Capacity and Coding Chapter 7 Channel Capacty and Codng Contents 7. Channel models and channel capacty 7.. Channel models Bnary symmetrc channel Dscrete memoryless channels Dscrete-nput, contnuous-output channel Waveform

More information

In this section is given an overview of the common elasticity models.

In this section is given an overview of the common elasticity models. Secton 4.1 4.1 Elastc Solds In ths secton s gven an overvew of the common elastcty models. 4.1.1 The Lnear Elastc Sold The classcal Lnear Elastc model, or Hooean model, has the followng lnear relatonshp

More information

4.1 LAWS OF MECHANICS - Review

4.1 LAWS OF MECHANICS - Review 4.1 LAWS OF MECHANICS - Review Ch4 9 SYSTEM System: Moving Fluid Definitions: System is defined as an arbitrary quantity of mass of fixed identity. Surrounding is everything external to this system. Boundary

More information

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property.

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property. Unt Eght Calculatons wth Entropy Mechancal Engneerng 370 Thermodynamcs Larry Caretto October 6, 010 Outlne Quz Seven Solutons Second law revew Goals for unt eght Usng entropy to calculate the maxmum work

More information

PETE 310 Lectures # 24 & 25 Chapter 12 Gas Liquid Equilibrium

PETE 310 Lectures # 24 & 25 Chapter 12 Gas Liquid Equilibrium ETE 30 Lectures # 24 & 25 Chapter 2 Gas Lqud Equlbrum Thermal Equlbrum Object A hgh T, Object B low T Intal contact tme Intermedate tme. Later tme Mechancal Equlbrum ressure essels Vale Closed Vale Open

More information

Physics 240: Worksheet 30 Name:

Physics 240: Worksheet 30 Name: (1) One mole of an deal monatomc gas doubles ts temperature and doubles ts volume. What s the change n entropy of the gas? () 1 kg of ce at 0 0 C melts to become water at 0 0 C. What s the change n entropy

More information

#64. ΔS for Isothermal Mixing of Ideal Gases

#64. ΔS for Isothermal Mixing of Ideal Gases #64 Carnot Heat Engne ΔS for Isothermal Mxng of Ideal Gases ds = S dt + S T V V S = P V T T V PV = nrt, P T ds = v T = nr V dv V nr V V = nrln V V = - nrln V V ΔS ΔS ΔS for Isothermal Mxng for Ideal Gases

More information

STATISTICAL MECHANICS

STATISTICAL MECHANICS STATISTICAL MECHANICS Thermal Energy Recall that KE can always be separated nto 2 terms: KE system = 1 2 M 2 total v CM KE nternal Rgd-body rotaton and elastc / sound waves Use smplfyng assumptons KE of

More information

Previous lecture. Today lecture

Previous lecture. Today lecture Previous lecture ds relations (derive from steady energy balance) Gibb s equations Entropy change in liquid and solid Equations of & v, & P, and P & for steady isentropic process of ideal gas Isentropic

More information

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions PHYS 5C: Quantum Mechancs Sprng 07 Problem Set 3 Solutons Prof. Matthew Fsher Solutons prepared by: Chatanya Murthy and James Sully June 4, 07 Please let me know f you encounter any typos n the solutons.

More information

A Solution of Porous Media Equation

A Solution of Porous Media Equation Internatonal Mathematcal Forum, Vol. 11, 016, no. 15, 71-733 HIKARI Ltd, www.m-hkar.com http://dx.do.org/10.1988/mf.016.6669 A Soluton of Porous Meda Equaton F. Fonseca Unversdad Naconal de Colomba Grupo

More information

2. Introduction to Thermodynamics

2. Introduction to Thermodynamics . Introducton to hermodynamcs.a..b..c..d..e..f..g..h. Introductory Remarks State Varables and Exact Dfferentals Some Mechancal Equatons of State he Laws of hermodynamcs Fundamental Equaton of hermodynamcs

More information

Lecture 5: Ideal monatomic gas

Lecture 5: Ideal monatomic gas Lecture 5: Ideal monatomc gas Statstcal mechancs of the perfect gas Ams: Key new concepts and methods: Countng states Waves n a box. Demonstraton that β / kt Heat, work and Entropy n statstcal mechancs

More information

Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics

Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics Objectives In this Lecture you will learn the following The need for studying thermodynamics to understand chemical and biological processes.

More information

Imperial College London BSc/MSci EXAMINATION May 2008 THERMODYNAMICS & STATISTICAL PHYSICS

Imperial College London BSc/MSci EXAMINATION May 2008 THERMODYNAMICS & STATISTICAL PHYSICS Imperial College London BSc/MSci EXAMINATION May 2008 This paper is also taken for the relevant Examination for the Associateship THERMODYNAMICS & STATISTICAL PHYSICS For Second-Year Physics Students Wednesday,

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS1013W1 SEMESTER 2 EXAMINATION 2014-2015 ENERGY AND MATTER Duration: 120 MINS (2 hours) This paper contains 8 questions. Answers to Section A and Section B must be in separate

More information

Finite Element Modelling of truss/cable structures

Finite Element Modelling of truss/cable structures Pet Schreurs Endhoven Unversty of echnology Department of Mechancal Engneerng Materals echnology November 3, 214 Fnte Element Modellng of truss/cable structures 1 Fnte Element Analyss of prestressed structures

More information

Physical Biochemistry. Kwan Hee Lee, Ph.D. Handong Global University

Physical Biochemistry. Kwan Hee Lee, Ph.D. Handong Global University Physical Biochemistry Kwan Hee Lee, Ph.D. Handong Global University Week 3 CHAPTER 2 The Second Law: Entropy of the Universe increases What is entropy Definition: measure of disorder The greater the disorder,

More information

Basic concept of reactive flows. Basic concept of reactive flows Combustion Mixing and reaction in high viscous fluid Application of Chaos

Basic concept of reactive flows. Basic concept of reactive flows Combustion Mixing and reaction in high viscous fluid Application of Chaos Introducton to Toshhsa Ueda School of Scence for Open and Envronmental Systems Keo Unversty, Japan Combuston Mxng and reacton n hgh vscous flud Applcaton of Chaos Keo Unversty 1 Keo Unversty 2 What s reactve

More information

Chapters 18 & 19: Themodynamics review. All macroscopic (i.e., human scale) quantities must ultimately be explained on the microscopic scale.

Chapters 18 & 19: Themodynamics review. All macroscopic (i.e., human scale) quantities must ultimately be explained on the microscopic scale. Chapters 18 & 19: Themodynamcs revew ll macroscopc (.e., human scale) quanttes must ultmately be explaned on the mcroscopc scale. Chapter 18: Thermodynamcs Thermodynamcs s the study o the thermal energy

More information

Entropy and the Second Law of Thermodynamics

Entropy and the Second Law of Thermodynamics Entropy and the Second Law of hermodynamics Reading Problems 6-, 6-2, 6-7, 6-8, 6-6-8, 6-87, 7-7-0, 7-2, 7-3 7-39, 7-46, 7-6, 7-89, 7-, 7-22, 7-24, 7-30, 7-55, 7-58 Why do we need another law in thermodynamics?

More information

Lecture 6 Free Energy

Lecture 6 Free Energy Lecture 6 Free Energy James Chou BCMP21 Spring 28 A quick review of the last lecture I. Principle of Maximum Entropy Equilibrium = A system reaching a state of maximum entropy. Equilibrium = All microstates

More information

Solution Thermodynamics

Solution Thermodynamics CH2351 Chemcal Engneerng Thermodynamcs II Unt I, II www.msubbu.n Soluton Thermodynamcs www.msubbu.n Dr. M. Subramanan Assocate Professor Department of Chemcal Engneerng Sr Svasubramanya Nadar College of

More information

Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow

Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow Anderson: Chapter 2 pp. 41-54 1 Equation of State: Section 1 Review p = R g T " > R g = R u M w - R u = 8314.4126

More information

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set.

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. The symbols used here are as discussed in the class. Use scratch paper as needed. Do not give more than one answer for any question.

More information

CHAPTER 8 ENTROPY. Blank

CHAPTER 8 ENTROPY. Blank CHAPER 8 ENROPY Blank SONNAG/BORGNAKKE SUDY PROBLEM 8-8. A heat engine efficiency from the inequality of Clausius Consider an actual heat engine with efficiency of η working between reservoirs at and L.

More information

10.40 Appendix Connection to Thermodynamics and Derivation of Boltzmann Distribution

10.40 Appendix Connection to Thermodynamics and Derivation of Boltzmann Distribution 10.40 Appendx Connecton to Thermodynamcs Dervaton of Boltzmann Dstrbuton Bernhardt L. Trout Outlne Cannoncal ensemble Maxmumtermmethod Most probable dstrbuton Ensembles contnued: Canoncal, Mcrocanoncal,

More information

Numerical modeling of a non-linear viscous flow in order to determine how parameters in constitutive relations influence the entropy production

Numerical modeling of a non-linear viscous flow in order to determine how parameters in constitutive relations influence the entropy production Technsche Unverstät Berln Fakultät für Verkehrs- un Maschnensysteme, Insttut für Mechank Lehrstuhl für Kontnuumsmechank un Materaltheore, Prof. W.H. Müller Numercal moelng of a non-lnear vscous flow n

More information

PHYSICS 210A : STATISTICAL PHYSICS HW ASSIGNMENT #4 SOLUTIONS. ( p)( V) = 23kJ,

PHYSICS 210A : STATISTICAL PHYSICS HW ASSIGNMENT #4 SOLUTIONS. ( p)( V) = 23kJ, PHYSICS 210A : STATISTICAL PHYSICS HW ASSIGNMENT #4 SOLUTIONS 1) ν = 8 moles of a diatomic ideal gas are subjected to a cyclic quasistatic process, the thermodynamic path for which is an ellipse in the

More information

Chapter 18, Part 1. Fundamentals of Atmospheric Modeling

Chapter 18, Part 1. Fundamentals of Atmospheric Modeling Overhead Sldes for Chapter 18, Part 1 of Fundamentals of Atmospherc Modelng by Mark Z. Jacobson Department of Cvl & Envronmental Engneerng Stanford Unversty Stanford, CA 94305-4020 January 30, 2002 Types

More information

PES 2130 Fall 2014, Spendier Lecture 7/Page 1

PES 2130 Fall 2014, Spendier Lecture 7/Page 1 PES 2130 Fall 2014, Spender Lecture 7/Page 1 Lecture today: Chapter 20 (ncluded n exam 1) 1) Entropy 2) Second Law o hermodynamcs 3) Statstcal Vew o Entropy Announcements: Next week Wednesday Exam 1! -

More information

Atkins / Paula Physical Chemistry, 8th Edition. Chapter 3. The Second Law

Atkins / Paula Physical Chemistry, 8th Edition. Chapter 3. The Second Law Atkins / Paula Physical Chemistry, 8th Edition Chapter 3. The Second Law The direction of spontaneous change 3.1 The dispersal of energy 3.2 Entropy 3.3 Entropy changes accompanying specific processes

More information

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR 5.0, Prncples of Inorganc Chemstry II MIT Department of Chemstry Lecture 3: Vbratonal Spectroscopy and the IR Vbratonal spectroscopy s confned to the 00-5000 cm - spectral regon. The absorpton of a photon

More information

PHYS 705: Classical Mechanics. Canonical Transformation II

PHYS 705: Classical Mechanics. Canonical Transformation II 1 PHYS 705: Classcal Mechancs Canoncal Transformaton II Example: Harmonc Oscllator f ( x) x m 0 x U( x) x mx x LT U m Defne or L p p mx x x m mx x H px L px p m p x m m H p 1 x m p m 1 m H x p m x m m

More information

THEOREMS OF QUANTUM MECHANICS

THEOREMS OF QUANTUM MECHANICS THEOREMS OF QUANTUM MECHANICS In order to develop methods to treat many-electron systems (atoms & molecules), many of the theorems of quantum mechancs are useful. Useful Notaton The matrx element A mn

More information

PHY688, Statistical Mechanics

PHY688, Statistical Mechanics Department of Physcs & Astronomy 449 ESS Bldg. Stony Brook Unversty January 31, 2017 Nuclear Astrophyscs James.Lattmer@Stonybrook.edu Thermodynamcs Internal Energy Densty and Frst Law: ε = E V = Ts P +

More information

Multivariable Calculus

Multivariable Calculus Multivariable Calculus In thermodynamics, we will frequently deal with functions of more than one variable e.g., P PT, V, n, U UT, V, n, U UT, P, n U = energy n = # moles etensive variable: depends on

More information

Details on the Carnot Cycle

Details on the Carnot Cycle Details on the Carnot Cycle he isothermal expansion (ab) and compression (cd): 0 ( is constant and U() is a function U isothermal of only for an Ideal Gas.) V b QH Wab nrh ln Va (ab : isothermal expansion)

More information

Thermodynamics II. Week 9

Thermodynamics II. Week 9 hermodynamics II Week 9 Example Oxygen gas in a piston cylinder at 300K, 00 kpa with volume o. m 3 is compressed in a reversible adiabatic process to a final temperature of 700K. Find the final pressure

More information

Tensor Smooth Length for SPH Modelling of High Speed Impact

Tensor Smooth Length for SPH Modelling of High Speed Impact Tensor Smooth Length for SPH Modellng of Hgh Speed Impact Roman Cherepanov and Alexander Gerasmov Insttute of Appled mathematcs and mechancs, Tomsk State Unversty 634050, Lenna av. 36, Tomsk, Russa RCherepanov82@gmal.com,Ger@npmm.tsu.ru

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850)

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850) hermal-fluds I Chapter 18 ransent heat conducton Dr. Prmal Fernando prmal@eng.fsu.edu Ph: (850) 410-6323 1 ransent heat conducton In general, he temperature of a body vares wth tme as well as poston. In

More information

Chemical Thermodynamics : Georg Duesberg

Chemical Thermodynamics : Georg Duesberg The Properties of Gases Kinetic gas theory Maxwell Boltzman distribution, Collisions Real (non-ideal) gases fugacity, Joule Thomson effect Mixtures of gases Entropy, Chemical Potential Liquid Solutions

More information

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics) CHAPTER 6 LAGRANGE S EQUATIONS (Analytcal Mechancs) 1 Ex. 1: Consder a partcle movng on a fxed horzontal surface. r P Let, be the poston and F be the total force on the partcle. The FBD s: -mgk F 1 x O

More information

LECTURE 9 CANONICAL CORRELATION ANALYSIS

LECTURE 9 CANONICAL CORRELATION ANALYSIS LECURE 9 CANONICAL CORRELAION ANALYSIS Introducton he concept of canoncal correlaton arses when we want to quantfy the assocatons between two sets of varables. For example, suppose that the frst set of

More information

Lecture 2 Grand Canonical Ensemble GCE

Lecture 2 Grand Canonical Ensemble GCE Lecture 2 Grand Canoncal Ensemble GCE 2.1 hermodynamc Functons Contnung on from last day we also note that thus, dω = df dµ µd = Sd P dv dµ (2.1) P = V = S = From the expresson for the entropy, we therefore

More information

Chapter 3 and Chapter 4

Chapter 3 and Chapter 4 Chapter 3 and Chapter 4 Chapter 3 Energy 3. Introducton:Work Work W s energy transerred to or rom an object by means o a orce actng on the object. Energy transerred to the object s postve work, and energy

More information

Honors Physics. Notes Nov 16, 20 Heat. Persans 1

Honors Physics. Notes Nov 16, 20 Heat. Persans 1 Honors Physics Notes Nov 16, 20 Heat Persans 1 Properties of solids Persans 2 Persans 3 Vibrations of atoms in crystalline solids Assuming only nearest neighbor interactions (+Hooke's law) F = C( u! u

More information

Properties of Entropy

Properties of Entropy Properties of Entropy Due to its additivity, entropy is a homogeneous function of the extensive coordinates of the system: S(λU, λv, λn 1,, λn m ) = λ S (U, V, N 1,, N m ) This means we can write the entropy

More information

Lecture 3 Clausius Inequality

Lecture 3 Clausius Inequality Lecture 3 Clausius Inequality Rudolf Julius Emanuel Clausius 2 January 1822 24 August 1888 Defined Entropy Greek, en+tropein content transformative or transformation content The energy of the universe

More information

Chemistry 163B Absolute Entropies and Entropy of Mixing

Chemistry 163B Absolute Entropies and Entropy of Mixing Chemistry 163B Absolute Entropies and Entropy of Mixing 1 APPENDIX A: H f, G f, BUT S (no Δ, no sub f ) Hº f Gº f Sº 2 Third Law of Thermodynamics The entropy of any perfect crystalline substance approaches

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Knetc Energy and Work Conservaton o Energy s one o Nature s undamental laws that s not volated. Energy can take on derent orms n a gven system. Ths chapter we wll dscuss work and knetc energy.

More information

ABCD42BEF F2 F8 5 4D65F8 CC8 9

ABCD42BEF F2 F8 5 4D65F8 CC8 9 ABCD BEF F F D F CC Physics 7B Fall 2015 Midterm 1 Solutions Problem 1 Let R h be the radius of the hole. R h = 2 3 Rα R h = 2 3 R+ R h = 2 3 R(1+α ) (4 points) In order for the marble to fit through the

More information

UNIVERSITY OF SOUTHAMPTON VERY IMPORTANT NOTE. Section A answers MUST BE in a separate blue answer book. If any blue

UNIVERSITY OF SOUTHAMPTON VERY IMPORTANT NOTE. Section A answers MUST BE in a separate blue answer book. If any blue UNIVERSITY OF SOUTHAMPTON PHYS1013W1 SEMESTER 2 EXAMINATION 2011/12 ENERGY AND MATTER SOLUTIONS Duration: 120 MINS VERY IMPORTANT NOTE Section A answers MUST BE in a separate blue answer book. If any blue

More information

Lecture 4. Macrostates and Microstates (Ch. 2 )

Lecture 4. Macrostates and Microstates (Ch. 2 ) Lecture 4. Macrostates and Mcrostates (Ch. ) The past three lectures: we have learned about thermal energy, how t s stored at the mcroscopc level, and how t can be transferred from one system to another.

More information

General Thermodynamics for Process Simulation. Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University

General Thermodynamics for Process Simulation. Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University General Thermodynamcs for Process Smulaton Dr. Jungho Cho, Professor Department of Chemcal Engneerng Dong Yang Unversty Four Crtera for Equlbra μ = μ v Stuaton α T = T β α β P = P l μ = μ l1 l 2 Thermal

More information