V. Principles of Irreversible Thermodynamics. s = S - S 0 (7.3) s = = - g i, k. "Flux": = da i. "Force": = -Â g a ik k = X i. Â J i X i (7.

Size: px
Start display at page:

Download "V. Principles of Irreversible Thermodynamics. s = S - S 0 (7.3) s = = - g i, k. "Flux": = da i. "Force": = -Â g a ik k = X i. Â J i X i (7."

Transcription

1 Themodynamcs and Knetcs of Solds 71 V. Pncples of Ievesble Themodynamcs 5. Onsage s Teatment s = S - S 0 = s( a 1, a 2,...) a n = A g - A n (7.6) Equlbum themodynamcs detemnes the paametes of an equlbum and ndcates whethe a eacton s themodynamcally possble o not. Clausus Equaton ds dq/t (7.1) Closed System ds 0 (7.2) >: spontaneous eacton, = : evesble eacton Entopy poducton: Equlbum: s = 0 Außehalb des Glechgewchts: s < 0 Taylo Sees Development aound the equlbum (a 1 = a 2 =... = 0): because of s (0, 0,...) = 0. The 0. pat of the sees dssapeas. Because of the maxmum of s n the equlbum state all fst dffeental quotents ( s/ a ) a = 0 dsappea j+ and accodngly the lnea tems of the Taylo sees. Only the tems of the second ode (a 2,a, a j,...) eman. (In the followng hghe tems ae neglected and the coeffcents of the tems of second ode ae defned as def g : s = dds dt (7.3) s = g a, a (7.7), 7.1. Entopypoducton n the case of heat conducton. Closed system: Entopypoducton: - 1 2, g [ a ( da / dt) ] + a ( da / dt) = - g,, a ( da / dt) (7.8) "Flux": = da dt = J Abb Two patal systems ae connected by a heat conducto. It s assumed that T 1 > T 2, and the amount of heat q n a cetan peod of tme fom system 1 to system 2. The entopy changes n the systems ae -q/t 1 and +q/t 2. ds = dq s = q T T ( T 2 - T 1 1 ) (7.4) ( ) = 7.2 Fluxes and Foces. [( ) / T 1 T 2 ] (7.5) q T 1 - T 2 Entopy of a system: S = S (A 1, A 2,...) Equlbum state: S 0 = S 0 (A 0 1, A 0 2,...) "Foce": = - g a = X Entopypoducton: J X (7.9) Dmenson: Enegy / tempeatue tme. The fluxes and foces have to esult n the coect entopy poducton of the pocess Phenomenologcal equatons In the case of heat conducton, we have

2 72 Themodynamcs and Knetcs of Solds J = q und X = ( 1 T 2-1 T 1 ) The foces have to geneate fluxes; thee s accodngly elatonshp J = f(x ). Fo lnea pocesses the elatonshp has to be: J = LX (7.10) (phenomenologcal equaton of heat conducton) L: Phenomenologcal co-effcent (evesble themodynamcs of lnea pocesses) Example of the dependance of flux J n of seveal foces: Themodffuson: Themal foce esults n a flux of matte (even f the coespondng foce to the flux J n s 0). L : phenomenologcal (o Onsage-) coeffcents Entopy poducton of Dffuson Closed System: Futhe examples: - Fc s Dffuson law - Rate laws fo eacton of 1. and 2. ode - Vscosty - Ohm s law I = 1 R U (7.11) I U : Powe (Dmenson enegy/tme, whle the entopy poducton has the dmenson enege/tempeatue tme. Equaton (7.11) s not a penomenologcal equaton, because the poducts of fluxes and foces do not esult n the entopy poducton. It s the tas to ndcate fomula fo the entopy poducton of the pocesses and to dentfy n these fomulas the coespondng fluxes and foces. Ohm s law: p = q = IU (7.12) s = q /T = ( U/T) (7.13) The coespondng foce to the flux I s U/t. In geneal, the entopy depends of seveal ndependant paametes a and thee ae seveal paametes a whch contbute to the foce X. Analogously, a flux J s not only dependant on a sngle foce, but also depends on othe foces X j (j. Fo n fluxes J n a coespondng foce X n may be elated to each flux. Phenomenologcal system of equatons: J 1 = L 11 X 1 + L 12 X L 1n X n : J n = L n1 X 1 + L n2 X L nn X n TdS = -m dn (7.15) Moton of fom 1 Æ 2: ds = -dn ( m,2 / T - m,1 / T) (7.16) Entopy poducton: s = ds dt = - dn ˆ Á m Ë dt,2 / T - m,1 / T Accodngly the fluxes and foces ae ( ) (5.17) J = n (7.18) X = - m,2 T - m,1 ˆ Á = -D m ˆ Á (7.19) Ë T Ë T Dvng foces fo the dffuson: D( m / T) (nstead of D c) 7.5. Entopypoducton of chemcal eactons Affnty: A = - G ˆ Á Ë x T,p x: Numbe of Reactons Reacton Equaton (7.20) 0 = n D (7.21) : Reacton : Component

3 Themodynamcs and Knetcs of Solds 73 n : stochometc Coeffcent of the component n the - th eacton equaton Affnty of the -th eacton: A = - n m (7.22) Change n the amount of mateal = some of the changes of all eactons dn = n fom (7.22) and (7.23) esults dx (7.23) A dx = -m dn (7.24) Fom TdS = du + pdv + entopy poducton ( A / T) dx dt Summay Coespondng foces and fluxes Heat Conducton Expanson A dx esults fo the Dffuson Chem. Reacton (7.25) elect. Cuent Foces D (1/T) D (p/t) -D (m /T) A /T U/T Fluxes Q o V n 7.6. Ievesble Themodynamcs of Lnea Pocesses x I( q el ) Lneae PocessA lnea elatonshp exsts between foces and fluxes. Recpocal condtons: Thomson: Pelte-Effect q = P AB I (7.26) (Coolng by Heat Cuent whch s coupled to the electcal cuent) and Seebec-Effect E = e AB DT (7.27) Abb Two patal systems contan only one gas: they ae connected n such a way that a heat flux J u and a flux of matte J n may flow. By ths model, e.g. the themomolecula pessue dffeence may be calculated. P AB = Te AB (7.28) The equaton s a ecpocal elatonshp snce two ecpocal phenomena (Heat cuent Æ electcal cuent, electcal cuent Æ Heat cuent) ae quanttvely elated to each othe. Onsage: L mn = L nm (7.29) Matx s symmetc. Example: Closed 1-Component System wth heat cuent J u and flux of matte J n J u = Q, X u = D( 1 / T) (7.30) J n = n, X n = -D( m / T) (7.31) Phenomenologcal Equatons: J n = L 11 X n + L 12 X u (7.32) J n = L 21 X n + L 22 X u (7.33) Fo the 1-Component system holds X n : X n = -D G ˆ Á = - DG Ë T T + G T DT = S T DT - V T + H T 2 DT - S T DT = - V T + H 2 DT (7.34) T (Geneaton of an EMF n tempeatue gadents): Accodngly, the followng equatons hold fo the fluxes:

4 74 Themodynamcs and Knetcs of Solds J n = - L 11 V T + L 11 H - L 12 T 2 DT (7.35) J u = -L 21 V T + L 21 H - L 22 T 2 DT (7.36) In steady state holds (I n =0): DT = H - L 12 / L 11 (7.37) L nn X n L mn n m< n Dffeentaton afte X l : X mx n (7.44) s = 2L X ll X l + 2 L ln l = 2 L lnx n = 2J l (7.45) n 2 Steady state (J l = 0) : mnmum entopy poducton) n s = 0 (Theoem of the X l (themomolecula pessue dffeence) Wth L 12 = L 21 esults unde the assumpton DT=0, 0: J u J n = L 21 L 11 (7.38) and accodngly DT = H - J u / J n (7.39) Tansfeence enegy U * : = J u J n Tansfeence heat Q * : = U * H DT = - Q* (7.40) 7.7. Steady State Equlba: J n = 0, n = 1, 2,..., n (7.41) Steady State: X = const ( = 1,..., n) (7.42) Some fluxes ae dffeent fom 0. Fom the phenomenologcal equatons J 1 = L 11 X 1 + L 12 X L 1n X n : J n = L n1 X 1 + L n2 X L nn X n (7.43) esults unde consdeng the Onsage elatons fo the entopy poducton

5 Themodynamcs and Knetcs of Solds 75

Contact, information, consultations

Contact, information, consultations ontact, nfomaton, consultatons hemsty A Bldg; oom 07 phone: 058-347-769 cellula: 664 66 97 E-mal: wojtek_c@pg.gda.pl Offce hous: Fday, 9-0 a.m. A quote of the week (o camel of the week): hee s no expedence

More information

Thermodynamics of solids 4. Statistical thermodynamics and the 3 rd law. Kwangheon Park Kyung Hee University Department of Nuclear Engineering

Thermodynamics of solids 4. Statistical thermodynamics and the 3 rd law. Kwangheon Park Kyung Hee University Department of Nuclear Engineering Themodynamcs of solds 4. Statstcal themodynamcs and the 3 d law Kwangheon Pak Kyung Hee Unvesty Depatment of Nuclea Engneeng 4.1. Intoducton to statstcal themodynamcs Classcal themodynamcs Statstcal themodynamcs

More information

4.4 Continuum Thermomechanics

4.4 Continuum Thermomechanics 4.4 Contnuum Themomechancs The classcal themodynamcs s now extended to the themomechancs of a contnuum. The state aables ae allowed to ay thoughout a mateal and pocesses ae allowed to be eesble and moe

More information

Stellar Astrophysics. dt dr. GM r. The current model for treating convection in stellar interiors is called mixing length theory:

Stellar Astrophysics. dt dr. GM r. The current model for treating convection in stellar interiors is called mixing length theory: Stella Astophyscs Ovevew of last lectue: We connected the mean molecula weght to the mass factons X, Y and Z: 1 1 1 = X + Y + μ 1 4 n 1 (1 + 1) = X μ 1 1 A n Z (1 + ) + Y + 4 1+ z A Z We ntoduced the pessue

More information

Set of square-integrable function 2 L : function space F

Set of square-integrable function 2 L : function space F Set of squae-ntegable functon L : functon space F Motvaton: In ou pevous dscussons we have seen that fo fee patcles wave equatons (Helmholt o Schödnge) can be expessed n tems of egenvalue equatons. H E,

More information

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M Dola Bagayoko (0) Integal Vecto Opeatons and elated Theoems Applcatons n Mechancs and E&M Ι Basc Defnton Please efe to you calculus evewed below. Ι, ΙΙ, andιιι notes and textbooks fo detals on the concepts

More information

Large scale magnetic field generation by accelerated particles in galactic medium

Large scale magnetic field generation by accelerated particles in galactic medium Lage scale magnetc feld geneaton by acceleated patcles n galactc medum I.N.Toptygn Sant Petesbug State Polytechncal Unvesty, depatment of Theoetcal Physcs, Sant Petesbug, Russa 2.Reason explonatons The

More information

Test 1 phy What mass of a material with density ρ is required to make a hollow spherical shell having inner radius r i and outer radius r o?

Test 1 phy What mass of a material with density ρ is required to make a hollow spherical shell having inner radius r i and outer radius r o? Test 1 phy 0 1. a) What s the pupose of measuement? b) Wte all fou condtons, whch must be satsfed by a scala poduct. (Use dffeent symbols to dstngush opeatons on ectos fom opeatons on numbes.) c) What

More information

UNIT10 PLANE OF REGRESSION

UNIT10 PLANE OF REGRESSION UIT0 PLAE OF REGRESSIO Plane of Regesson Stuctue 0. Intoducton Ojectves 0. Yule s otaton 0. Plane of Regesson fo thee Vaales 0.4 Popetes of Resduals 0.5 Vaance of the Resduals 0.6 Summay 0.7 Solutons /

More information

If there are k binding constraints at x then re-label these constraints so that they are the first k constraints.

If there are k binding constraints at x then re-label these constraints so that they are the first k constraints. Mathematcal Foundatons -1- Constaned Optmzaton Constaned Optmzaton Ma{ f ( ) X} whee X {, h ( ), 1,, m} Necessay condtons fo to be a soluton to ths mamzaton poblem Mathematcally, f ag Ma{ f ( ) X}, then

More information

24-2: Electric Potential Energy. 24-1: What is physics

24-2: Electric Potential Energy. 24-1: What is physics D. Iyad SAADEDDIN Chapte 4: Electc Potental Electc potental Enegy and Electc potental Calculatng the E-potental fom E-feld fo dffeent chage dstbutons Calculatng the E-feld fom E-potental Potental of a

More information

Rigid Bodies: Equivalent Systems of Forces

Rigid Bodies: Equivalent Systems of Forces Engneeng Statcs, ENGR 2301 Chapte 3 Rgd Bodes: Equvalent Sstems of oces Intoducton Teatment of a bod as a sngle patcle s not alwas possble. In geneal, the se of the bod and the specfc ponts of applcaton

More information

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law Physcs 11b Lectue # Electc Feld Electc Flux Gauss s Law What We Dd Last Tme Electc chage = How object esponds to electc foce Comes n postve and negatve flavos Conseved Electc foce Coulomb s Law F Same

More information

Part V: Velocity and Acceleration Analysis of Mechanisms

Part V: Velocity and Acceleration Analysis of Mechanisms Pat V: Velocty an Acceleaton Analyss of Mechansms Ths secton wll evew the most common an cuently pactce methos fo completng the knematcs analyss of mechansms; escbng moton though velocty an acceleaton.

More information

FI 2201 Electromagnetism

FI 2201 Electromagnetism FI 2201 Electomagnetism Alexande A. Iskanda, Ph.D. Physics of Magnetism and Photonics Reseach Goup Electodynamics ELETROMOTIVE FORE AND FARADAY S LAW 1 Ohm s Law To make a cuent flow, we have to push the

More information

Physics 2A Chapter 11 - Universal Gravitation Fall 2017

Physics 2A Chapter 11 - Universal Gravitation Fall 2017 Physcs A Chapte - Unvesal Gavtaton Fall 07 hese notes ae ve pages. A quck summay: he text boxes n the notes contan the esults that wll compse the toolbox o Chapte. hee ae thee sectons: the law o gavtaton,

More information

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle 1 PHYS 705: Classcal Mechancs Devaton of Lagange Equatons fom D Alembet s Pncple 2 D Alembet s Pncple Followng a smla agument fo the vtual dsplacement to be consstent wth constants,.e, (no vtual wok fo

More information

CSU ATS601 Fall Other reading: Vallis 2.1, 2.2; Marshall and Plumb Ch. 6; Holton Ch. 2; Schubert Ch r or v i = v r + r (3.

CSU ATS601 Fall Other reading: Vallis 2.1, 2.2; Marshall and Plumb Ch. 6; Holton Ch. 2; Schubert Ch r or v i = v r + r (3. 3 Eath s Rotaton 3.1 Rotatng Famewok Othe eadng: Valls 2.1, 2.2; Mashall and Plumb Ch. 6; Holton Ch. 2; Schubet Ch. 3 Consde the poston vecto (the same as C n the fgue above) otatng at angula velocty.

More information

The Unique Solution of Stochastic Differential Equations With. Independent Coefficients. Dietrich Ryter.

The Unique Solution of Stochastic Differential Equations With. Independent Coefficients. Dietrich Ryter. The Unque Soluton of Stochastc Dffeental Equatons Wth Independent Coeffcents Detch Ryte RyteDM@gawnet.ch Mdatweg 3 CH-4500 Solothun Swtzeland Phone +4132 621 13 07 SDE s must be solved n the ant-itô sense

More information

Chapter 23: Electric Potential

Chapter 23: Electric Potential Chapte 23: Electc Potental Electc Potental Enegy It tuns out (won t show ths) that the tostatc foce, qq 1 2 F ˆ = k, s consevatve. 2 Recall, fo any consevatve foce, t s always possble to wte the wok done

More information

A thermodynamic degree of freedom solution to the galaxy cluster problem of MOND. Abstract

A thermodynamic degree of freedom solution to the galaxy cluster problem of MOND. Abstract A themodynamic degee of feedom solution to the galaxy cluste poblem of MOND E.P.J. de Haas (Paul) Nijmegen, The Nethelands (Dated: Octobe 23, 2015) Abstact In this pape I discus the degee of feedom paamete

More information

1. A body will remain in a state of rest, or of uniform motion in a straight line unless it

1. A body will remain in a state of rest, or of uniform motion in a straight line unless it Pncples of Dnamcs: Newton's Laws of moton. : Foce Analss 1. A bod wll eman n a state of est, o of unfom moton n a staght lne unless t s acted b etenal foces to change ts state.. The ate of change of momentum

More information

4. Some Applications of first order linear differential

4. Some Applications of first order linear differential August 30, 2011 4-1 4. Some Applications of fist ode linea diffeential Equations The modeling poblem Thee ae seveal steps equied fo modeling scientific phenomena 1. Data collection (expeimentation) Given

More information

Appendix II Summary of Important Equations

Appendix II Summary of Important Equations W. M. Whte Geochemstry Equatons of State: Ideal GasLaw: Coeffcent of Thermal Expanson: Compressblty: Van der Waals Equaton: The Laws of Thermdynamcs: Frst Law: Appendx II Summary of Important Equatons

More information

19 The Born-Oppenheimer Approximation

19 The Born-Oppenheimer Approximation 9 The Bon-Oppenheme Appoxmaton The full nonelatvstc Hamltonan fo a molecule s gven by (n a.u.) Ĥ = A M A A A, Z A + A + >j j (883) Lets ewte the Hamltonan to emphasze the goal as Ĥ = + A A A, >j j M A

More information

Analysis of the chemical equilibrium of combustion at constant volume

Analysis of the chemical equilibrium of combustion at constant volume Analyss of the chemcal equlbum of combuston at constant volume Maus BEBENEL* *Coesondng autho LIEHNICA Unvesty of Buchaest Faculty of Aeosace Engneeng h. olzu Steet -5 6 Buchaest omana mausbeb@yahoo.com

More information

Lecture 2 - Thermodynamics Overview

Lecture 2 - Thermodynamics Overview 2.625 - Electochemical Systems Fall 2013 Lectue 2 - Themodynamics Oveview D.Yang Shao-Hon Reading: Chapte 1 & 2 of Newman, Chapte 1 & 2 of Bad & Faulkne, Chaptes 9 & 10 of Physical Chemisty I. Lectue Topics:

More information

COMPLEMENTARY ENERGY METHOD FOR CURVED COMPOSITE BEAMS

COMPLEMENTARY ENERGY METHOD FOR CURVED COMPOSITE BEAMS ultscence - XXX. mcocd Intenatonal ultdscplnay Scentfc Confeence Unvesty of skolc Hungay - pl 06 ISBN 978-963-358-3- COPLEENTRY ENERGY ETHOD FOR CURVED COPOSITE BES Ákos József Lengyel István Ecsed ssstant

More information

Rotational Kinematics. Rigid Object about a Fixed Axis Western HS AP Physics 1

Rotational Kinematics. Rigid Object about a Fixed Axis Western HS AP Physics 1 Rotatonal Knematcs Rgd Object about a Fxed Axs Westen HS AP Physcs 1 Leanng Objectes What we know Unfom Ccula Moton q s Centpetal Acceleaton : Centpetal Foce: Non-unfom a F c c m F F F t m ma t What we

More information

Generating Functions, Weighted and Non-Weighted Sums for Powers of Second-Order Recurrence Sequences

Generating Functions, Weighted and Non-Weighted Sums for Powers of Second-Order Recurrence Sequences Geneatng Functons, Weghted and Non-Weghted Sums fo Powes of Second-Ode Recuence Sequences Pantelmon Stăncă Aubun Unvesty Montgomey, Depatment of Mathematcs Montgomey, AL 3614-403, USA e-mal: stanca@studel.aum.edu

More information

9/12/2013. Microelectronics Circuit Analysis and Design. Modes of Operation. Cross Section of Integrated Circuit npn Transistor

9/12/2013. Microelectronics Circuit Analysis and Design. Modes of Operation. Cross Section of Integrated Circuit npn Transistor Mcoelectoncs Ccut Analyss and Desgn Donald A. Neamen Chapte 5 The pola Juncton Tanssto In ths chapte, we wll: Dscuss the physcal stuctue and opeaton of the bpola juncton tanssto. Undestand the dc analyss

More information

Fields. Coulomb s Law

Fields. Coulomb s Law Coulomb s Law q t -q q 2 Electic Field Vecto valued function ligned with foce F = q E -q q 2 Supeposition of Electic Field q t -q q 2 Potential Enegy U = U() U() = q du = F d = qe d U = F = qe E d E =

More information

Scalars and Vectors Scalar

Scalars and Vectors Scalar Scalas and ectos Scala A phscal quantt that s completel chaacteed b a eal numbe (o b ts numecal value) s called a scala. In othe wods a scala possesses onl a magntude. Mass denst volume tempeatue tme eneg

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 151 Lectue 18 Hamltonan Equatons of Moton (Chapte 8) What s Ahead We ae statng Hamltonan fomalsm Hamltonan equaton Today and 11/6 Canoncal tansfomaton 1/3, 1/5, 1/10 Close lnk to non-elatvstc

More information

Capítulo. Three Dimensions

Capítulo. Three Dimensions Capítulo Knematcs of Rgd Bodes n Thee Dmensons Mecánca Contents ntoducton Rgd Bod Angula Momentum n Thee Dmensons Pncple of mpulse and Momentum Knetc Eneg Sample Poblem 8. Sample Poblem 8. Moton of a Rgd

More information

Chemical Equilibrium. Chapter 6 Spontaneity of Reactive Mixtures (gases) Taking into account there are many types of work that a sysem can perform

Chemical Equilibrium. Chapter 6 Spontaneity of Reactive Mixtures (gases) Taking into account there are many types of work that a sysem can perform Ths chapter deals wth chemcal reactons (system) wth lttle or no consderaton on the surroundngs. Chemcal Equlbrum Chapter 6 Spontanety of eactve Mxtures (gases) eactants generatng products would proceed

More information

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems Engneeng echancs oce esultants, Toques, Scala oducts, Equvalent oce sstems Tata cgaw-hll Companes, 008 Resultant of Two oces foce: acton of one bod on anothe; chaacteed b ts pont of applcaton, magntude,

More information

EM Boundary Value Problems

EM Boundary Value Problems EM Bounday Value Poblems 10/ 9 11/ By Ilekta chistidi & Lee, Seung-Hyun A. Geneal Desciption : Maxwell Equations & Loentz Foce We want to find the equations of motion of chaged paticles. The way to do

More information

x 1 b 1 Consider the midpoint x 0 = 1 2

x 1 b 1 Consider the midpoint x 0 = 1 2 1 chapte 2 : oot-finding def : Given a function f(), a oot is a numbe satisfying f() = 0. e : f() = 2 3 = ± 3 question : How can we find the oots of a geneal function f()? 2.1 bisection method idea : Find

More information

Energy in Closed Systems

Energy in Closed Systems Enegy n Closed Systems Anamta Palt palt.anamta@gmal.com Abstact The wtng ndcates a beakdown of the classcal laws. We consde consevaton of enegy wth a many body system n elaton to the nvese squae law and

More information

Irreversibility of Processes in Closed System

Irreversibility of Processes in Closed System Unversty of Segen Insttute of Flud- & hermodynamcs 5 2/1 Irreversblty of Processes n Closed System m G 2 m c 2 2, p, V m g h h 1 mc 1 1 p, p, V G J.P. Joule Strrng experment v J.B. Fourer Heat transfer

More information

Physica A 392 (2013) Contents lists available at SciVerse ScienceDirect. Physica A. journal homepage:

Physica A 392 (2013) Contents lists available at SciVerse ScienceDirect. Physica A. journal homepage: Physca A 392 (2013) 1318 1335 Contents lsts avalable at ScVese ScenceDect Physca A jounal homepage: www.elseve.com/locate/physa Themodynamcs n the lmt of evesble eactons A.N. Goban a,, E.M. Mkes b, G.S.

More information

Rotating Disk Electrode -a hydrodynamic method

Rotating Disk Electrode -a hydrodynamic method Rotatng Dsk Electode -a hdodnamc method Fe Lu Ma 3, 0 ente fo Electochemcal Engneeng Reseach Depatment of hemcal and Bomolecula Engneeng Rotatng Dsk Electode A otatng dsk electode RDE s a hdodnamc wokng

More information

Some Approximate Analytical Steady-State Solutions for Cylindrical Fin

Some Approximate Analytical Steady-State Solutions for Cylindrical Fin Some Appoxmate Analytcal Steady-State Solutons fo Cylndcal Fn ANITA BRUVERE ANDRIS BUIIS Insttute of Mathematcs and Compute Scence Unvesty of Latva Rana ulv 9 Rga LV459 LATVIA Astact: - In ths pape we

More information

SOME NEW SELF-DUAL [96, 48, 16] CODES WITH AN AUTOMORPHISM OF ORDER 15. KEYWORDS: automorphisms, construction, self-dual codes

SOME NEW SELF-DUAL [96, 48, 16] CODES WITH AN AUTOMORPHISM OF ORDER 15. KEYWORDS: automorphisms, construction, self-dual codes Факултет по математика и информатика, том ХVІ С, 014 SOME NEW SELF-DUAL [96, 48, 16] CODES WITH AN AUTOMORPHISM OF ORDER 15 NIKOLAY I. YANKOV ABSTRACT: A new method fo constuctng bnay self-dual codes wth

More information

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below. Fall 2007 Qualifie Pat II 12 minute questions 11) A thin, unifom od of mass M is suppoted by two vetical stings, as shown below. Find the tension in the emaining sting immediately afte one of the stings

More information

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41.

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41. Chapte I Matces, Vectos, & Vecto Calculus -, -9, -0, -, -7, -8, -5, -7, -36, -37, -4. . Concept of a Scala Consde the aa of patcles shown n the fgue. he mass of the patcle at (,) can be epessed as. M (,

More information

Multistage Median Ranked Set Sampling for Estimating the Population Median

Multistage Median Ranked Set Sampling for Estimating the Population Median Jounal of Mathematcs and Statstcs 3 (: 58-64 007 ISSN 549-3644 007 Scence Publcatons Multstage Medan Ranked Set Samplng fo Estmatng the Populaton Medan Abdul Azz Jeman Ame Al-Oma and Kamaulzaman Ibahm

More information

Applied Statistical Mechanics Lecture Note - 13 Molecular Dynamics Simulation

Applied Statistical Mechanics Lecture Note - 13 Molecular Dynamics Simulation Appled Statstcal Mechancs Lectue Note - 3 Molecula Dynamcs Smulaton 고려대학교화공생명공학과강정원 Contents I. Basc Molecula Dynamcs Smulaton Method II. Popetes Calculatons n MD III. MD n Othe Ensembles I. Basc MD Smulaton

More information

Introduction to Statistical Methods

Introduction to Statistical Methods Introducton to Statstcal Methods Physcs 4362, Lecture #3 hermodynamcs Classcal Statstcal Knetc heory Classcal hermodynamcs Macroscopc approach General propertes of the system Macroscopc varables 1 hermodynamc

More information

763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012

763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012 763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012 1. Continuous Random Walk Conside a continuous one-dimensional andom walk. Let w(s i ds i be the pobability that the length of the i th displacement

More information

A Brief Guide to Recognizing and Coping With Failures of the Classical Regression Assumptions

A Brief Guide to Recognizing and Coping With Failures of the Classical Regression Assumptions A Bef Gude to Recognzng and Copng Wth Falues of the Classcal Regesson Assumptons Model: Y 1 k X 1 X fxed n epeated samples IID 0, I. Specfcaton Poblems A. Unnecessay explanatoy vaables 1. OLS s no longe

More information

V7: Diffusional association of proteins and Brownian dynamics simulations

V7: Diffusional association of proteins and Brownian dynamics simulations V7: Diffusional association of poteins and Bownian dynamics simulations Bownian motion The paticle movement was discoveed by Robet Bown in 1827 and was intepeted coectly fist by W. Ramsay in 1876. Exact

More information

Review of Vector Algebra and Vector Calculus Operations

Review of Vector Algebra and Vector Calculus Operations Revew of Vecto Algeba and Vecto Calculus Opeatons Tpes of vaables n Flud Mechancs Repesentaton of vectos Dffeent coodnate sstems Base vecto elatons Scala and vecto poducts Stess Newton s law of vscost

More information

Machine Learning. Spectral Clustering. Lecture 23, April 14, Reading: Eric Xing 1

Machine Learning. Spectral Clustering. Lecture 23, April 14, Reading: Eric Xing 1 Machne Leanng -7/5 7/5-78, 78, Spng 8 Spectal Clusteng Ec Xng Lectue 3, pl 4, 8 Readng: Ec Xng Data Clusteng wo dffeent ctea Compactness, e.g., k-means, mxtue models Connectvty, e.g., spectal clusteng

More information

Summer Workshop on the Reaction Theory Exercise sheet 8. Classwork

Summer Workshop on the Reaction Theory Exercise sheet 8. Classwork Joned Physcs Analyss Cente Summe Wokshop on the Reacton Theoy Execse sheet 8 Vncent Matheu Contact: http://www.ndana.edu/~sst/ndex.html June June To be dscussed on Tuesday of Week-II. Classwok. Deve all

More information

Event Shape Update. T. Doyle S. Hanlon I. Skillicorn. A. Everett A. Savin. Event Shapes, A. Everett, U. Wisconsin ZEUS Meeting, October 15,

Event Shape Update. T. Doyle S. Hanlon I. Skillicorn. A. Everett A. Savin. Event Shapes, A. Everett, U. Wisconsin ZEUS Meeting, October 15, Event Shape Update A. Eveett A. Savn T. Doyle S. Hanlon I. Skllcon Event Shapes, A. Eveett, U. Wsconsn ZEUS Meetng, Octobe 15, 2003-1 Outlne Pogess of Event Shapes n DIS Smla to publshed pape: Powe Coecton

More information

Dynamics of Rigid Bodies

Dynamics of Rigid Bodies Dynamcs of Rgd Bodes A gd body s one n whch the dstances between consttuent patcles s constant thoughout the moton of the body,.e. t keeps ts shape. Thee ae two knds of gd body moton: 1. Tanslatonal Rectlnea

More information

Force and Work: Reminder

Force and Work: Reminder Electic Potential Foce and Wok: Reminde Displacement d a: initial point b: final point Reminde fom Mechanics: Foce F if thee is a foce acting on an object (e.g. electic foce), this foce may do some wok

More information

Asymptotic Solutions of the Kinetic Boltzmann Equation and Multicomponent Non-Equilibrium Gas Dynamics

Asymptotic Solutions of the Kinetic Boltzmann Equation and Multicomponent Non-Equilibrium Gas Dynamics Jounal of Appled Mathematcs and Physcs 6 4 687-697 Publshed Onlne August 6 n ScRes http://wwwscpog/jounal/jamp http://dxdoog/436/jamp64877 Asymptotc Solutons of the Knetc Boltzmann Equaton and Multcomponent

More information

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations Phys-7 Lectue 17 Motional Electomotive Foce (emf) Induced Electic Fields Displacement Cuents Maxwell s Equations Fom Faaday's Law to Displacement Cuent AC geneato Magnetic Levitation Tain Review of Souces

More information

PHYS Week 5. Reading Journals today from tables. WebAssign due Wed nite

PHYS Week 5. Reading Journals today from tables. WebAssign due Wed nite PHYS 015 -- Week 5 Readng Jounals today fom tables WebAssgn due Wed nte Fo exclusve use n PHYS 015. Not fo e-dstbuton. Some mateals Copyght Unvesty of Coloado, Cengage,, Peason J. Maps. Fundamental Tools

More information

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Kinematics of Rigid Bodies in Three Dimensions. Seventh Edition CHAPTER

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Kinematics of Rigid Bodies in Three Dimensions. Seventh Edition CHAPTER Edton CAPTER 8 VECTOR MECANCS FOR ENGNEERS: DYNAMCS Fednand P. Bee E. Russell Johnston, J. Lectue Notes: J. Walt Ole Teas Tech Unvest Knematcs of Rgd Bodes n Thee Dmensons 003 The McGaw-ll Companes, nc.

More information

8 Baire Category Theorem and Uniform Boundedness

8 Baire Category Theorem and Uniform Boundedness 8 Bae Categoy Theoem and Unfom Boundedness Pncple 8.1 Bae s Categoy Theoem Valdty of many esults n analyss depends on the completeness popety. Ths popety addesses the nadequacy of the system of atonal

More information

Partition Functions. Chris Clark July 18, 2006

Partition Functions. Chris Clark July 18, 2006 Patition Functions Chis Clak July 18, 2006 1 Intoduction Patition functions ae useful because it is easy to deive expectation values of paametes of the system fom them. Below is a list of the mao examples.

More information

Physics Exam II Chapters 25-29

Physics Exam II Chapters 25-29 Physcs 114 1 Exam II Chaptes 5-9 Answe 8 of the followng 9 questons o poblems. Each one s weghted equally. Clealy mak on you blue book whch numbe you do not want gaded. If you ae not sue whch one you do

More information

Review. Physics 231 fall 2007

Review. Physics 231 fall 2007 Reew Physcs 3 all 7 Man ssues Knematcs - moton wth constant acceleaton D moton, D pojectle moton, otatonal moton Dynamcs (oces) Enegy (knetc and potental) (tanslatonal o otatonal moton when detals ae not

More information

Consequences of Long Term Transients in Large Area High Density Plasma Processing: A 3-Dimensional Computational Investigation*

Consequences of Long Term Transients in Large Area High Density Plasma Processing: A 3-Dimensional Computational Investigation* ISPC 2003 June 22-27, 2003 Consequences of Long Tem Tansents n Lage Aea Hgh Densty Plasma Pocessng: A 3-Dmensonal Computatonal Investgaton* Pamod Subamonum** and Mak J Kushne*** **Dept of Chemcal and Bomolecula

More information

Tensor. Syllabus: x x

Tensor. Syllabus: x x Tenso Sllabus: Tenso Calculus : Catesan tensos. Smmetc and antsmmetc tensos. Lev Vvta tenso denst. Pseudo tensos. Dual tensos. Dect poduct and contacton. Dads and dadc. Covaant, Contavaant and med tensos.

More information

The second law of thermodynamics - II.

The second law of thermodynamics - II. Januay 21, 2013 The second law of themodynamics - II. Asaf Pe e 1 1. The Schottky defect At absolute zeo tempeatue, the atoms of a solid ae odeed completely egulaly on a cystal lattice. As the tempeatue

More information

The Law of Biot-Savart & RHR P θ

The Law of Biot-Savart & RHR P θ The Law of iot-savat & RHR P R dx x Jean-aptiste iot élix Savat Phys 122 Lectue 19 G. Rybka Recall: Potential Enegy of Dipole Wok equied to otate a cuentcaying loop in a magnetic field Potential enegy

More information

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b.

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b. Solutions. Plum Pudding Model (a) Find the coesponding electostatic potential inside and outside the atom. Fo R The solution can be found by integating twice, 2 V in = ρ 0 ε 0. V in = ρ 0 6ε 0 2 + a 2

More information

Chapter 3: Theory of Modular Arithmetic 38

Chapter 3: Theory of Modular Arithmetic 38 Chapte 3: Theoy of Modula Aithmetic 38 Section D Chinese Remainde Theoem By the end of this section you will be able to pove the Chinese Remainde Theoem apply this theoem to solve simultaneous linea conguences

More information

Tian Zheng Department of Statistics Columbia University

Tian Zheng Department of Statistics Columbia University Haplotype Tansmsson Assocaton (HTA) An "Impotance" Measue fo Selectng Genetc Makes Tan Zheng Depatment of Statstcs Columba Unvesty Ths s a jont wok wth Pofesso Shaw-Hwa Lo n the Depatment of Statstcs at

More information

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx.

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx. 9. LAGRANGIAN OF THE ELECTROMAGNETIC FIELD In the pevious section the Lagangian and Hamiltonian of an ensemble of point paticles was developed. This appoach is based on a qt. This discete fomulation can

More information

1 Fundamental Solutions to the Wave Equation

1 Fundamental Solutions to the Wave Equation 1 Fundamental Solutions to the Wave Equation Physical insight in the sound geneation mechanism can be gained by consideing simple analytical solutions to the wave equation. One example is to conside acoustic

More information

P 365. r r r )...(1 365

P 365. r r r )...(1 365 SCIENCE WORLD JOURNAL VOL (NO4) 008 www.scecncewoldounal.og ISSN 597-64 SHORT COMMUNICATION ANALYSING THE APPROXIMATION MODEL TO BIRTHDAY PROBLEM *CHOJI, D.N. & DEME, A.C. Depatment of Mathematcs Unvesty

More information

Chapter Fifiteen. Surfaces Revisited

Chapter Fifiteen. Surfaces Revisited Chapte Ffteen ufaces Revsted 15.1 Vecto Descpton of ufaces We look now at the vey specal case of functons : D R 3, whee D R s a nce subset of the plane. We suppose s a nce functon. As the pont ( s, t)

More information

On the integration of the equations of hydrodynamics

On the integration of the equations of hydrodynamics Uebe die Integation de hydodynamischen Gleichungen J f eine u angew Math 56 (859) -0 On the integation of the equations of hydodynamics (By A Clebsch at Calsuhe) Tanslated by D H Delphenich In a pevious

More information

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006 1 Qualifying Examination Electicity and Magnetism Solutions Januay 12, 2006 PROBLEM EA. a. Fist, we conside a unit length of cylinde to find the elationship between the total chage pe unit length λ and

More information

PHY126 Summer Session I, 2008

PHY126 Summer Session I, 2008 PHY6 Summe Sesson I, 8 Most of nfomaton s avalable at: http://nngoup.phscs.sunsb.edu/~chak/phy6-8 ncludng the sllabus and lectue sldes. Read sllabus and watch fo mpotant announcements. Homewok assgnment

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4 CSJM Unvesty Class: B.Sc.-II Sub:Physcs Pape-II Ttle: Electomagnetcs Unt-: Electostatcs Lectue: to 4 Electostatcs: It deals the study of behavo of statc o statonay Chages. Electc Chage: It s popety by

More information

THE MAGNETIC FIELD. This handout covers: The magnetic force between two moving charges. The magnetic field, B, and magnetic field lines

THE MAGNETIC FIELD. This handout covers: The magnetic force between two moving charges. The magnetic field, B, and magnetic field lines EM 005 Handout 7: The Magnetic ield 1 This handout coes: THE MAGNETIC IELD The magnetic foce between two moing chages The magnetic field,, and magnetic field lines Magnetic flux and Gauss s Law fo Motion

More information

Chapter 8. Linear Momentum, Impulse, and Collisions

Chapter 8. Linear Momentum, Impulse, and Collisions Chapte 8 Lnea oentu, Ipulse, and Collsons 8. Lnea oentu and Ipulse The lnea oentu p of a patcle of ass ovng wth velocty v s defned as: p " v ote that p s a vecto that ponts n the sae decton as the velocty

More information

TUTORIAL 9. Static magnetic field

TUTORIAL 9. Static magnetic field TUTOIAL 9 Static magnetic field Vecto magnetic potential Null Identity % & %$ A # Fist postulation # " B such that: Vecto magnetic potential Vecto Poisson s equation The solution is: " Substitute it into

More information

A. Thicknesses and Densities

A. Thicknesses and Densities 10 Lab0 The Eath s Shells A. Thcknesses and Denstes Any theoy of the nteo of the Eath must be consstent wth the fact that ts aggegate densty s 5.5 g/cm (ecall we calculated ths densty last tme). In othe

More information

CADiff: a software and method to numerically model diffusion and reactive diffusion in multi-component systems

CADiff: a software and method to numerically model diffusion and reactive diffusion in multi-component systems Cff: a softwae and method to numecally model dffuson and eactve dffuson n mult-component systems Maek NIELEWSKI a, Batlomej WIERZB b Intedscplnay Cente fo Mateals Modelng, Faculty of Mateals Scence and

More information

NAME and Section No. it is found that 0.6 mol of O

NAME and Section No. it is found that 0.6 mol of O NAME and Secton No. Chemstry 391 Fall 7 Exam III KEY 1. (3 Ponts) ***Do 5 out of 6***(If 6 are done only the frst 5 wll be graded)*** a). In the reacton 3O O3 t s found that.6 mol of O are consumed. Fnd

More information

Question 1: The dipole

Question 1: The dipole Septembe, 08 Conell Univesity, Depatment of Physics PHYS 337, Advance E&M, HW #, due: 9/5/08, :5 AM Question : The dipole Conside a system as discussed in class and shown in Fig.. in Heald & Maion.. Wite

More information

Current, Resistance and

Current, Resistance and Cuent, Resistance and Electomotive Foce Chapte 25 Octobe 2, 2012 Octobe 2, 2012 Physics 208 1 Leaning Goals The meaning of electic cuent, and how chages move in a conducto. What is meant by esistivity

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

CHEMICAL REACTIONS AND DIFFUSION

CHEMICAL REACTIONS AND DIFFUSION CHEMICAL REACTIONS AND DIFFUSION A.K.A. NETWORK THERMODYNAMICS BACKGROUND Classcal thermodynamcs descrbes equlbrum states. Non-equlbrum thermodynamcs descrbes steady states. Network thermodynamcs descrbes

More information

Unit 7: Sources of magnetic field

Unit 7: Sources of magnetic field Unit 7: Souces of magnetic field Oested s expeiment. iot and Savat s law. Magnetic field ceated by a cicula loop Ampèe s law (A.L.). Applications of A.L. Magnetic field ceated by a: Staight cuent-caying

More information

Density Functional Theory I

Density Functional Theory I Densty Functonal Theoy I cholas M. Hason Depatment of Chemsty Impeal College Lonon & Computatonal Mateals Scence Daesbuy Laboatoy ncholas.hason@c.ac.uk Densty Functonal Theoy I The Many Electon Schönge

More information

1 Similarity Analysis

1 Similarity Analysis ME43A/538A/538B Axisymmetic Tubulent Jet 9 Novembe 28 Similaity Analysis. Intoduction Conside the sketch of an axisymmetic, tubulent jet in Figue. Assume that measuements of the downsteam aveage axial

More information

Review of Classical Thermodynamics

Review of Classical Thermodynamics Revew of Classcal hermodynamcs Physcs 4362, Lecture #1, 2 Syllabus What s hermodynamcs? 1 [A law] s more mpressve the greater the smplcty of ts premses, the more dfferent are the knds of thngs t relates,

More information

3. Magnetostatic fields

3. Magnetostatic fields 3. Magnetostatic fields D. Rakhesh Singh Kshetimayum 1 Electomagnetic Field Theoy by R. S. Kshetimayum 3.1 Intoduction to electic cuents Electic cuents Ohm s law Kichoff s law Joule s law Bounday conditions

More information

Online Appendix to Position Auctions with Budget-Constraints: Implications for Advertisers and Publishers

Online Appendix to Position Auctions with Budget-Constraints: Implications for Advertisers and Publishers Onlne Appendx to Poston Auctons wth Budget-Constants: Implcatons fo Advetses and Publshes Lst of Contents A. Poofs of Lemmas and Popostons B. Suppotng Poofs n the Equlbum Devaton B.1. Equlbum wth Low Resevaton

More information

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS. GNRAL PHYSICS PH -3A (D. S. Mov) Test (/3/) key STUDNT NAM: STUDNT d #: -------------------------------------------------------------------------------------------------------------------------------------------

More information