is needed and this can be established by multiplying A, obtained in step 3, by, resulting V = A x y =. = x, located in 1 st quadrant rotated about 2

Size: px
Start display at page:

Download "is needed and this can be established by multiplying A, obtained in step 3, by, resulting V = A x y =. = x, located in 1 st quadrant rotated about 2"

Transcription

1 Ct Cllege f New Yk MATH (Calculus Ntes) Page 1 f 1 Essental Calculus, nd edtn (Stewat) Chapte 7 Sectn, and 6 auth: M. Pak Chapte 7 sectn : Vlume Suface f evlutn (Dsc methd) 1) Estalsh the tatn as and the nteval we need t calculate (ntesectn pnts f the functns). ) We need t get the aea etween ccles wth same cente (cente s the tatn as), see fgue. The aea f ccle s A = π, theefe we need t fgue the ad f the ccles (The adus s fm the tatn as t the functn). Ths wll gve us ad, call them ute ( ) and nne ( ) adus. Thus we have A = π and A = π. Hw t fnd adus: The heght f the functn s measued fm - -as t the functn, ut the adus (ethe ) s fm the tatn as t the functn. Yu ma need t add sutact t tan u adus. ) The aea f the shaded egn s A= A A. Ths s the functn that we wll ntegate (Daw the csssectn dagam). ememe that A s ethe a functn f. 4) A thn vlume V s needed and ths can e estalshed multplng A, taned n step,, esultng V = A V = A. 5) The fnal vlume s calculated V = lm Vj = lm Aj j. Snce we ae calculatng cntnuus n n functn, we wll calculate: V = Ad V = A d. a a Eample.1: Fnd the aea unded =, = Step 1: see fgue t the left = =, lcated n 1 st quadant tated aut = = 1= = = = 1 1 = ( ) =. = + = + Step : A = π ( + ) A = π ( + ) = π ( ) = π (4 4 ) = Step : A = A A = π (4 4 ) π(4 4 ) = π [ ] = π + 4 (4 4 )

2 Ct Cllege f New Yk MATH (Calculus Ntes) Page f 1 Essental Calculus, nd edtn (Stewat) Chapte 7 Sectn, and 6 auth: M. Pak 4 V = A = π (4 + 4 ) V = π(4 + 4 ) d= π Step 5: = π (1) + (1) (1) (1) [] 5 = π + = π π = π + = π = 1 Eample.: Same estctn as Eample.1, ut tated aut =. = Step 1: see fgue t the left and take same endpnts as Eample.1. = = Step : Ntce that n ths case we need t sutact the heght f the functn fm a cnstant value f t get u needed ad (unlke the Eample.1 whee we needed t add t the heght f the functn). Thus esultng wth u ad t e: = = ( ) π ( ) A = π A = = π + = + 4 (9 6 ) π (9 6 ) Step : A = A A = π (9 6 ) π(9 6 ) = π [ ] = π + 4 ( 6 6 ) 4 V = A = π ( ) 1 1 V = π( ) d= π Step 5: = π (1) (1) (1) + 4(1) [] 4 5 = π + = π π = π + = π =

3 Ct Cllege f New Yk MATH (Calculus Ntes) Page f 1 Essental Calculus, nd edtn (Stewat) Chapte 7 Sectn, and 6 auth: M. Pak Eample.: Calculate the vlume geneated tatng 1 st quadant f = 1. = and =, tated aut = = Step 1: see fgue t the left = = ( ) = = = = 1 Step : Ntce that unlke the pevus eamples, the ad s measued hzntall nt vetcall ecause we ae geneatng vlume tatng aut vetcal as. = 1+ = 1+ A = π + A = + (1 ) π(1 ) = π + + = π (1 4 4 ) (1 ) Step : A = A A = π + + π + + = π + + = π (1 4 4 ) (1 ) [ ] (4 ) = = + 4 V A π (4 ) V = π(4+ ) d = π () () () [] + = π Step 5: π = π 8 + = π + = π = Eample.4: Same estctn as Eample., ut tated aut = 5. Step 1: see fgue t the left and take same endpnts as Eample.. = = Step : Ntce that n ths case we need t sutact the heght f the functn fm a cnstant value f t get u needed ad (unlke the Eample. whee we needed t add 1 t the heght f the functn). Thus esultng wth u ad t e: = 5 = 5 ( 5 ) π ( 5 ) 4 (5 1 ) A = π A = = π + = π + (5 4 ) = 5

4 Ct Cllege f New Yk MATH (Calculus Ntes) Page 4 f 1 Essental Calculus, nd edtn (Stewat) Chapte 7 Sectn, and 6 auth: M. Pak Step : A = A A = π + π + = π + + = π + 4 ( 14 ) 4 4 (5 1 ) (5 4 ) [ ] = = + 4 V A π ( 14 ) V = π( 14 + ) d = π 1 () () 1() [] + = π Step 5: π = π + 4 = π + = π = Chapte 7 sectn : Vlume Suface f evlutn (Shell methd) 1) Ths methd s geneatng vlume wappng ectangula sheets n tp, lae afte lae. Imagne wappng alumnum fl n a all pnt pen; as we appl me fl, the veall damete gets thcke. Daw a css sectn dagam s we can estalsh the tatn as and the nteval we need t calculate (ntesectn pnts f the functns). ) We ae wappng ectangula sheets see fgue. What we need t get s the aea f ectangle (ata). Wdth s ease; just take the dffeence f the uppe and lwe functns (lke Sectn 6.1). The length s the tcke ne. Ths s the ccumfeence f the ccula pat that s wappng aund. The adus (thee s nl ne) s measued fm the tatng as t the pnt whee the functns ae epessed (emnde: adus s nt alwas = = ). Make sue t daw a css-sectn dagam s we can detemne f we need t take the sum the dffeence n epessng u adus. l = C = π [ ( ) ( )] w= f g f( ) uppe functn g ( ) lwe functn ) Detemne A = l w usng l and w fm pat. Then u n the tatng as. V = A V = A dependng 4) The fnal vlume s calculatng V V = A d V = A d. a a = lm n n j = 1 V j. Snce we ae calculatng cntnuus functns

5 Ct Cllege f New Yk MATH (Calculus Ntes) Page 5 f 1 Essental Calculus, nd edtn (Stewat) Chapte 7 Sectn, and 6 auth: M. Pak Eample.1: Calculate the vlume geneated tatng the aea f ntesectn pnts f =, and =, tated aut = 1. = and = Step 1: see fgue t the left = = = ( ) = = w Step : w= ( ) ( ) = = 1+ l = C = π = π (1 + ) = Step : A = l w= + π (1 )( ) = + π ( ) = + V = A π ( ) = 1 = π ( + ) V = π(+ ) d= π () () () [] + = π π = π + 18 = π + = π = Eample.: Same estctn as Eample.1, ut tated aut = 4. = Step 1: see fgue t the left and take same endpnts as Eample.1. w Step : The wdth s same as Eample.1. But ntce that n ths case we need t sutact fm a cnstant value f 4 t get u needed adus (unlke the Eample.1 whee we needed t add 1 t ). Thus esultng wth u adus t e: = 4 l = C = π = π (4 ) = = 4 Step : A = l w= π (4 )( ) = + π (1 4 ) = + π (1 7 ) π (1 7 ) V = A = +

6 Ct Cllege f New Yk MATH (Calculus Ntes) Page 6 f 1 Essental Calculus, nd edtn (Stewat) Chapte 7 Sectn, and 6 auth: M. Pak V = π(1 7 + ) d= π 6 6() () () [] + = π π = π = π 9+ = π + = π = Eample.: Calculate the vlume geneated tatng the aea f ntesectn pnts f =, tated aut =. = + and Step 1: see fgue t the left = + + = = w = ( + 1)( ) = = 1 = Step : w= ( ) ( + ) = + = + l = C = π = π ( + ) = Step : A = l w= + + π ( )( ) = π (4 ) = + V = A π (4 4 ) = π (4+ 4 ) V = π(4+ 4 ) d = π = π 4() + () () () 4( 1) + ( 1) ( 1) ( 1) = π = π = π 14 + = π 14 + = π π = π + = π =

7 Ct Cllege f New Yk MATH (Calculus Ntes) Page 7 f 1 Essental Calculus, nd edtn (Stewat) Chapte 7 Sectn, and 6 auth: M. Pak Eample.4: Same estctn as Eample., ut tated aut = 4. = 4 Step 1: see fgue t the left and take same endpnts as Eample.. = + w = Step : The wdth s same as Eample.. But ntce that n ths case we need t sutact fm a cnstant value f 4 t get u needed adus (unlke the Eample. whee we needed t add t ). Thus esultng wth u adus t e: = 4 l = C = π = π (4 ) Step : A = l w= + π (4 )( ) = + + π (8 4 4 ) = + + π (8 5 ) π (8 5 ) V = A = V = π( ) d = π = π 8() + () () + () 8( 1) ( 1) ( 1) ( 1) = π π = π = π 1 = π 1 15 = π 16 = π = π = Chapte 7 sectn 6: Wk (Lqud Pumpng methd) The set up f wk f pumpng lqud s smla t the set up f elated ates plems fm 1 st Calculus class. Theefe, we need t e ale t fmulate cectl the vlume equatn n sngle vaale. But nstead f a geneal vlume V, we need t fnd a thn vlume V. 1) Daw a css-sectn dagam (sde vew and tp vew). Tp vew s needed f us t fnd ut the gemetc shape f the vlume we ae lftng t calculate wk. Sde vew s needed t detemne the pumpng dstance and fmulatn f the aea, A, whch s the fgue taned fm the tp vew and eventuall geneate V. Make sue t fgue ut the nteval whee the lqud s eng pumped ( a ). ) Geneate the aea A (whch can e ectangula, ccula, tangula, etc.), then multpl and we wll get V. Ths s the thn vlume that we wll pump ut f the tank (thnk f lftng a eam f pape ut nstead f lftng ente eam nce, thnk f lftng a sheet at a tme untl the ente eam s lfted t a hghe lcatn). Then we can fmulate F (thee ae usuall cases f F that we need t w aut, metc fm and Englsh fm) shwn elw:

8 Ct Cllege f New Yk MATH (Calculus Ntes) Page 8 f 1 Essental Calculus, nd edtn (Stewat) Chapte 7 Sectn, and 6 auth: M. Pak V = A Metc [measuement dne usng metes (m)] Englsh [measuement dne wth feet (ft)] Get mass: m = ( denst)( vlume) Usuall denst f wate s used 1 kg / m Theefe: m= (1) V Get fce: F = m a, Usuall a s gavt whch s 9.8 m / sec F = (9.8) m = (9.8)(1) V = (98) V Ths case s smple ecause a cnstant nume vaale s gven such that fm vlume we can tan fce wthut calculatng the mass (call t δ ). F = δ ( vlume) F = δ V = δ A = (98) A Keep n mnd that usuall the methd usng metc measuement s lnge ecause fm vlume we need t get mass efe tanng the fce; whle the methd usng Englsh measuement s a t shte fm vlume we get the fce mmedatel. If we use sme the lqud nstead f wate n metc measuement, then the denst wll als change thus changng the cnstant n fce equatn t a dffeent value than the ne shwn ave. ) Wk fmula s W = F p, whee F = fce and p = pumpng dstance. Theefe, we get W = F p = p F = pa. Bth epessn p and A s a functn f ; the epessn pa shuld e dstuted and smplfed, n de f us t have a smple ntegatn. 4) Snce we ae dealng wth cntnuus functn: W = pad. a Eample 6.1: Cnsde a V shaped tank 1 metes wde, 5 metes at the tp, and metes hgh flled full f wate (see fgue t the ght). Attached t the tp s a ppe f 1 mete whee wate wll e pumped. Fnd the wk dne when 1 mete f wate (measued fm the tp) s pumped ut f the tank. 1 m 5m 1 m m Tp vew Sde vew 5m 1m p Step 1: See fgues t the left. Als fm sde vew we can calculate u pumpng dstance f p = 1+. Cnsdeng that the tp f the tank s =, we can cnclude that u ntegatng nteval s 1. m Step : The tp vew shws us that the aea we need t calculate s a ectangle. And the length f ths ectangle s. Usng tangula pptn, we get: = = 5 ( ) 5

9 Ct Cllege f New Yk MATH (Calculus Ntes) Page 9 f 1 Essental Calculus, nd edtn (Stewat) Chapte 7 Sectn, and 6 auth: M. Pak 5 A = 1 = (1) ( ) = 5( ) V = A = 5( ) m= ( denst) V = (1)(5( )) F = a m= (9.8)(1)(5( )) = (98)(5( )) = 45( ) Step : = = (1 + )(45( )) = 45( + ) W p F W = 45( + ) d= (1) (1) (1) [] + = = 45 + = 45 + = 45 = 15 = jules Eample 6.: Cnsde a cncal tank (see fgue t the ght), full f msteus lqud, wth pnted sde up; the ase adus s feet and heght s feet; attached t the tp s a ppe f 4 feet whee the lqud wll e pumped. The denst f lqud s 1 ls/ft. Fnd the wk dne when the ente msteus lqud s pumped fm the tank. 4 ft Tp vew ft Step 1: See fgues t the left. Als fm sde vew we can calculate u pumpng dstance f p = 4 +. Cnsdeng that the tp f the tank s =, we can cnclude that u ntegatng nteval s. ft Sde vew p 4 ft ft Step : The tp vew shws us that the aea we need t calculate s a ccle. And the adus f ths ccle s. Usng tangula pptn, we get: = = 4π A = π = π = 9 4π V = A = 9 Denst: δ = 1 ls/ft 4π 4π F = V = = 9 9 δ 1 ft ft Step : 4π 4π 9 9 W = p F = (4 + ) = (4 + )

10 Ct Cllege f New Yk MATH (Calculus Ntes) Page 1 f 1 Essental Calculus, nd edtn (Stewat) Chapte 7 Sectn, and 6 auth: M. Pak 4 4 4π 4π 4 1 4π 4 1 4π 81 W = (4 + ) d= () () [] 4(9) = + = π 9 4π = 4(9) + (9) = (9) 4 + = 4π + = 4π = 1 π(5) = 5π ft-punds Nw f u e up t the challenge, t ths fllwng eecse: Eecse 6.: Fnd the wk dne n pumpng the wate ve the m f a tank, whch s 5 feet lng and has a semccula end f adus 1 feet, f the tank s flled t a depth f 7 feet. [nte: Denst f wate s δ = 6.4 ].

Electric potential energy Electrostatic force does work on a particle : Potential energy (: i initial state f : final state):

Electric potential energy Electrostatic force does work on a particle : Potential energy (: i initial state f : final state): Electc ptental enegy Electstatc fce des wk n a patcle : v v v v W = F s = E s. Ptental enegy (: ntal state f : fnal state): Δ U = U U = W. f ΔU Electc ptental : Δ : ptental enegy pe unt chag e. J ( Jule)

More information

Summary chapter 4. Electric field s can distort charge distributions in atoms and molecules by stretching and rotating:

Summary chapter 4. Electric field s can distort charge distributions in atoms and molecules by stretching and rotating: Summa chapte 4. In chapte 4 dielectics ae discussed. In thse mateials the electns ae nded t the atms mlecules and cannt am fee thugh the mateial: the electns in insulats ae n a tight leash and all the

More information

Work, Energy, and Power. AP Physics C

Work, Energy, and Power. AP Physics C k, Eneg, and Pwe AP Phsics C Thee ae man diffeent TYPES f Eneg. Eneg is expessed in JOULES (J) 4.19 J = 1 calie Eneg can be expessed me specificall b using the tem ORK() k = The Scala Dt Pduct between

More information

WYSE Academic Challenge Sectional Mathematics 2006 Solution Set

WYSE Academic Challenge Sectional Mathematics 2006 Solution Set WYSE Academic Challenge Sectinal 006 Slutin Set. Cect answe: e. mph is 76 feet pe minute, and 4 mph is 35 feet pe minute. The tip up the hill takes 600/76, 3.4 minutes, and the tip dwn takes 600/35,.70

More information

Chapter Fifiteen. Surfaces Revisited

Chapter Fifiteen. Surfaces Revisited Chapte Ffteen ufaces Revsted 15.1 Vecto Descpton of ufaces We look now at the vey specal case of functons : D R 3, whee D R s a nce subset of the plane. We suppose s a nce functon. As the pont ( s, t)

More information

1. Show that the volume of the solid shown can be represented by the polynomial 6x x.

1. Show that the volume of the solid shown can be represented by the polynomial 6x x. 7.3 Dividing Polynomials by Monomials Focus on Afte this lesson, you will be able to divide a polynomial by a monomial Mateials algeba tiles When you ae buying a fish tank, the size of the tank depends

More information

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41.

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41. Chapte I Matces, Vectos, & Vecto Calculus -, -9, -0, -, -7, -8, -5, -7, -36, -37, -4. . Concept of a Scala Consde the aa of patcles shown n the fgue. he mass of the patcle at (,) can be epessed as. M (,

More information

24-2: Electric Potential Energy. 24-1: What is physics

24-2: Electric Potential Energy. 24-1: What is physics D. Iyad SAADEDDIN Chapte 4: Electc Potental Electc potental Enegy and Electc potental Calculatng the E-potental fom E-feld fo dffeent chage dstbutons Calculatng the E-feld fom E-potental Potental of a

More information

CHAPTER 24 GAUSS LAW

CHAPTER 24 GAUSS LAW CHAPTR 4 GAUSS LAW LCTRIC FLUX lectic flux is a measue f the numbe f electic filed lines penetating sme suface in a diectin pependicula t that suface. Φ = A = A csθ with θ is the angle between the and

More information

Review of Vector Algebra and Vector Calculus Operations

Review of Vector Algebra and Vector Calculus Operations Revew of Vecto Algeba and Vecto Calculus Opeatons Tpes of vaables n Flud Mechancs Repesentaton of vectos Dffeent coodnate sstems Base vecto elatons Scala and vecto poducts Stess Newton s law of vscost

More information

Rotational Kinematics. Rigid Object about a Fixed Axis Western HS AP Physics 1

Rotational Kinematics. Rigid Object about a Fixed Axis Western HS AP Physics 1 Rotatonal Knematcs Rgd Object about a Fxed Axs Westen HS AP Physcs 1 Leanng Objectes What we know Unfom Ccula Moton q s Centpetal Acceleaton : Centpetal Foce: Non-unfom a F c c m F F F t m ma t What we

More information

UNIT10 PLANE OF REGRESSION

UNIT10 PLANE OF REGRESSION UIT0 PLAE OF REGRESSIO Plane of Regesson Stuctue 0. Intoducton Ojectves 0. Yule s otaton 0. Plane of Regesson fo thee Vaales 0.4 Popetes of Resduals 0.5 Vaance of the Resduals 0.6 Summay 0.7 Solutons /

More information

6. Cascode Amplifiers and Cascode Current Mirrors

6. Cascode Amplifiers and Cascode Current Mirrors 6. Cascde plfes and Cascde Cuent Ms Seda & Sth Sec. 7 (MOS ptn (S&S 5 th Ed: Sec. 6 MOS ptn & ne fequency espnse ECE 0, Fall 0, F. Najabad Cascde aplfe s a ppula buldn blck f ICs Cascde Cnfuatn CG stae

More information

Physics 1501 Lecture 19

Physics 1501 Lecture 19 Physcs 1501 ectue 19 Physcs 1501: ectue 19 Today s Agenda Announceents HW#7: due Oct. 1 Mdte 1: aveage 45 % Topcs otatonal Kneatcs otatonal Enegy Moents of Ineta Physcs 1501: ectue 19, Pg 1 Suay (wth copason

More information

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles /4/04 Chapte 7 Lnea oentu Lnea oentu of a Sngle Patcle Lnea oentu: p υ It s a easue of the patcle s oton It s a vecto, sla to the veloct p υ p υ p υ z z p It also depends on the ass of the object, sla

More information

element k Using FEM to Solve Truss Problems

element k Using FEM to Solve Truss Problems sng EM t Slve Truss Prblems A truss s an engneerng structure cmpsed straght members, a certan materal, that are tpcall pn-ned at ther ends. Such members are als called tw-rce members snce the can nl transmt

More information

T-model: - + v o. v i. i o. v e. R i

T-model: - + v o. v i. i o. v e. R i T-mdel: e gm - V Rc e e e gme R R R 23 e e e gme R R The s/c tanscnductance: G m e m g gm e 0 The nput esstance: R e e e e The utput esstance: R R 0 /c unladed ltage gan, R a g R m e gmr e 0 m e g me e/e

More information

hitt Phy2049: Magnetism 6/10/2011 Magnetic Field Units Force Between Two Parallel Currents Force Between Two Anti-Parallel Currents

hitt Phy2049: Magnetism 6/10/2011 Magnetic Field Units Force Between Two Parallel Currents Force Between Two Anti-Parallel Currents 6/0/0 Phy049: Magsm Last lectue: t-avat s and Ampee s law: Magc eld due t a staght we Cuent lps (whle bts)and slends Tday: emnde and aaday s law. htt Tw lng staght wes pece the plane f the pape at vetces

More information

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems Engneeng echancs oce esultants, Toques, Scala oducts, Equvalent oce sstems Tata cgaw-hll Companes, 008 Resultant of Two oces foce: acton of one bod on anothe; chaacteed b ts pont of applcaton, magntude,

More information

A. Thicknesses and Densities

A. Thicknesses and Densities 10 Lab0 The Eath s Shells A. Thcknesses and Denstes Any theoy of the nteo of the Eath must be consstent wth the fact that ts aggegate densty s 5.5 g/cm (ecall we calculated ths densty last tme). In othe

More information

PHY126 Summer Session I, 2008

PHY126 Summer Session I, 2008 PHY6 Summe Sesson I, 8 Most of nfomaton s avalable at: http://nngoup.phscs.sunsb.edu/~chak/phy6-8 ncludng the sllabus and lectue sldes. Read sllabus and watch fo mpotant announcements. Homewok assgnment

More information

Module 9 Thin and thick cylinders

Module 9 Thin and thick cylinders Mdule 9 Thn and thck cylndes Vesn 2 ME, IIT Khaagu Lessn 3 Desgn ncles f thck cylndes Vesn 2 ME, IIT Khaagu Instuctnal Objectves: At the end f ths lessn, the students shuld have the knwledge f: Falue thees

More information

TEST-03 TOPIC: MAGNETISM AND MAGNETIC EFFECT OF CURRENT Q.1 Find the magnetic field intensity due to a thin wire carrying current I in the Fig.

TEST-03 TOPIC: MAGNETISM AND MAGNETIC EFFECT OF CURRENT Q.1 Find the magnetic field intensity due to a thin wire carrying current I in the Fig. TEST-03 TPC: MAGNETSM AND MAGNETC EFFECT F CURRENT Q. Fnd the magnetc feld ntensty due to a thn we cayng cuent n the Fg. - R 0 ( + tan) R () 0 ( ) R 0 ( + ) R 0 ( + tan ) R Q. Electons emtted wth neglgble

More information

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS. GNRAL PHYSICS PH -3A (D. S. Mov) Test (/3/) key STUDNT NAM: STUDNT d #: -------------------------------------------------------------------------------------------------------------------------------------------

More information

Test 1 phy What mass of a material with density ρ is required to make a hollow spherical shell having inner radius r i and outer radius r o?

Test 1 phy What mass of a material with density ρ is required to make a hollow spherical shell having inner radius r i and outer radius r o? Test 1 phy 0 1. a) What s the pupose of measuement? b) Wte all fou condtons, whch must be satsfed by a scala poduct. (Use dffeent symbols to dstngush opeatons on ectos fom opeatons on numbes.) c) What

More information

Active Load. Reading S&S (5ed): Sec. 7.2 S&S (6ed): Sec. 8.2

Active Load. Reading S&S (5ed): Sec. 7.2 S&S (6ed): Sec. 8.2 cte La ean S&S (5e: Sec. 7. S&S (6e: Sec. 8. In nteate ccuts, t s ffcult t fabcate essts. Instea, aplfe cnfuatns typcally use acte las (.e. las ae w acte eces. Ths can be ne usn a cuent suce cnfuatn,.e.

More information

Electric Charge. Electric charge is quantized. Electric charge is conserved

Electric Charge. Electric charge is quantized. Electric charge is conserved lectstatics lectic Chage lectic chage is uantized Chage cmes in incements f the elementay chage e = ne, whee n is an intege, and e =.6 x 0-9 C lectic chage is cnseved Chage (electns) can be mved fm ne

More information

Section 4.2 Radians, Arc Length, and Area of a Sector

Section 4.2 Radians, Arc Length, and Area of a Sector Sectin 4.2 Radian, Ac Length, and Aea f a Sect An angle i fmed by tw ay that have a cmmn endpint (vetex). One ay i the initial ide and the the i the teminal ide. We typically will daw angle in the cdinate

More information

A) 100 K B) 150 K C) 200 K D) 250 K E) 350 K

A) 100 K B) 150 K C) 200 K D) 250 K E) 350 K Phys10 Secnd Maj-09 Ze Vesin Cdinat: k Wednesday, May 05, 010 Page: 1 Q1. A ht bject and a cld bject ae placed in themal cntact and the cmbinatin is islated. They tansfe enegy until they each a final equilibium

More information

Electromagnetic Waves

Electromagnetic Waves Chapte 3 lectmagnetic Waves 3.1 Maxwell s quatins and ectmagnetic Waves A. Gauss s Law: # clsed suface aea " da Q enc lectic fields may be geneated by electic chages. lectic field lines stat at psitive

More information

4. The material balances for isothermal ideal reactor models

4. The material balances for isothermal ideal reactor models Summay Geneal mateal balane f eatng system Bath eat Cntnuus-flw eats: CST (Cntnuus Sted Tank eat) P (Plug lw eat) Steady state f CST and P Desgn tasks : utlet (fnal nvesn), gven vlume f eat x vlume f eat,

More information

Phys 331: Ch 9,.6-.7 Noninertial Frames: Centrifugal and Corriolis forces 1. And and

Phys 331: Ch 9,.6-.7 Noninertial Frames: Centrifugal and Corriolis forces 1. And and Phs 331: Ch 9 6-7 Nnnetal Fames: Centfual and Cls fces 1 Mn 1/5 Wed 1/7 Thus F Mn 1/6 96-7 Fctnal Fces: Centfual and Cls 98-9 Fee-Fall Cls Fucault 101- Cente f Mass & Rtatn abut a Fed As 103-4 Rtatn abut

More information

Ch 8 Alg 2 Note Sheet Key

Ch 8 Alg 2 Note Sheet Key Ch 8 Alg Note Sheet Key Chapte 8: Eponential and Logaithmic Functions 8. Eploing Eponential Models Fo some data, the est model is a function that uses the independent vaiale as an eponent. An eponential

More information

Cork Institute of Technology. Spring 2005 DCE 3.5 Thermodynamics & Heat Transfer (Time: 3 Hours) Section A

Cork Institute of Technology. Spring 2005 DCE 3.5 Thermodynamics & Heat Transfer (Time: 3 Hours) Section A Ck Insttute f echnlgy Bachel f Engneeng (Hnus) n Chemcal and Pcess Engneeng Stage 3 Bachel f Engneeng n Chemcal and Pcess Engneeng Stage 3 (NFQ Level 8) Spng 005 DCE 3.5 hemdynamcs & Heat ansfe (me: 3

More information

COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER /2017

COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER /2017 COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER 1 016/017 PROGRAMME SUBJECT CODE : Foundaton n Engneeng : PHYF115 SUBJECT : Phscs 1 DATE : Septembe 016 DURATION :

More information

ME306 Dynamics, Spring HW1 Solution Key. AB, where θ is the angle between the vectors A and B, the proof

ME306 Dynamics, Spring HW1 Solution Key. AB, where θ is the angle between the vectors A and B, the proof ME6 Dnms, Spng HW Slutn Ke - Pve, gemetll.e. usng wngs sethes n nltll.e. usng equtns n nequltes, tht V then V. Nte: qunttes n l tpee e vets n n egul tpee e sls. Slutn: Let, Then V V V We wnt t pve tht:

More information

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas Sectn : Detaled Slutns f Wrd Prblems Unt : Slvng Wrd Prblems by Mdelng wth Frmulas Example : The factry nvce fr a mnvan shws that the dealer pad $,5 fr the vehcle. If the stcker prce f the van s $5,, hw

More information

ANALOG ELECTRONICS DR NORLAILI MOHD NOH

ANALOG ELECTRONICS DR NORLAILI MOHD NOH 24 ANALOG LTRONIS lass 5&6&7&8&9 DR NORLAILI MOHD NOH 3.3.3 n-ase cnfguatn V V Rc I π π g g R V /p sgnal appled t. O/p taken f. ted t ac gnd. The hybd-π del pdes an accuate epesentatn f the sall-sgnal

More information

Physics Exam II Chapters 25-29

Physics Exam II Chapters 25-29 Physcs 114 1 Exam II Chaptes 5-9 Answe 8 of the followng 9 questons o poblems. Each one s weghted equally. Clealy mak on you blue book whch numbe you do not want gaded. If you ae not sue whch one you do

More information

Chapter 13 - Universal Gravitation

Chapter 13 - Universal Gravitation Chapte 3 - Unesal Gataton In Chapte 5 we studed Newton s thee laws of moton. In addton to these laws, Newton fomulated the law of unesal gataton. Ths law states that two masses ae attacted by a foce gen

More information

Conduction Heat Transfer

Conduction Heat Transfer Cnductn Heat Transfer Practce prblems A steel ppe f cnductvty 5 W/m-K has nsde and utsde surface temperature f C and 6 C respectvely Fnd the heat flw rate per unt ppe length and flux per unt nsde and per

More information

iclicker Quiz a) True b) False Theoretical physics: the eternal quest for a missing minus sign and/or a factor of two. Which will be an issue today?

iclicker Quiz a) True b) False Theoretical physics: the eternal quest for a missing minus sign and/or a factor of two. Which will be an issue today? Clce Quz I egsteed my quz tansmtte va the couse webste (not on the clce.com webste. I ealze that untl I do so, my quz scoes wll not be ecoded. a Tue b False Theoetcal hyscs: the etenal quest fo a mssng

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Test # Review Math (Pe -calculus) Name MULTIPLE CHOICE. Choose the one altenative that best completes the statement o answes the question. Use an identit to find the value of the epession. Do not use a

More information

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law Physcs 11b Lectue # Electc Feld Electc Flux Gauss s Law What We Dd Last Tme Electc chage = How object esponds to electc foce Comes n postve and negatve flavos Conseved Electc foce Coulomb s Law F Same

More information

5/20/2011. HITT An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement:

5/20/2011. HITT An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement: 5/0/011 Chapte 5 In the last lectue: CapacitanceII we calculated the capacitance C f a system f tw islated cnducts. We als calculated the capacitance f sme simple gemeties. In this chapte we will cve the

More information

Physics 2A Chapter 11 - Universal Gravitation Fall 2017

Physics 2A Chapter 11 - Universal Gravitation Fall 2017 Physcs A Chapte - Unvesal Gavtaton Fall 07 hese notes ae ve pages. A quck summay: he text boxes n the notes contan the esults that wll compse the toolbox o Chapte. hee ae thee sectons: the law o gavtaton,

More information

Hotelling s Rule. Therefore arbitrage forces P(t) = P o e rt.

Hotelling s Rule. Therefore arbitrage forces P(t) = P o e rt. Htelling s Rule In what fllws I will use the tem pice t dente unit pfit. hat is, the nminal mney pice minus the aveage cst f pductin. We begin with cmpetitin. Suppse that a fim wns a small pa, a, f the

More information

Rigid Bodies: Equivalent Systems of Forces

Rigid Bodies: Equivalent Systems of Forces Engneeng Statcs, ENGR 2301 Chapte 3 Rgd Bodes: Equvalent Sstems of oces Intoducton Teatment of a bod as a sngle patcle s not alwas possble. In geneal, the se of the bod and the specfc ponts of applcaton

More information

2/4/2012. τ = Reasoning Strategy 1. Select the object to which the equations for equilibrium are to be applied. Ch 9. Rotational Dynamics

2/4/2012. τ = Reasoning Strategy 1. Select the object to which the equations for equilibrium are to be applied. Ch 9. Rotational Dynamics /4/ Ch 9. Rtatna Dynamcs In pue tansatna mtn, a pnts n an bject tae n paae paths. ces an Tques Net ce acceeatn. What causes an bject t hae an angua acceeatn? TORQUE 9. The ctn ces an Tques n Rg Objects

More information

-' DATE PERIOD DATE PERIOD. Midpoint and Distance Formulas Find the midpoint of each line segment with endpoints at the given coordinates.

-' DATE PERIOD DATE PERIOD. Midpoint and Distance Formulas Find the midpoint of each line segment with endpoints at the given coordinates. z OJ "S ' PEROD PEROD Sklls Pac:tce Pac:tce Mdpnt and Dstance Fmulas Mdpnt and Dstance Fmulas Fnd the mdpnt f lne segmt wth dpnts at the gv cdnates Fnd the mdpnt f lne segmt wth dpnts at the gv cdnates

More information

10/15/2013. PHY 113 C General Physics I 11 AM-12:15 PM MWF Olin 101

10/15/2013. PHY 113 C General Physics I 11 AM-12:15 PM MWF Olin 101 10/15/01 PHY 11 C Geneal Physcs I 11 AM-1:15 PM MWF Oln 101 Plan fo Lectue 14: Chapte 1 Statc equlbu 1. Balancng foces and toques; stablty. Cente of gavty. Wll dscuss elastcty n Lectue 15 (Chapte 15) 10/14/01

More information

OBJECTIVE To investigate the parallel connection of R, L, and C. 1 Electricity & Electronics Constructor EEC470

OBJECTIVE To investigate the parallel connection of R, L, and C. 1 Electricity & Electronics Constructor EEC470 Assignment 7 Paallel Resnance OBJECTIVE T investigate the paallel cnnectin f R,, and C. EQUIPMENT REQUIRED Qty Appaatus 1 Electicity & Electnics Cnstuct EEC470 1 Basic Electicity and Electnics Kit EEC471-1

More information

CHAPTER GAUSS'S LAW

CHAPTER GAUSS'S LAW lutins--ch 14 (Gauss's Law CHAPTE 14 -- GAU' LAW 141 This pblem is ticky An electic field line that flws int, then ut f the cap (see Figue I pduces a negative flux when enteing and an equal psitive flux

More information

Capítulo. Three Dimensions

Capítulo. Three Dimensions Capítulo Knematcs of Rgd Bodes n Thee Dmensons Mecánca Contents ntoducton Rgd Bod Angula Momentum n Thee Dmensons Pncple of mpulse and Momentum Knetc Eneg Sample Poblem 8. Sample Poblem 8. Moton of a Rgd

More information

March 15. Induction and Inductance Chapter 31

March 15. Induction and Inductance Chapter 31 Mach 15 Inductin and Inductance Chapte 31 > Fces due t B fields Lentz fce τ On a mving chage F B On a cuent F il B Cuent caying cil feels a tque = µ B Review > Cuents geneate B field Bit-Savat law = qv

More information

Dynamics of Rigid Bodies

Dynamics of Rigid Bodies Dynamcs of Rgd Bodes A gd body s one n whch the dstances between consttuent patcles s constant thoughout the moton of the body,.e. t keeps ts shape. Thee ae two knds of gd body moton: 1. Tanslatonal Rectlnea

More information

Remember: When an object falls due to gravity its potential energy decreases.

Remember: When an object falls due to gravity its potential energy decreases. Chapte 5: lectc Potental As mentoned seveal tmes dung the uate Newton s law o gavty and Coulomb s law ae dentcal n the mathematcal om. So, most thngs that ae tue o gavty ae also tue o electostatcs! Hee

More information

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune Chapter 7 Flud Systems and Thermal Systems 7.1 INTODUCTION A. Bazune A flud system uses ne r mre fluds t acheve ts purpse. Dampers and shck absrbers are eamples f flud systems because they depend n the

More information

LEAP FROG TECHNIQUE. Operational Simulation of LC Ladder Filters ECEN 622 (ESS) TAMU-AMSC

LEAP FROG TECHNIQUE. Operational Simulation of LC Ladder Filters ECEN 622 (ESS) TAMU-AMSC LEAP FOG TEHNQUE Opeatnal Smulatn f L Ladde Fltes L pttype lw senstvty One fm f ths technque s called Leapf Technque Fundamental Buldn Blcks ae - nteats - Secnd-de ealzatns Fltes cnsdeed - LP - BP - HP

More information

Exercises for Frequency Response. ECE 102, Fall 2012, F. Najmabadi

Exercises for Frequency Response. ECE 102, Fall 2012, F. Najmabadi Eecses Fequency espnse EE 0, Fall 0, F. Najabad Eecse : Fnd the d-band an and the lwe cut- equency the aple belw. µ n (W/ 4 A/, t 0.5, λ 0, 0 µf, and µf Bth capacts ae lw- capacts. F. Najabad, EE0, Fall

More information

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M Dola Bagayoko (0) Integal Vecto Opeatons and elated Theoems Applcatons n Mechancs and E&M Ι Basc Defnton Please efe to you calculus evewed below. Ι, ΙΙ, andιιι notes and textbooks fo detals on the concepts

More information

Announcements Candidates Visiting Next Monday 11 12:20 Class 4pm Research Talk Opportunity to learn a little about what physicists do

Announcements Candidates Visiting Next Monday 11 12:20 Class 4pm Research Talk Opportunity to learn a little about what physicists do Wed., /11 Thus., /1 Fi., /13 Mn., /16 Tues., /17 Wed., /18 Thus., /19 Fi., / 17.7-9 Magnetic Field F Distibutins Lab 5: Bit-Savat B fields f mving chages (n quiz) 17.1-11 Pemanent Magnets 18.1-3 Mic. View

More information

Optimization of the Electron Gun with a Permanent Ion Trap

Optimization of the Electron Gun with a Permanent Ion Trap 4.3.-178 Optmzatn f the Electn Gun wth a Pemanent In Tap We Le Xabng Zhang Jn Dng Fe Dpla Technlg R&D CenteSutheat Unvet Nangjng Chna Danel den Engelen Pduct and Pce Develpment(PPD)LG.Phlp Dpla 5600 MD

More information

Exercises for Frequency Response. ECE 102, Winter 2011, F. Najmabadi

Exercises for Frequency Response. ECE 102, Winter 2011, F. Najmabadi Eercses r Frequency espnse EE 0, Wnter 0, F. Najabad Eercse : A Mdy the crcut belw t nclude a dnant ple at 00 Mz ( 00 Ω, k, k, / 00 Ω, λ 0, and nre nternal capactances the MOS. pute the dnant ple n the

More information

CONVEX COMBINATIONS OF ANALYTIC FUNCTIONS

CONVEX COMBINATIONS OF ANALYTIC FUNCTIONS rnat. J. Math. & Math. S. Vl. 6 N. (983) 33534 335 ON THE RADUS OF UNVALENCE OF CONVEX COMBNATONS OF ANALYTC FUNCTONS KHALDA. NOOR, FATMA M. ALOBOUD and NAEELA ALDHAN Mathematcs Department Scence Cllege

More information

Example

Example hapte Exaple.6-3. ---------------------------------------------------------------------------------- 5 A single hllw fibe is placed within a vey lage glass tube. he hllw fibe is 0 c in length and has a

More information

ME311 Machine Design

ME311 Machine Design ME311 Machne Desgn Lectue 8: Cylnes W Dnfel Nv017 Fafel Unvesty Schl f Engneeng Thn-Walle Cylnes (Yu aleay cvee ths n Bee & Jhnstn.) A essuze cylne s cnsee t be Thn-Walle f ts wall thckness s less than.5%

More information

Outline. Steady Heat Transfer with Conduction and Convection. Review Steady, 1-D, Review Heat Generation. Review Heat Generation II

Outline. Steady Heat Transfer with Conduction and Convection. Review Steady, 1-D, Review Heat Generation. Review Heat Generation II Steady Heat ansfe ebuay, 7 Steady Heat ansfe wit Cnductin and Cnvectin ay Caett Mecanical Engineeing 375 Heat ansfe ebuay, 7 Outline eview last lectue Equivalent cicuit analyses eview basic cncept pplicatin

More information

Physics 207 Lecture 16

Physics 207 Lecture 16 Physcs 07 Lectue 6 Goals: Lectue 6 Chapte Extend the patcle odel to gd-bodes Undestand the equlbu of an extended object. Analyze ollng oton Undestand otaton about a fxed axs. Eploy consevaton of angula

More information

5.1 Moment of a Force Scalar Formation

5.1 Moment of a Force Scalar Formation Outline ment f a Cuple Equivalent System Resultants f a Fce and Cuple System ment f a fce abut a pint axis a measue f the tendency f the fce t cause a bdy t tate abut the pint axis Case 1 Cnside hizntal

More information

Chapter 6 : Gibbs Free Energy

Chapter 6 : Gibbs Free Energy Wnter 01 Chem 54: ntrductry hermdynamcs Chapter 6 : Gbbs Free Energy... 64 Defntn f G, A... 64 Mawell Relatns... 65 Gbbs Free Energy G(,) (ure substances)... 67 Gbbs Free Energy fr Mtures... 68 ΔG f deal

More information

Scalars and Vectors Scalar

Scalars and Vectors Scalar Scalas and ectos Scala A phscal quantt that s completel chaacteed b a eal numbe (o b ts numecal value) s called a scala. In othe wods a scala possesses onl a magntude. Mass denst volume tempeatue tme eneg

More information

Wp/Lmin. Wn/Lmin 2.5V

Wp/Lmin. Wn/Lmin 2.5V UNIVERITY OF CALIFORNIA Cllege f Engneerng Department f Electrcal Engneerng and Cmputer cences Andre Vladmrescu Hmewrk #7 EEC Due Frday, Aprl 8 th, pm @ 0 Cry Prblem #.5V Wp/Lmn 0.0V Wp/Lmn n ut Wn/Lmn.5V

More information

Introduction of Two Port Network Negative Feedback (Uni lateral Case) Feedback Topology Analysis of feedback applications

Introduction of Two Port Network Negative Feedback (Uni lateral Case) Feedback Topology Analysis of feedback applications Lectue Feedback mple ntductn w Pt Netwk Negatve Feedback Un lateal Case Feedback plg nalss eedback applcatns Clse Lp Gan nput/output esstances e:83h 3 Feedback w-pt Netwk z-paametes Open-Ccut mpedance

More information

n Power transmission, X rays, lightning protection n Solid-state Electronics: resistors, capacitors, FET n Computer peripherals: touch pads, LCD, CRT

n Power transmission, X rays, lightning protection n Solid-state Electronics: resistors, capacitors, FET n Computer peripherals: touch pads, LCD, CRT .. Cu-Pl, INE 45- Electmagnetics I Electstatic fields anda Cu-Pl, Ph.. INE 45 ch 4 ECE UPM Maagüe, P me applicatins n Pwe tansmissin, X as, lightning ptectin n lid-state Electnics: esists, capacits, FET

More information

Lecture 12. Heat Exchangers. Heat Exchangers Chee 318 1

Lecture 12. Heat Exchangers. Heat Exchangers Chee 318 1 Lecture 2 Heat Exchangers Heat Exchangers Chee 38 Heat Exchangers A heat exchanger s used t exchange heat between tw fluds f dfferent temperatures whch are separated by a sld wall. Heat exchangers are

More information

{ } MATH section 7.2 Volumes (Washer Method) Page 1 of 8. = = 5 ; about x-axis. y x y x. r i. x 5= interval: 0. = x + 0 = x + = + = +

{ } MATH section 7.2 Volumes (Washer Method) Page 1 of 8. = = 5 ; about x-axis. y x y x. r i. x 5= interval: 0. = x + 0 = x + = + = + MATH sectn 7. Vlumes (Washer Methd) Page f 8 6) = = 5 ; abut x-axs x x x = 5 x 5 ( x+ )( x ) = 5 x 5= x+ = x = 5 x= x= ( x ) = nterval: x r = (5 x ) + = (5 x ) r = x + = x A = (5 x ) = (5 x + x ) A = x

More information

A) N B) 0.0 N C) N D) N E) N

A) N B) 0.0 N C) N D) N E) N Cdinat: H Bahluli Sunday, Nvembe, 015 Page: 1 Q1. Five identical pint chages each with chage =10 nc ae lcated at the cnes f a egula hexagn, as shwn in Figue 1. Find the magnitude f the net electic fce

More information

Chapter 8. Linear Momentum, Impulse, and Collisions

Chapter 8. Linear Momentum, Impulse, and Collisions Chapte 8 Lnea oentu, Ipulse, and Collsons 8. Lnea oentu and Ipulse The lnea oentu p of a patcle of ass ovng wth velocty v s defned as: p " v ote that p s a vecto that ponts n the sae decton as the velocty

More information

Sec. 9.1 Lines and Angles

Sec. 9.1 Lines and Angles Sec. 9. Line and Angle Leaning Objective:. Identify line, line egment, ay, and angle.. Claify angel a acute, igt, btue, taigt.. Identify cmplementay and upplementay angle. 4. Find meaue f angle. 5. Key

More information

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Physics 2A Chapter 10 - Moment of Inertia Fall 2018 Physics Chapte 0 - oment of netia Fall 08 The moment of inetia of a otating object is a measue of its otational inetia in the same way that the mass of an object is a measue of its inetia fo linea motion.

More information

Physics 107 HOMEWORK ASSIGNMENT #20

Physics 107 HOMEWORK ASSIGNMENT #20 Physcs 107 HOMEWORK ASSIGNMENT #0 Cutnell & Jhnsn, 7 th etn Chapter 6: Prblems 5, 7, 74, 104, 114 *5 Cncept Smulatn 6.4 prves the ptn f explrng the ray agram that apples t ths prblem. The stance between

More information

Set of square-integrable function 2 L : function space F

Set of square-integrable function 2 L : function space F Set of squae-ntegable functon L : functon space F Motvaton: In ou pevous dscussons we have seen that fo fee patcles wave equatons (Helmholt o Schödnge) can be expessed n tems of egenvalue equatons. H E,

More information

Chapter 3, Solution 1C.

Chapter 3, Solution 1C. COSMOS: Cmplete Onlne Slutns Manual Organzatn System Chapter 3, Slutn C. (a If the lateral surfaces f the rd are nsulated, the heat transfer surface area f the cylndrcal rd s the bttm r the tp surface

More information

Chapter 23: Electric Potential

Chapter 23: Electric Potential Chapte 23: Electc Potental Electc Potental Enegy It tuns out (won t show ths) that the tostatc foce, qq 1 2 F ˆ = k, s consevatve. 2 Recall, fo any consevatve foce, t s always possble to wte the wok done

More information

Conservation of Energy

Conservation of Energy Cnservatn f Energy Equpment DataStud, ruler 2 meters lng, 6 n ruler, heavy duty bench clamp at crner f lab bench, 90 cm rd clamped vertcally t bench clamp, 2 duble clamps, 40 cm rd clamped hrzntally t

More information

Lecture 2 Feedback Amplifier

Lecture 2 Feedback Amplifier Lectue Feedback mple ntductn w-pt Netwk Negatve Feedback Un-lateal Case Feedback plg nalss eedback applcatns Clse-Lp Gan nput/output esstances e:83hkn 3 Feedback mples w-pt Netwk z-paametes Open-Ccut mpedance

More information

A) (0.46 î ) N B) (0.17 î ) N

A) (0.46 î ) N B) (0.17 î ) N Phys10 Secnd Maj-14 Ze Vesin Cdinat: xyz Thusday, Apil 3, 015 Page: 1 Q1. Thee chages, 1 = =.0 μc and Q = 4.0 μc, ae fixed in thei places as shwn in Figue 1. Find the net electstatic fce n Q due t 1 and.

More information

Electric Fields and Electric Forces

Electric Fields and Electric Forces Cpyight, iley 006 (Cutnell & Jhnsn 9. Ptential Enegy Chapte 9 mgh mgh GPE GPE Electic Fields and Electic Fces 9. Ptential Enegy 9. Ptential Enegy 9. The Electic Ptential Diffeence 9. The Electic Ptential

More information

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Kinematics of Rigid Bodies in Three Dimensions. Seventh Edition CHAPTER

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Kinematics of Rigid Bodies in Three Dimensions. Seventh Edition CHAPTER Edton CAPTER 8 VECTOR MECANCS FOR ENGNEERS: DYNAMCS Fednand P. Bee E. Russell Johnston, J. Lectue Notes: J. Walt Ole Teas Tech Unvest Knematcs of Rgd Bodes n Thee Dmensons 003 The McGaw-ll Companes, nc.

More information

PHYS 1443 Section 003 Lecture #21

PHYS 1443 Section 003 Lecture #21 PHYS 443 Secton 003 Lectue # Wednesday, Nov. 7, 00 D. Jaehoon Yu. Gavtatonal eld. negy n Planetay and Satellte Motons 3. scape Speed 4. lud and Pessue 5. Vaaton of Pessue and Depth 6. Absolute and Relatve

More information

Magnetism. Chapter 21

Magnetism. Chapter 21 1.1 Magnetic Fields Chapte 1 Magnetism The needle f a cmpass is pemanent magnet that has a nth magnetic ple (N) at ne end and a suth magnetic ple (S) at the the. 1.1 Magnetic Fields 1.1 Magnetic Fields

More information

Uniform Circular Motion

Uniform Circular Motion Unfom Ccul Moton Unfom ccul Moton An object mong t constnt sped n ccle The ntude of the eloct emns constnt The decton of the eloct chnges contnuousl!!!! Snce cceleton s te of chnge of eloct:!! Δ Δt The

More information

Fri. 10/23 (C14) Linear Dielectrics (read rest at your discretion) Mon. (C 17) , E to B; Lorentz Force Law: fields

Fri. 10/23 (C14) Linear Dielectrics (read rest at your discretion) Mon. (C 17) , E to B; Lorentz Force Law: fields Fi. 0/23 (C4) 4.4. Linea ielectics (ead est at yu discetin) Mn. (C 7) 2..-..2, 2.3. t B; 5..-..2 Lentz Fce Law: fields Wed. and fces Thus. (C 7) 5..3 Lentz Fce Law: cuents Fi. (C 7) 5.2 Bit-Savat Law HW6

More information

Rotating Disk Electrode -a hydrodynamic method

Rotating Disk Electrode -a hydrodynamic method Rotatng Dsk Electode -a hdodnamc method Fe Lu Ma 3, 0 ente fo Electochemcal Engneeng Reseach Depatment of hemcal and Bomolecula Engneeng Rotatng Dsk Electode A otatng dsk electode RDE s a hdodnamc wokng

More information

V. Principles of Irreversible Thermodynamics. s = S - S 0 (7.3) s = = - g i, k. "Flux": = da i. "Force": = -Â g a ik k = X i. Â J i X i (7.

V. Principles of Irreversible Thermodynamics. s = S - S 0 (7.3) s = = - g i, k. Flux: = da i. Force: = -Â g a ik k = X i. Â J i X i (7. Themodynamcs and Knetcs of Solds 71 V. Pncples of Ievesble Themodynamcs 5. Onsage s Teatment s = S - S 0 = s( a 1, a 2,...) a n = A g - A n (7.6) Equlbum themodynamcs detemnes the paametes of an equlbum

More information

Physic 231 Lecture 33

Physic 231 Lecture 33 Physc 231 Lecture 33 Man pnts f tday s lecture: eat and heat capacty: Q cm Phase transtns and latent heat: Q Lm ( ) eat flw Q k 2 1 t L Examples f heat cnductvty, R values fr nsulatrs Cnvectn R L / k Radatn

More information

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017)

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017) Advanced rcuts Topcs - Part by Dr. olton (Fall 07) Part : Some thngs you should already know from Physcs 0 and 45 These are all thngs that you should have learned n Physcs 0 and/or 45. Ths secton s organzed

More information

Transistors. Lesson #10 Chapter 4. BME 372 Electronics I J.Schesser

Transistors. Lesson #10 Chapter 4. BME 372 Electronics I J.Schesser Tanssts essn #10 Chapte 4 BM 372 lectncs 154 Hmewk Ps. 4.40, 4.42, 4.43, 4.45, 4.46, 4.51, 4.53, 4.54, 4.56 BM 372 lectncs 155 Hmewk Answes #20 Ps. 4.40 See fgue 4.33 BM 372 lectncs 156 Ps. 4.42 Hmewk

More information

CALCULUS FOR TECHNOLOGY (BETU 1023)

CALCULUS FOR TECHNOLOGY (BETU 1023) CALCULUS FOR TECHNOLOGY (BETU 103) WEEK 7 APPLICATIONS OF DIFFERENTIATION 1 KHAIRUM BIN HAMZAH, IRIANTO, 3 ABDUL LATIFF BIN MD AHOOD, 4 MOHD FARIDUDDIN BIN MUKHTAR 1 khaium@utem.edu.my, iianto@utem.edu.my,

More information