Physics 2212 GH Quiz #2 Solutions Spring 2016

Size: px
Start display at page:

Download "Physics 2212 GH Quiz #2 Solutions Spring 2016"

Transcription

1 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying a chage 3Q, is placed on one side of the tiangle as dawn below. Calculate the electic potential enegy of this system, elative to zeo when the fou chages ae infinitely fa away fom each othe The potential enegy of a system of two chages, elative to zeo fo infinite sepaation, is U = K q 1q 2 The potential enegy of the system shown, is the sum of the potential enegies of all possible pais of chages within it. Thee pais can be fomed fom the thee chages on the vetices: U vetices = 3 K QQ ) = 3K Q2 The chage centeed on the bottom side makes thee pais, one with each of the chages on a vetex. Note that this chage is a distance /2 fom two of the vetices, and a distance 3/2 fom the thid. The potential enegy of the system is U side = 2 K 3Q) Q ) + K 3Q) Q /2 3/2 = 12K Q2 Q2 6K 3 U total = U vetices + U side = 3K Q2 = 12K Q N m 2 /C 2) C ) m Q2 6K 3 = KQ2 9 6 ) ) = J = 1.3 mj Quiz #2 Solutions Page 1 of 7

2 II. 16 points) A thin non-unifom chaged od of length is bent into a quate-cicle. When placed as shown, it has a linea chage density λ that vaies with angle θ accoding to λ = λ sin θ whee λ is a positive constant and θ is measued as usual, fom the +x axis towad the +y axis. What is the magnitude of the esulting electic potential at the cente of the ac the oigin), with espect to zeo at infinite distance? An element of chage dq, with an element of ac length ds, geneates an element of potential dv. Since the od is thin, this element of chage is point-like, so V = dv = K dq = K λ ds = π/2 K λ sin θ dθ = Kλ π/2 sin θ dθ [ ] π/2 [ ] [ ] = Kλ cos θ = Kλ cos π/2) cos ) = Kλ 1 = Kλ 1. 5 points) In the poblem above, in what quadant, if any, is the diection of the potential at the cente of the ac the oigin)? Potential is a scala! The potential has no diection. Quiz #2 Solutions Page 2 of 7

3 III. 17 points) Calculate the magnitude of the electic field inside a solid, non-unifomly chaged sphee of adius R. The chage density inside the sphee is ρ) = ρ 2 R 2 fo < R, whee ρ is a constant and is the distance fom the cente of the sphee Use Gauss aw, ϵ Φ = q in. To find the flux, choose a Gaussian Suface with the symmety of the chage distibution, and that passes though the point at which the field is to be found. This is a sphee of adius. Φ = E da = E cos θ da On that Gaussian Suface, the electic field has a unifom magnitude E at evey point. The electic field vecto is pependicula to the suface, and so paallel to the vecto epesenting the element of aea, at evey point. Φ = E cos da = E da = EA = E 4π 2 The chage inside this Gaussian Suface can be detemined fom the volume chage density. ρ = dq dv q in = ρ dv Since the volume chage density vaies with adius, choose volume elements that ae small in the adial diection. Thee ae thin spheical shells of adius and thickness d. Add up integate) the chage in all the shells fom the cente to the adius of Gaussian Suface,. q in = 2 ρ R 2 4π2 d = 4πρ R 2 4 d = 4πρ 5 R 2 5 = 4πρ 5R 2 5 Relate the flux to the chage with Gauss aw, and solve fo the field magnitude. ϵ E 4π 2 = 4πρ 5R 2 5 E = ρ 3 5ϵ R points) Which sketch shows the electic field outside the sphee of the pevious question? The electic field inside the sphee is not shown accuately. It is endeed as a staight dashed line) Outside a spheically symmetic chage distibution, the field must be the same as the field that would be poduced if the entie chage wee concentated at a point in the cente. The field due to a point chage follows an invese squae law with distance. So, the field at 2R must have one-fouth the magnitude of the field at the suface. Quiz #2 Solutions Page 3 of 7

4 3. 5 points) An insulating spheical bead of adius R is chaged with an unifom positive volume chage density ρ. The bead is placed in the cente of a hollow conducting sphee of inne adius 2R and oute adius 3R. The hollow conducting sphee is initially neutal. What is suface chage density η on the exteio suface of the hollow sphee? Stat by consideing a Gaussian Suface entiely within the thickness of the hollow conducting sphee. The field in the conducting mateial is zeo at equilibium, so the flux though the Gaussian Suface is zeo, so the chage within the Gaussian Suface is zeo. But we know thee is a chage Q bead = ρv = ρ 4 3 πr3 on the inne bead. Theefoe, thee must be the opposite chage Q inne = ρv = ρ 4 3 πr3 on the inne suface of the conducting sphee. Since this conducting sphee is neutal, thee must be the opposite chage Q oute = ρv = ρ 4 3 πr3 on the oute suface of the conducting sphee. The aea chage density on this oute suface is η = Q oute A = ρ 4/3) πr 3 4π 3R) 2 = ρ R points) A poton is sent with a velocity v = m/s 1% of the speed of light) towad a mecuy nucleus containing Z = 8 potons, initially located infinitely fa away. The adius of a mecuy nucleus is so small 1 fm = 1 14 m), that the nucleus can descibed as a point chage. How close to the nucleus will the poton get? Reminde: 1 pico-mete pm) = 1 12 m Use the Wok-Enegy Theoem. Choose a system consisting of the poton and the mecuy nucleus. No extenal foces do wok on this system, and thee ae no non-consevative foces within it to change its themal enegy. W ext = K + U + E th = K + U + The mass of a mecuy nucleus is so much geate than that of a poton, that the mecuy nucleus can be consideed fixed in place, so the only kinetic enegy change in the system is due to the poton. The potential enegy change in the system is due to the intenal electic foce. = 1 2 m pvf m pvi 2 ) + K Q pq Hg K Q ) pq Hg = 1 f 2 m pv 2 ) + K e Ze) ) i f whee v f, the speed of the poton at the instant of closest appoach, is zeo. As the poton stats infinitely fa away, the initial potential enegy of the system is zeo, too. Solve fo f. f = 2KZe2 m p v 2 = N m 2 /C 2) 8) C ) kg) m/s) 2 = 2.45 pm Quiz #2 Solutions Page 4 of 7

5 5. 5 points) Twelve identical point chages, each caying a chage Q, ae oganized on the kagome patten sketched below. Each tiangle in the patten is equilateal with a side length a. The electic potential enegy of the system is U. What is the electic potential enegy U 1 of the system when the distance a is multiplied by 3? Kagome is the Japanese wod fo taditional bamboo baskets having this geomety.) Since the potential enegy of each pai of chages in the system is invesely popotional to the distance between them, the potential enegy of the entie system must be invesely popotional to a. U 1 = U / points) Conside two scenaios inside identical capacitos. In each scenaio, the capacito is chaged identically, with chage Q on the left-hand plate and +Q on the ight-hand plate. In scenaio 1, a negatively chaged paticle is moved fom the left ) to the ight R). In scenaio 2, a positively chaged paticle of equal magnitude) is moved fom to R. In each case, the potential diffeence is defined as V = V R V, and the potential enegy diffeence is defined as U = U R U. Which of the statements below is tue? In situation 2, the paticle would not move spontaneously fom left to ight. The potential enegy of this system inceases when the paticle does this U 2 > ). Since the potential change is the potential enegy change pe unit chage, and the paticle is situation 2 is positive, this paticle is moving though a positive potential diffeence V 2 > ). Since the capacitos in the two situations ae chaged identically, and potential diffeences do not depend on the natue of the pobe chage used to detemine them, the potential change in situation 1 must be the same as that in situation 2 V 1 > ). Howeve, the paticle in situation 1 would move spontaneously fom left to ight. The potential enegy of this system deceases when the paticle does this U 1 < ). V 1 > ; U 1 < ; V 2 > ; U 2 > Quiz #2 Solutions Page 5 of 7

6 7. 5 points) The plates in an ideal paallel plate capacito ae 5. mm apat, as shown. The potential diffeence between these plates is 15 V. Point 1 is 1. mm fom the negative plate, and point 2 is 3. mm fom the negative plate. If it can be detemined, what is the potential diffeence fom point 1 to point 2? As it would equie extenal wok to foce a positive test chage fom point 1 to point 2, the potential diffeence fom point 1 to point 2 must be positive. As the potential diffeence within a paallel-plate capacito depends linealy on distance, this potential diffeence must be s mm V 1 2 = V total = 15 V) s total 5. mm = +6. V 8. 5 points) Two positive chages +q and a negative chage 2q ae placed at the vetices of an equilateal tiangle, as shown. Use the convention that V = at infinity. Which statement about the point p, at the cente of the tiangle, is tue? Each chaged paticle is the same distance fom the point p. The 2q chage contibutes a potential of 2Kq/ at the point p, and each of the q chages contibute +Kq/. The potential at the point p must be zeo. If a positive pobe chage wee placed at the point p, thee would be an attactive foce towad the 2q chage, and a epulsive foce fom the +q chages. The foce, and thus the field, would be towad the West. V = ; E points West. Quiz #2 Solutions Page 6 of 7

7 9. 5 points) A positively chaged paticle and a negatively chaged paticle, each having chage magnitude q, lie on the axis of a cylindical suface, equidistant fom the ends, as shown. Rank the flux though the top, side, and bottom of the cylinde, fom geatest to least. Remembe that electic flux can be positive o negative Field lines stat on positive chages and end on negative chages. Because the positive chage is neae the top suface than the negative chage is, the net flux though the top suface is outwad. Because the negative chage is neae the bottom suface than the positive chage is, the net flux though the bottom suface is outwad. The aea vectos fo the cylinde sufaces point outwad, so the angle between the field vectos and aea vectos is between and 9 on the top suface, and between 9 and 18 on the bottom suface. As flux is Φ E = E da = E cos θ da the flux though the top suface is positive, while that though the bottom suface is negative. Because the chaged paticles ae symmetically placed, any field line that passes outwad though the side of the cylinde as it heads away fom the positive chage, must also pass inwad though the side of the cylinde as it heads towad the negative chage. The flux though the side is zeo. Φ top > Φ side > Φ bottom 1. 5 points) A positively chaged paticle lies in the plane of a cylindical suface s top, a distance d fom the axis, as shown. The cylinde has height h. What is the sign, if any, of the flux though the cylinde s cuved side? Since the field fom the chaged paticle is paallel to the top suface of they cylinde pependicula to the aea vecto), the flux though the top is zeo. At the bottom suface, field only exits the cylinde. The flux though the bottom is positive. As thee is no chage within the cylinde, the net flux though it must be zeo. Theefoe, Φ side is negative. Quiz #2 Solutions Page 7 of 7

(Sample 3) Exam 1 - Physics Patel SPRING 1998 FORM CODE - A (solution key at end of exam)

(Sample 3) Exam 1 - Physics Patel SPRING 1998 FORM CODE - A (solution key at end of exam) (Sample 3) Exam 1 - Physics 202 - Patel SPRING 1998 FORM CODE - A (solution key at end of exam) Be sue to fill in you student numbe and FORM lette (A, B, C) on you answe sheet. If you foget to include

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

Page 1 of 6 Physics II Exam 1 155 points Name Discussion day/time Pat I. Questions 110. 8 points each. Multiple choice: Fo full cedit, cicle only the coect answe. Fo half cedit, cicle the coect answe and

More information

2 E. on each of these two surfaces. r r r r. Q E E ε. 2 2 Qencl encl right left 0

2 E. on each of these two surfaces. r r r r. Q E E ε. 2 2 Qencl encl right left 0 Ch : 4, 9,, 9,,, 4, 9,, 4, 8 4 (a) Fom the diagam in the textbook, we see that the flux outwad though the hemispheical suface is the same as the flux inwad though the cicula suface base of the hemisphee

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4! or. r ˆ = points from source q to observer Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

Chapter 23: GAUSS LAW 343

Chapter 23: GAUSS LAW 343 Chapte 23: GAUSS LAW 1 A total chage of 63 10 8 C is distibuted unifomly thoughout a 27-cm adius sphee The volume chage density is: A 37 10 7 C/m 3 B 69 10 6 C/m 3 C 69 10 6 C/m 2 D 25 10 4 C/m 3 76 10

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

Objects usually are charged up through the transfer of electrons from one object to the other.

Objects usually are charged up through the transfer of electrons from one object to the other. 1 Pat 1: Electic Foce 1.1: Review of Vectos Review you vectos! You should know how to convet fom pola fom to component fom and vice vesa add and subtact vectos multiply vectos by scalas Find the esultant

More information

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1 Monday, Mach 5, 019 Page: 1 Q1. Figue 1 shows thee pais of identical conducting sphees that ae to be touched togethe and then sepaated. The initial chages on them befoe the touch ae indicated. Rank the

More information

Review. Electrostatic. Dr. Ray Kwok SJSU

Review. Electrostatic. Dr. Ray Kwok SJSU Review Electostatic D. Ray Kwok SJSU Paty Balloons Coulomb s Law F e q q k 1 Coulomb foce o electical foce. (vecto) Be caeful on detemining the sign & diection. k 9 10 9 (N m / C ) k 1 4πε o k is the Coulomb

More information

Chapter 22 The Electric Field II: Continuous Charge Distributions

Chapter 22 The Electric Field II: Continuous Charge Distributions Chapte The lectic Field II: Continuous Chage Distibutions A ing of adius a has a chage distibution on it that vaies as l(q) l sin q, as shown in Figue -9. (a) What is the diection of the electic field

More information

Physics 11 Chapter 20: Electric Fields and Forces

Physics 11 Chapter 20: Electric Fields and Forces Physics Chapte 0: Electic Fields and Foces Yesteday is not ous to ecove, but tomoow is ous to win o lose. Lyndon B. Johnson When I am anxious it is because I am living in the futue. When I am depessed

More information

Review for Midterm-1

Review for Midterm-1 Review fo Midtem-1 Midtem-1! Wednesday Sept. 24th at 6pm Section 1 (the 4:10pm class) exam in BCC N130 (Business College) Section 2 (the 6:00pm class) exam in NR 158 (Natual Resouces) Allowed one sheet

More information

Your Comments. Do we still get the 80% back on homework? It doesn't seem to be showing that. Also, this is really starting to make sense to me!

Your Comments. Do we still get the 80% back on homework? It doesn't seem to be showing that. Also, this is really starting to make sense to me! You Comments Do we still get the 8% back on homewok? It doesn't seem to be showing that. Also, this is eally stating to make sense to me! I am a little confused about the diffeences in solid conductos,

More information

Module 05: Gauss s s Law a

Module 05: Gauss s s Law a Module 05: Gauss s s Law a 1 Gauss s Law The fist Maxwell Equation! And a vey useful computational technique to find the electic field E when the souce has enough symmety. 2 Gauss s Law The Idea The total

More information

Objectives: After finishing this unit you should be able to:

Objectives: After finishing this unit you should be able to: lectic Field 7 Objectives: Afte finishing this unit you should be able to: Define the electic field and explain what detemines its magnitude and diection. Wite and apply fomulas fo the electic field intensity

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

MAGNETIC FIELD INTRODUCTION

MAGNETIC FIELD INTRODUCTION MAGNETIC FIELD INTRODUCTION It was found when a magnet suspended fom its cente, it tends to line itself up in a noth-south diection (the compass needle). The noth end is called the Noth Pole (N-pole),

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 10-1 DESCRIBING FIELDS Essential Idea: Electic chages and masses each influence the space aound them and that influence can be epesented

More information

Potential Energy. The change U in the potential energy. is defined to equal to the negative of the work. done by a conservative force

Potential Energy. The change U in the potential energy. is defined to equal to the negative of the work. done by a conservative force Potential negy The change U in the potential enegy is defined to equal to the negative of the wok done by a consevative foce duing the shift fom an initial to a final state. U = U U = W F c = F c d Potential

More information

Algebra-based Physics II

Algebra-based Physics II lgebabased Physics II Chapte 19 Electic potential enegy & The Electic potential Why enegy is stoed in an electic field? How to descibe an field fom enegetic point of view? Class Website: Natual way of

More information

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E)

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E) Geneal physics II (10) D. Iyad D. Iyad Chapte : lectic Fields In this chapte we will cove The lectic Field lectic Field Lines -: The lectic Field () lectic field exists in a egion of space suounding a

More information

PHYSICS NOTES GRAVITATION

PHYSICS NOTES GRAVITATION GRAVITATION Newton s law of gavitation The law states that evey paticle of matte in the univese attacts evey othe paticle with a foce which is diectly popotional to the poduct of thei masses and invesely

More information

Look over Chapter 22 sections 1-8 Examples 2, 4, 5, Look over Chapter 16 sections 7-9 examples 6, 7, 8, 9. Things To Know 1/22/2008 PHYS 2212

Look over Chapter 22 sections 1-8 Examples 2, 4, 5, Look over Chapter 16 sections 7-9 examples 6, 7, 8, 9. Things To Know 1/22/2008 PHYS 2212 PHYS 1 Look ove Chapte sections 1-8 xamples, 4, 5, PHYS 111 Look ove Chapte 16 sections 7-9 examples 6, 7, 8, 9 Things To Know 1) What is an lectic field. ) How to calculate the electic field fo a point

More information

13. The electric field can be calculated by Eq. 21-4a, and that can be solved for the magnitude of the charge N C m 8.

13. The electric field can be calculated by Eq. 21-4a, and that can be solved for the magnitude of the charge N C m 8. CHAPTR : Gauss s Law Solutions to Assigned Poblems Use -b fo the electic flux of a unifom field Note that the suface aea vecto points adially outwad, and the electic field vecto points adially inwad Thus

More information

ev dm e evd 2 m e 1 2 ev2 B) e 2 0 dm e D) m e

ev dm e evd 2 m e 1 2 ev2 B) e 2 0 dm e D) m e . A paallel-plate capacito has sepaation d. The potential diffeence between the plates is V. If an electon with chage e and mass m e is eleased fom est fom the negative plate, its speed when it eaches

More information

Lecture 8 - Gauss s Law

Lecture 8 - Gauss s Law Lectue 8 - Gauss s Law A Puzzle... Example Calculate the potential enegy, pe ion, fo an infinite 1D ionic cystal with sepaation a; that is, a ow of equally spaced chages of magnitude e and altenating sign.

More information

PHYS 1444 Lecture #5

PHYS 1444 Lecture #5 Shot eview Chapte 24 PHYS 1444 Lectue #5 Tuesday June 19, 212 D. Andew Bandt Capacitos and Capacitance 1 Coulom s Law The Fomula QQ Q Q F 1 2 1 2 Fomula 2 2 F k A vecto quantity. Newtons Diection of electic

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons Electostatics IB 12 1) electic chage: 2 types of electic chage: positive and negative 2) chaging by fiction: tansfe of electons fom one object to anothe 3) positive object: lack of electons negative object:

More information

7.2. Coulomb s Law. The Electric Force

7.2. Coulomb s Law. The Electric Force Coulomb s aw Recall that chaged objects attact some objects and epel othes at a distance, without making any contact with those objects Electic foce,, o the foce acting between two chaged objects, is somewhat

More information

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an Physics 142 Electostatics 2 Page 1 Electostatics 2 Electicity is just oganized lightning. Geoge Calin A tick that sometimes woks: calculating E fom Gauss s law Gauss s law,! E da = 4πkQ enc, has E unde

More information

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions )

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions ) 06 - ROTATIONAL MOTION Page ) A body A of mass M while falling vetically downwads unde gavity beaks into two pats, a body B of mass ( / ) M and a body C of mass ( / ) M. The cente of mass of bodies B and

More information

Welcome to Physics 272

Welcome to Physics 272 Welcome to Physics 7 Bob Mose mose@phys.hawaii.edu http://www.phys.hawaii.edu/~mose/physics7.html To do: Sign into Masteing Physics phys-7 webpage Registe i-clickes (you i-clicke ID to you name on class-list)

More information

Φ E = E A E A = p212c22: 1

Φ E = E A E A = p212c22: 1 Chapte : Gauss s Law Gauss s Law is an altenative fomulation of the elation between an electic field and the souces of that field in tems of electic flux. lectic Flux Φ though an aea A ~ Numbe of Field

More information

Hopefully Helpful Hints for Gauss s Law

Hopefully Helpful Hints for Gauss s Law Hopefully Helpful Hints fo Gauss s Law As befoe, thee ae things you need to know about Gauss s Law. In no paticula ode, they ae: a.) In the context of Gauss s Law, at a diffeential level, the electic flux

More information

Electric Forces: Coulomb s Law

Electric Forces: Coulomb s Law Electic Foces: Coulomb s Law All the matte aound you contains chaged paticles, and it is the electic foces between these chaged paticles that detemine the stength of the mateials and the popeties of the

More information

UNIT 3:Electrostatics

UNIT 3:Electrostatics The study of electic chages at est, the foces between them and the electic fields associated with them. UNIT 3:lectostatics S7 3. lectic Chages and Consevation of chages The electic chage has the following

More information

Force and Work: Reminder

Force and Work: Reminder Electic Potential Foce and Wok: Reminde Displacement d a: initial point b: final point Reminde fom Mechanics: Foce F if thee is a foce acting on an object (e.g. electic foce), this foce may do some wok

More information

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D.

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D. ELETROSTATIS::BHSE 9-4 MQ. A moving electic chage poduces A. electic field only. B. magnetic field only.. both electic field and magnetic field. D. neithe of these two fields.. both electic field and magnetic

More information

20-9 ELECTRIC FIELD LINES 20-9 ELECTRIC POTENTIAL. Answers to the Conceptual Questions. Chapter 20 Electricity 241

20-9 ELECTRIC FIELD LINES 20-9 ELECTRIC POTENTIAL. Answers to the Conceptual Questions. Chapter 20 Electricity 241 Chapte 0 Electicity 41 0-9 ELECTRIC IELD LINES Goals Illustate the concept of electic field lines. Content The electic field can be symbolized by lines of foce thoughout space. The electic field is stonge

More information

Magnetic fields (origins) CHAPTER 27 SOURCES OF MAGNETIC FIELD. Permanent magnets. Electric currents. Magnetic field due to a moving charge.

Magnetic fields (origins) CHAPTER 27 SOURCES OF MAGNETIC FIELD. Permanent magnets. Electric currents. Magnetic field due to a moving charge. Magnetic fields (oigins) CHAPTER 27 SOURCES OF MAGNETC FELD Magnetic field due to a moving chage. Electic cuents Pemanent magnets Magnetic field due to electic cuents Staight wies Cicula coil Solenoid

More information

Chapter 21: Gauss s Law

Chapter 21: Gauss s Law Chapte : Gauss s Law Gauss s law : intoduction The total electic flux though a closed suface is equal to the total (net) electic chage inside the suface divided by ε Gauss s law is equivalent to Coulomb

More information

PHYS 1444 Section 501 Lecture #7

PHYS 1444 Section 501 Lecture #7 PHYS 1444 Section 51 Lectue #7 Wednesday, Feb. 8, 26 Equi-potential Lines and Sufaces Electic Potential Due to Electic Dipole E detemined fom V Electostatic Potential Enegy of a System of Chages Capacitos

More information

PHYS 2135 Exam I February 13, 2018

PHYS 2135 Exam I February 13, 2018 Exam Total /200 PHYS 2135 Exam I Febuay 13, 2018 Name: Recitation Section: Five multiple choice questions, 8 points each Choose the best o most nealy coect answe Fo questions 6-9, solutions must begin

More information

University Physics (PHY 2326)

University Physics (PHY 2326) Chapte Univesity Physics (PHY 6) Lectue lectostatics lectic field (cont.) Conductos in electostatic euilibium The oscilloscope lectic flux and Gauss s law /6/5 Discuss a techniue intoduced by Kal F. Gauss

More information

1. THINK Ampere is the SI unit for current. An ampere is one coulomb per second.

1. THINK Ampere is the SI unit for current. An ampere is one coulomb per second. Chapte 4 THINK Ampee is the SI unit fo cuent An ampee is one coulomb pe second EXPRESS To calculate the total chage though the cicuit, we note that A C/s and h 6 s ANALYZE (a) Thus, F I HG K J F H G I

More information

Chapter 7-8 Rotational Motion

Chapter 7-8 Rotational Motion Chapte 7-8 Rotational Motion What is a Rigid Body? Rotational Kinematics Angula Velocity ω and Acceleation α Unifom Rotational Motion: Kinematics Unifom Cicula Motion: Kinematics and Dynamics The Toque,

More information

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is Mon., 3/23 Wed., 3/25 Thus., 3/26 Fi., 3/27 Mon., 3/30 Tues., 3/31 21.4-6 Using Gauss s & nto to Ampee s 21.7-9 Maxwell s, Gauss s, and Ampee s Quiz Ch 21, Lab 9 Ampee s Law (wite up) 22.1-2,10 nto to

More information

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018 Physics B Chapte Notes - Magnetic Field Sping 018 Magnetic Field fom a Long Staight Cuent-Caying Wie In Chapte 11 we looked at Isaac Newton s Law of Gavitation, which established that a gavitational field

More information

Today s Plan. Electric Dipoles. More on Gauss Law. Comment on PDF copies of Lectures. Final iclicker roll-call

Today s Plan. Electric Dipoles. More on Gauss Law. Comment on PDF copies of Lectures. Final iclicker roll-call Today s Plan lectic Dipoles Moe on Gauss Law Comment on PDF copies of Lectues Final iclicke oll-call lectic Dipoles A positive (q) and negative chage (-q) sepaated by a small distance d. lectic dipole

More information

Chapter 13: Gravitation

Chapter 13: Gravitation v m m F G Chapte 13: Gavitation The foce that makes an apple fall is the same foce that holds moon in obit. Newton s law of gavitation: Evey paticle attacts any othe paticle with a gavitation foce given

More information

Exam 1. Exam 1 is on Tuesday, February 14, from 5:00-6:00 PM.

Exam 1. Exam 1 is on Tuesday, February 14, from 5:00-6:00 PM. Exam 1 Exam 1 is on Tuesday, Febuay 14, fom 5:00-6:00 PM. Testing Cente povides accommodations fo students with special needs I must set up appointments one week befoe exam Deadline fo submitting accommodation

More information

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23.

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23. Eample: Electic Potential Enegy What is the change in electical potential enegy of a eleased electon in the atmosphee when the electostatic foce fom the nea Eath s electic field (diected downwad) causes

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3331 Electomagnetic I Chapte 4 Electostatic fields Islamic Univesity of Gaza Electical Engineeing Depatment D. Talal Skaik 212 1 Electic Potential The Gavitational Analogy Moving an object upwad against

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

CHAPTER 10 ELECTRIC POTENTIAL AND CAPACITANCE

CHAPTER 10 ELECTRIC POTENTIAL AND CAPACITANCE CHAPTER 0 ELECTRIC POTENTIAL AND CAPACITANCE ELECTRIC POTENTIAL AND CAPACITANCE 7 0. ELECTRIC POTENTIAL ENERGY Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic

More information

Your Comments. Conductors and Insulators with Gauss's law please...so basically everything!

Your Comments. Conductors and Insulators with Gauss's law please...so basically everything! You Comments I feel like I watch a pe-lectue, and agee with eveything said, but feel like it doesn't click until lectue. Conductos and Insulatos with Gauss's law please...so basically eveything! I don't

More information

From last times. MTE1 results. Quiz 1. GAUSS LAW for any closed surface. What is the Electric Flux? How to calculate Electric Flux?

From last times. MTE1 results. Quiz 1. GAUSS LAW for any closed surface. What is the Electric Flux? How to calculate Electric Flux? om last times MTE1 esults Mean 75% = 90/120 Electic chages and foce Electic ield and was to calculate it Motion of chages in E-field Gauss Law Toda: Moe on Gauss law and conductos in electostatic equilibium

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

ELECTRIC FIELD. decos. 1 dq x.. Example:

ELECTRIC FIELD. decos. 1 dq x.. Example: ELECTRIC FIELD Example: Solution: A ing-shaped conducto with adius a caies a total positive chage Q unifomly distibuted on it. Find the electic field at a point P that lies on the axis of the ing at a

More information

Prepared by: M. S. KumarSwamy, TGT(Maths) Page - 1 -

Prepared by: M. S. KumarSwamy, TGT(Maths) Page - 1 - Pepaed by: M. S. KumaSwamy, TGT(Maths) Page - - ELECTROSTATICS MARKS WEIGHTAGE 8 maks QUICK REVISION (Impotant Concepts & Fomulas) Chage Quantization: Chage is always in the fom of an integal multiple

More information

Gauss s Law Simulation Activities

Gauss s Law Simulation Activities Gauss s Law Simulation Activities Name: Backgound: The electic field aound a point chage is found by: = kq/ 2 If thee ae multiple chages, the net field at any point is the vecto sum of the fields. Fo a

More information

Charge is that property of material due to which it shows electric and magnetic phenomena.

Charge is that property of material due to which it shows electric and magnetic phenomena. Electostatics Electostatics deals with the study of foces, fields and potentials aise fom static chages. In othe wods it is study of chages at est. Chage Chage is that cetain something possessed by mateial

More information

21 MAGNETIC FORCES AND MAGNETIC FIELDS

21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 1 MAGNETIC ORCES AND MAGNETIC IELDS ANSWERS TO OCUS ON CONCEPTS QUESTIONS 1. (d) Right-Hand Rule No. 1 gives the diection of the magnetic foce as x fo both dawings A and. In dawing C, the velocity

More information

JURONG JUNIOR COLLEGE Physics Department Tutorial: Electric Fields (solutions)

JURONG JUNIOR COLLEGE Physics Department Tutorial: Electric Fields (solutions) JJ 5 H Physics (646) Electic Fields_tutsoln JURONG JUNIOR COLLEGE Physics Depatment Tutoial: Electic Fields (solutions) No Solution LO Electic field stength at a point in an electic field is defined as

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

Chapter Sixteen: Electric Charge and Electric Fields

Chapter Sixteen: Electric Charge and Electric Fields Chapte Sixteen: Electic Chage and Electic Fields Key Tems Chage Conducto The fundamental electical popety to which the mutual attactions o epulsions between electons and potons ae attibuted. Any mateial

More information

2/20/2009. Lecture notes Electrostatics

2/20/2009. Lecture notes Electrostatics PHYS0 SPRING 009 Lectue notes Electostatics 1 What is Electicity Static effects known since ancient times. Static chages can be made by ubbing cetain mateials togethe. Descibed dby Benjamin Fanklin as

More information

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Physics 2A Chapter 10 - Moment of Inertia Fall 2018 Physics Chapte 0 - oment of netia Fall 08 The moment of inetia of a otating object is a measue of its otational inetia in the same way that the mass of an object is a measue of its inetia fo linea motion.

More information

13.10 Worked Examples

13.10 Worked Examples 13.10 Woked Examples Example 13.11 Wok Done in a Constant Gavitation Field The wok done in a unifom gavitation field is a faily staightfowad calculation when the body moves in the diection of the field.

More information

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2!

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2! Ch 30 - Souces of Magnetic Field 1.) Example 1 Detemine the magnitude and diection of the magnetic field at the point O in the diagam. (Cuent flows fom top to bottom, adius of cuvatue.) Fo staight segments,

More information

Electrostatics. 1. Show does the force between two point charges change if the dielectric constant of the medium in which they are kept increase?

Electrostatics. 1. Show does the force between two point charges change if the dielectric constant of the medium in which they are kept increase? Electostatics 1. Show does the foce between two point chages change if the dielectic constant of the medium in which they ae kept incease? 2. A chaged od P attacts od R whee as P epels anothe chaged od

More information

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50 woking pages fo Paul Richads class notes; do not copy o ciculate without pemission fom PGR 2004/11/3 10:50 CHAPTER7 Solid angle, 3D integals, Gauss s Theoem, and a Delta Function We define the solid angle,

More information

Chapter 25. Electric Potential

Chapter 25. Electric Potential Chapte 25 Electic Potential C H P T E R O U T L I N E 251 Potential Diffeence and Electic Potential 252 Potential Diffeences in a Unifom Electic Field 253 Electic Potential and Potential Enegy Due to Point

More information

Physics 107 HOMEWORK ASSIGNMENT #15

Physics 107 HOMEWORK ASSIGNMENT #15 Physics 7 HOMEWORK SSIGNMENT #5 Cutnell & Johnson, 7 th eition Chapte 8: Poblem 4 Chapte 9: Poblems,, 5, 54 **4 small plastic with a mass of 6.5 x - kg an with a chage of.5 µc is suspene fom an insulating

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 10 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations Phys-7 Lectue 17 Motional Electomotive Foce (emf) Induced Electic Fields Displacement Cuents Maxwell s Equations Fom Faaday's Law to Displacement Cuent AC geneato Magnetic Levitation Tain Review of Souces

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

Calculate the electric potential at B d2=4 m Calculate the electric potential at A d1=3 m 3 m 3 m

Calculate the electric potential at B d2=4 m Calculate the electric potential at A d1=3 m 3 m 3 m MTE : Ch 13 5:3-7pm on Oct 31 ltenate Exams: Wed Ch 13 6:3pm-8:pm (people attending the altenate exam will not be allowed to go out of the oom while othes fom pevious exam ae still aound) Thu @ 9:-1:3

More information

Chapter 4. Newton s Laws of Motion

Chapter 4. Newton s Laws of Motion Chapte 4 Newton s Laws of Motion 4.1 Foces and Inteactions A foce is a push o a pull. It is that which causes an object to acceleate. The unit of foce in the metic system is the Newton. Foce is a vecto

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

Today in Physics 122: getting V from E

Today in Physics 122: getting V from E Today in Physics 1: getting V fom E When it s best to get V fom E, athe than vice vesa V within continuous chage distibutions Potential enegy of continuous chage distibutions Capacitance Potential enegy

More information

PHY2061 Enriched Physics 2 Lecture Notes. Gauss Law

PHY2061 Enriched Physics 2 Lecture Notes. Gauss Law PHY61 Eniched Physics Lectue Notes Law Disclaime: These lectue notes ae not meant to eplace the couse textbook. The content may be incomplete. ome topics may be unclea. These notes ae only meant to be

More information

Module 5: Gauss s Law 1

Module 5: Gauss s Law 1 Module 5: Gauss s Law 1 4.1 lectic Flux... 4-4. Gauss s Law... 4-3 xample 4.1: Infinitely Long Rod of Unifom Chage Density... 4-8 xample 4.: Infinite Plane of Chage... 4-9 xample 4.3: Spheical Shell...

More information

An o5en- confusing point:

An o5en- confusing point: An o5en- confusing point: Recall this example fom last lectue: E due to a unifom spheical suface chage, density = σ. Let s calculate the pessue on the suface. Due to the epulsive foces, thee is an outwad

More information

Electric Field, Potential Energy, & Voltage

Electric Field, Potential Energy, & Voltage Slide 1 / 66 lectic Field, Potential negy, & oltage Wok Slide 2 / 66 Q+ Q+ The foce changes as chages move towads each othe since the foce depends on the distance between the chages. s these two chages

More information

Physics 181. Assignment 4

Physics 181. Assignment 4 Physics 181 Assignment 4 Solutions 1. A sphee has within it a gavitational field given by g = g, whee g is constant and is the position vecto of the field point elative to the cente of the sphee. This

More information

Electricity Revision ELECTRICITY REVISION KEY CONCEPTS TERMINOLOGY & DEFINITION. Physical Sciences X-Sheets

Electricity Revision ELECTRICITY REVISION KEY CONCEPTS TERMINOLOGY & DEFINITION. Physical Sciences X-Sheets Electicity Revision KEY CONCEPTS In this session we will focus on the following: Stating and apply Coulomb s Law. Defining electical field stength and applying the deived equations. Dawing electical field

More information

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet Linea and angula analogs Linea Rotation x position x displacement v velocity a T tangential acceleation Vectos in otational motion Use the ight hand ule to detemine diection of the vecto! Don t foget centipetal

More information

The Millikan Experiment: Determining the Elementary Charge

The Millikan Experiment: Determining the Elementary Charge LAB EXERCISE 7.5.1 7.5 The Elementay Chage (p. 374) Can you think of a method that could be used to suggest that an elementay chage exists? Figue 1 Robet Millikan (1868 1953) m + q V b The Millikan Expeiment:

More information

Target Boards, JEE Main & Advanced (IIT), NEET Physics Gauss Law. H. O. D. Physics, Concept Bokaro Centre P. K. Bharti

Target Boards, JEE Main & Advanced (IIT), NEET Physics Gauss Law. H. O. D. Physics, Concept Bokaro Centre P. K. Bharti Page 1 CONCPT: JB-, Nea Jitenda Cinema, City Cente, Bokao www.vidyadishti.og Gauss Law Autho: Panjal K. Bhati (IIT Khaagpu) Mb: 74884484 Taget Boads, J Main & Advanced (IIT), NT 15 Physics Gauss Law Autho:

More information

Electric field generated by an electric dipole

Electric field generated by an electric dipole Electic field geneated by an electic dipole ( x) 2 (22-7) We will detemine the electic field E geneated by the electic dipole shown in the figue using the pinciple of supeposition. The positive chage geneates

More information

Collaborative ASSIGNMENT Assignment 3: Sources of magnetic fields Solution

Collaborative ASSIGNMENT Assignment 3: Sources of magnetic fields Solution Electicity and Magnetism: PHY-04. 11 Novembe, 014 Collaboative ASSIGNMENT Assignment 3: Souces of magnetic fields Solution 1. a A conducto in the shape of a squae loop of edge length l m caies a cuent

More information

Physics 122, Fall October 2012

Physics 122, Fall October 2012 Today in Physics 1: electostatics eview David Blaine takes the pactical potion of his electostatics midtem (Gawke). 11 Octobe 01 Physics 1, Fall 01 1 Electostatics As you have pobably noticed, electostatics

More information

Math 259 Winter Handout 6: In-class Review for the Cumulative Final Exam

Math 259 Winter Handout 6: In-class Review for the Cumulative Final Exam Math 259 Winte 2009 Handout 6: In-class Review fo the Cumulative Final Exam The topics coveed by the cumulative final exam include the following: Paametic cuves. Finding fomulas fo paametic cuves. Dawing

More information