Optical Fibres - Dispersion Part 1

Size: px
Start display at page:

Download "Optical Fibres - Dispersion Part 1"

Transcription

1 ECE 455 Lecture 05 1 Otical Fibres - Disersion Part 1 Stavros Iezekiel Deartment of Electrical and Comuter Engineering University of Cyrus HMY 445 Lecture 05 Fall Semester 016

2 ECE 455 Lecture 05 Otical ulse This is distorted as it roagates along a fibre Disersive medium, e.g. otical fibre z Direction of roagation DISPERSION WHAT WE KNOW SO FAR

3 ECE 455 Lecture 05 3 From Lecture 0: The signal travelling through an otical fibre can be degraded due to: Attenuation (leads to loss of ower) Nonlinearity (we have not discussed this yet) and Disersion leads to ulse sreading. Pulses become wider as they cover more distance in the fibre, for examle: Pulses overla to cause a bit error Bit stream at fibre Bit stream inut at fibre outut T b t t Rule of thumb B T L L 4σ L σ rms ulse sread er distance Units: ns/km

4 ECE 455 Lecture 05 4 From Lecture 04: Main tyes of fibre and refractive index rofile Note: Standard single mode fibre is ste-index

5 ECE 455 Lecture 05 5 Silica fibres Single-mode (Ste index) Multimode (Ste index) Do not have modal disersion (because they are single mode) Exhibit modal disersion (also called intermodal disersion) This does not mean that they have no disersion at all. From Lecture 04: Main tyes of fibre and modal disersion Multimode (Graded index) Minimises modal disersion

6 ECE 455 Lecture 05 6 htt://fobasics.blogsot.com.cy/?viewclassic Ste-index multimode fibres suffer from modal disersion because the different modes (rays of light) travel different distances in covering the length of the fibre. Note: the different colours are used simly to show different ray aths. A urely monochromatic source will still lead to modal disersion. δτ L n c 1 n1 n n ( NA) c n From Question Sheet 3: Modal disersion (ns/km) considering simle ray analysis and looking at difference between shortest and longest (meridional) ray aths.

7 ECE 455 Lecture 05 7 In this lecture we will start to consider other tyes of disersion: Disersion Modal Disersion Also called: Intermodal Disersion Multimode Disersion Occurs in: Multimode fibres NOT in single-mode Chromatic Disersion Also called: Intramodal Disersion Occurs in: single-mode and multimode fibres Polarization-mode Disersion (PMD) Mostly a roblem for single-mode fibres that are comensated for chromatic disersion, and at long distances Material Disersion Due to nonlinear wavelength deendence of refractive index with wavelength Waveguide Disersion Due to light roagating in cladding of fibre, can be engineered with different refractive index rofiles

8 ECE 455 Lecture 05 8 PHYSICAL CAUSES OF DISPERSION

9 ECE 455 Lecture 05 9 Modal disersion in a few words There must be more than one mode for this tye of disersion Inut light is launched into a multimode fibre, exciting multile modes of roagation. Because the core diameter is sufficiently large, we can use ray otics to model the roagation. Different modes have the same seed (strictly seaking the same grou velocity), but they travel different distances relative to fibre length. This leads to different arrival times at the outut and thus ulse sreading. A graded index rofile hels to reduce modal disersion.

10 ECE 455 Lecture Chromatic disersion in a few words Also called intramodal within a mode. Essentially occurs due to the light being launched into the fibre being having a sread of wavelengths (i.e. colours, hence the name chromatic disersion). Has two comonents: Material disersion (due to refractive index deendency on wavelength) Waveguide disersion Occurs in both multimode and single-mode fibres, but we neglect it in multimode fibres because their intermodal disersion is larger. But we cannot neglect it in single-mode fibres.

11 ECE 455 Lecture Chromatic disersion in a few words material disersion Otical sources (even lasers) are not urely monochromatic, but instead they have a sectral width if we look at their otical sectrum Hence different wavelengths (or different colours, hence the name chromatic) will be resent in the inut ulse. IN t Silica has a nonlinear variation of refractive index with wavelength v g ( λ ) ( λ ) v ( ) v < g 1 g λ Hence different wavelengths travel at different grou velocities OUT Leading to ulse sreading t

12 ECE 455 Lecture 05 1 Chromatic disersion in a few words waveguide disersion Because of the small core diameter (tyically 8 μm) relative to the wavelength of the light, light launched into a single-mode fibre actually travels with a mode field diameter that is larger than the core diameter. Hence art of the otical ower is couled into the cladding, which has a lower refractive index than the core, leading to a higher velocity. The mode field diameter increases with wavelength, leading to more ower being couled into the cladding and thus a higher overall grou velocity. Material and waveguide disersion combine to give overall chromatic disersion

13 ECE 455 Lecture Polarisation mode disersion (PMD) in a few words Light can travel in two orthogonal states of olarisation; if these see different values of refractive index (due to birefringence), then ulse sreading occurs: Birefringence can be caused either by material or waveguide effects. Waveguide PMD is essentially due to manufacturing variations leading to nonconcentric cores, ellitical cores or ellitical fibre:

14 ECE 455 Lecture Comaring chromatic & modal disersion, single and multimode fibres Chromatic (intramodal) disersion also exists in multimode fibres, but for this tye of fibre the biggest cause of disersion is modal disersion. - For multimode fibres, we usually ignore chromatic disersion when we calculate the total disersion. For chromatic disersion - Material disersion makes a larger contribution comared to waveguide disersion. Multimode fibres Modal disersion Chromatic (intramodal) Caused by: Material disersion Waveguide disersion Single-mode fibres Multimode fibres have worse disersion erformance comared to single mode.

15 ECE 455 Lecture Otical fibre U. of Washington z If we have a ulse of light which is not monochromatic (it contains a grou of wavelengths), then we will have disersion: CHROMATIC DISPERSION

16 ECE 455 Lecture n n 1 O 1 n In single-mode fibres, there is no intermodal disersion (because there is only one mode of roagation). However, we have chromatic (intramodal) disersion n Material disersion Waveguide disersion Due to nonlinear relationshi between n andλ Chromatic disersion Disersion due to fact that grou velocity changes with wavelength Due to refractive index rofile of the fibre. Changes with λ.

17 ECE 455 Lecture Disersion for a standard single mode fibre (silica) Disersion is minimised at 1310 nm. Note: unit is s/(nm.km) But disersion is non-zero at 1550 nm, which is the wavelength of minimum attenuation.

18 ECE 455 Lecture We begin by looking at the contribution of material disersion. This is caused because of the finite sectral width of otical sources and the nonlinear deendence of refractive index with wavelength. This results in grou velocity disersion, so we need to know something about grou velocity.

19 ECE 455 Lecture PHASE VELOCITY/GROUP VELOCITY

20 ECE 455 Lecture 05 0 Grou and hase velocity All otical sources (including lasers) have a finite sectral width: Intensity (arbitrary units) λ: sectral width, FWHM Peak wavelength λ 0 Each wavelength will see a different value of refractive index, and so travel at different seeds: n λ The refractive index varies nonlinearly with wavelength λ

21 ECE 455 Lecture 05 1 Although we mainly secify wavelength rather than frequency, it will be more convenient to use frequency for this discussion. We will also consider just two, very closely saced frequencies within the grou: Intensity (arbitrary units) ω 0 ω ω 1 ω δω ω -ω 1

22 ECE 455 Lecture 05 At any given wavelength, we can consider the light to be an electromagnetic wave whose electric field is a sinusoidal travelling wave (in the + z direction): E( z, t) E0 cos ( kz ωt) (1) k π λ ω ω π v ( fλ) T k () (3) (4) hase constant angular frequency hase velocity π π π k n λ λ / n λ 0 0 nk 0 k ω v ω c / n nk 0 k free 0 sace hase constant

23 ECE 455 Lecture 05 3 Transverse electromagnetic wave x z

24 ECE 455 Lecture 05 4 Hence if we take the simlified icture of assuming that our otical source emits two closely saced frequencies ω 1 andω, the corresonding waves are: E 1 E0 t cos ( k1z ω1 ) E E0 cos ( kz ωt) The suerosition (addition) of these two waves gives the total waveform as: E T [ ( k z ω t) + cos ( k z ω )] E0 cos 1 1 t (5) Total waveform Suerosition of two waves

25 ECE 455 Lecture 05 5 Destructive Interference Constructive interference z E E cos ( k1z ω1 ) 0 t cos ( k1z ω1 ) 0 t

26 ECE 455 Lecture cosα + cosβ cos ( α β ) cos ( α + 1 β ) E T cos ( k k ) z ( ω ω ) t ( k + k ) z ( ω ω ) 1 1+ cos 1 1 E0 t (6) ~ E0 k g ω g E T E 0 cos cos [ 1( ) 1( ) ] k1 k z ω1 ω t [ 1( k k ) 1 + z ( ω + ω ) t] 1 1 k ω

27 ECE 455 Lecture 05 7 E T [ k z ω t] [ k z ω t] ~ E cos cos 0 g g (7) If the frequencies are closely saced, then: 1 ω 1 ω ω ω ( ω ω ) 1+ ω ( ω ω ) ω 1 ω << g 1 ω >> ω g

28 ECE 455 Lecture 05 8 We can think of the resultant electric field E T as an amlitude-modulated wave: E T [ k z ω t] [ k z ω t] ~ E cos cos 0 g g ENVELOPE Modulation frequency ω g CARRIER Carrier frequency ω E T Normalised field t Suerosition of the two waves is equivalent to amlitude modulation (DSB-Suressed carrier) -1 Time

29 ECE 455 Lecture 05 9 [ ] [ ] t z k t z k E E g g T ω ω cos cos ~ 0 ENVELOPE CARRIER Velocity of carrier is: k k k k v ω ω ω ω Phase velocity (8)

30 ECE 455 Lecture E T [ k z ω t] [ k z ω t] ~ E cos cos 0 g g ENVELOPE CARRIER Velocity of enveloe is: v g ω k g g ω1 ω k k 1 dω dk Grou velocity (9)

31 ECE 455 Lecture The signal roagates at the grou velocity v g. N.B. The enveloe does not exist as a hysical artefact; it reresents the maximum excursion of the wave amlitude. 1 v g Normalised field v -1 Time

32 ECE 455 Lecture 05 3 From (8): ω kv and substituting into (9): d vg ω v + dk k dv dk (10) v v g + k dλ dv dk dλ Now, k π/λ, hence: dk dλ π λ k λ v g v λ d dv λ (11)

33 ECE 455 Lecture If the hase and grou velocities are equal, then the enveloe will travel at the same seed as the carrier wave, and there will be no disersion. From equation (11), this imlies that the hase velocity should not deend on wavelength if we are to achieve disersion-less transmission. v g v no disersion v g v disersion

34 ECE 455 Lecture The lot between ω and k is known as the disersion relation. From (9), the gradient of this curve will yield the grou velocity: ω ω x v ω x k x v g d ω dk k k x k k x

35 ECE 455 Lecture ω v g v In normal disersion, the grou velocity is less than the hase velocity. v g < v k normal disersion In anomalous disersion, the grou velocity exceeds the hase velocity. ω v g > v anomalous v g v disersion htt:// k

36 ECE 455 Lecture Animation 01

Optical Fiber Signal Degradation

Optical Fiber Signal Degradation Optical Fiber Signal Degradation Effects Pulse Spreading Dispersion (Distortion) Causes the optical pulses to broaden as they travel along a fiber Overlap between neighboring pulses creates errors Resulting

More information

Determination of the Best Apodization Function and Grating Length of Linearly Chirped Fiber Bragg Grating for Dispersion Compensation

Determination of the Best Apodization Function and Grating Length of Linearly Chirped Fiber Bragg Grating for Dispersion Compensation 84 JOURNAL OF COMMUNICATIONS, VOL. 7, NO., NOVEMBER Determination of the Best Aodization Function and Grating Length of Linearly Chired Fiber Bragg Grating for Disersion Comensation Sher Shermin A. Khan

More information

All-fiber Optical Parametric Oscillator

All-fiber Optical Parametric Oscillator All-fiber Otical Parametric Oscillator Chengao Wang Otical Science and Engineering, Deartment of Physics & Astronomy, University of New Mexico Albuquerque, NM 87131-0001, USA Abstract All-fiber otical

More information

Factors Effect on the Saturation Parameter S and there Influences on the Gain Behavior of Ytterbium Doped Fiber Amplifier

Factors Effect on the Saturation Parameter S and there Influences on the Gain Behavior of Ytterbium Doped Fiber Amplifier Australian Journal of Basic and Alied Sciences, 5(12): 2010-2020, 2011 ISSN 1991-8178 Factors Effect on the Saturation Parameter S and there Influences on the Gain Behavior of Ytterbium Doed Fiber Amlifier

More information

Pulse Propagation in Optical Fibers using the Moment Method

Pulse Propagation in Optical Fibers using the Moment Method Pulse Proagation in Otical Fibers using the Moment Method Bruno Miguel Viçoso Gonçalves das Mercês, Instituto Suerior Técnico Abstract The scoe of this aer is to use the semianalytic technique of the Moment

More information

Physics 2D Lecture Slides Lecture 17: Feb 10 th

Physics 2D Lecture Slides Lecture 17: Feb 10 th Physics 2D Lecture Slides Lecture 17: Feb 10 th Vivek Sharma UCSD Physics Just What is Waving in Matter Waves? For waves in an ocean, it s the water that waves For sound waves, it s the molecules in medium

More information

Light at a Standstill Tim Kuis June 13, 2008

Light at a Standstill Tim Kuis June 13, 2008 Light at a Standstill Tim Kuis June 13, 008 1. Introduction There is something curious about the seed of light. It is the highest obtainable seed. Nothing can travel faster. But how slow can light go?

More information

Mode-Field Diameter (MFD)

Mode-Field Diameter (MFD) Mode-Field Diameter (MFD) Important parameter determined from mode-field distribution of fundamental LP 01 mode. Characterized by various models Main consideration: how to approximate the electric field

More information

Propagation losses in optical fibers

Propagation losses in optical fibers Chapter Dielectric Waveguides and Optical Fibers 1-Fev-017 Propagation losses in optical fibers Charles Kao, Nobel Laureate (009) Courtesy of the Chinese University of Hong Kong S.O. Kasap, Optoelectronics

More information

Phase velocity and group velocity (c) Zhengqing Yun,

Phase velocity and group velocity (c) Zhengqing Yun, Phase velocity and grou velocity (c) Zhengqing Yun, 2011-2012 Objective: Observe the difference between hase and grou velocity; understand that the grou velocity can be less than, equal to, and greater

More information

The individual electric and magnetic waves are in phase. The fields peak at the same position at the same time.

The individual electric and magnetic waves are in phase. The fields peak at the same position at the same time. 1 Part 3: Otics 3.1: Electromagnetic Waves An electromagnetic wave (light wave) consists of oscillating electric and magnetic fields. The directions of the electric and magnetic fields are erendicular.

More information

Physics 2D Lecture Slides Lecture 17: Feb 8th 2005

Physics 2D Lecture Slides Lecture 17: Feb 8th 2005 Physics 2D Lecture Slides Lecture 17: Feb 8th 2005 Vivek Sharma UCSD Physics A PhD Thesis Fit For a Prince Matter Wave! Pilot wave of λ = h/ = h / (γmv) frequency f = E/h Consequence: If matter has wave

More information

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1 Lecture 3 Optical fibers as waveguides Maxwell s equations The wave equation Fiber modes Phase velocity, group velocity Dispersion Fiber Optical Communication Lecture 3, Slide 1 Maxwell s equations in

More information

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009 University of North Carolina-Charlotte Deartment of Electrical and Comuter Engineering ECG 4143/5195 Electrical Machinery Fall 9 Problem Set 5 Part Due: Friday October 3 Problem 3: Modeling the exerimental

More information

Dielectric Waveguides and Optical Fibers. 高錕 Charles Kao

Dielectric Waveguides and Optical Fibers. 高錕 Charles Kao Dielectric Waveguides and Optical Fibers 高錕 Charles Kao 1 Planar Dielectric Slab Waveguide Symmetric Planar Slab Waveguide n 1 area : core, n 2 area : cladding a light ray can undergo TIR at the n 1 /n

More information

PHYSICAL REVIEW LETTERS

PHYSICAL REVIEW LETTERS PHYSICAL REVIEW LETTERS VOLUME 81 20 JULY 1998 NUMBER 3 Searated-Path Ramsey Atom Interferometer P. D. Featonby, G. S. Summy, C. L. Webb, R. M. Godun, M. K. Oberthaler, A. C. Wilson, C. J. Foot, and K.

More information

Stability analysis of second order pulsed Raman laser in dispersion managed systems

Stability analysis of second order pulsed Raman laser in dispersion managed systems Stability analysis of second order ulsed Raman laser in disersion managed systems Salih K. Kalyoncu, Shiming Gao, En-Kuang Tien, Yuewang Huang, Dogukan Yildirim, Enver Adas, Stefano Wabnitz and Ozdal Boyraz,

More information

COURSE OUTLINE. Introduction Signals and Noise: 3) Analysis and Simulation Filtering Sensors and associated electronics. Sensors, Signals and Noise

COURSE OUTLINE. Introduction Signals and Noise: 3) Analysis and Simulation Filtering Sensors and associated electronics. Sensors, Signals and Noise Sensors, Signals and Noise 1 COURSE OUTLINE Introduction Signals and Noise: 3) Analysis and Simulation Filtering Sensors and associated electronics Noise Analysis and Simulation White Noise Band-Limited

More information

E p,rms = 240 V E rms = 120 V N p N s C. f = 60 Hz R = 3.8 L

E p,rms = 240 V E rms = 120 V N p N s C. f = 60 Hz R = 3.8 L Discussion Question 1A P1, Week 1 Power in AC Circuits An electronic device, consisting of a simle C circuit, is designed to be connected to an American-standard ower outlet delivering an EMF of 1 V at

More information

Explanation of superluminal phenomena based on wave-particle duality and proposed optical experiments

Explanation of superluminal phenomena based on wave-particle duality and proposed optical experiments Exlanation of suerluminal henomena based on wave-article duality and roosed otical exeriments Hai-Long Zhao * Jiuquan satellite launch center, Jiuquan, 73750, China Abstract: We suggest an exlanation for

More information

Chapter 2 Introductory Concepts of Wave Propagation Analysis in Structures

Chapter 2 Introductory Concepts of Wave Propagation Analysis in Structures Chater 2 Introductory Concets of Wave Proagation Analysis in Structures Wave roagation is a transient dynamic henomenon resulting from short duration loading. Such transient loadings have high frequency

More information

LECTURE 3 BASIC QUANTUM THEORY

LECTURE 3 BASIC QUANTUM THEORY LECTURE 3 BASIC QUANTUM THEORY Matter waves and the wave function In 194 De Broglie roosed that all matter has a wavelength and exhibits wave like behavior. He roosed that the wavelength of a article of

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 07

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 07 FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 07 Analysis of Wave-Model of Light Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of

More information

Computer arithmetic. Intensive Computation. Annalisa Massini 2017/2018

Computer arithmetic. Intensive Computation. Annalisa Massini 2017/2018 Comuter arithmetic Intensive Comutation Annalisa Massini 7/8 Intensive Comutation - 7/8 References Comuter Architecture - A Quantitative Aroach Hennessy Patterson Aendix J Intensive Comutation - 7/8 3

More information

Uniformly best wavenumber approximations by spatial central difference operators: An initial investigation

Uniformly best wavenumber approximations by spatial central difference operators: An initial investigation Uniformly best wavenumber aroximations by satial central difference oerators: An initial investigation Vitor Linders and Jan Nordström Abstract A characterisation theorem for best uniform wavenumber aroximations

More information

Polarization Mode Dispersion

Polarization Mode Dispersion Unit-7: Polarization Mode Dispersion https://sites.google.com/a/faculty.muet.edu.pk/abdullatif Department of Telecommunication, MUET UET Jamshoro 1 Goos Hänchen Shift The Goos-Hänchen effect is a phenomenon

More information

Module II: Part B. Optical Fibers: Dispersion

Module II: Part B. Optical Fibers: Dispersion Module II: Part B Optical Fibers: Dispersion Dispersion We had already seen that that intermodal dispersion can be, eliminated, in principle, using graded-index fibers. We had also seen that single-mode,

More information

Multiparameter entanglement in quantum interferometry

Multiparameter entanglement in quantum interferometry PHYSICAL REVIEW A, 66, 023822 200 Multiarameter entanglement in quantum interferometry Mete Atatüre, 1 Giovanni Di Giusee, 2 Matthew D. Shaw, 2 Alexander V. Sergienko, 1,2 Bahaa E. A. Saleh, 2 and Malvin

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #4 is assigned, due March 25 th Start discussion

More information

Chapter 6: Sound Wave Equation

Chapter 6: Sound Wave Equation Lecture notes on OPAC0- ntroduction to Acoustics Dr. Eser OLĞAR, 08 Chater 6: Sound Wave Equation. Sound Waves in a medium the wave equation Just like the eriodic motion of the simle harmonic oscillator,

More information

Light Waves and Polarization

Light Waves and Polarization Light Waves and Polarization Xavier Fernando Ryerson Communications Lab http://www.ee.ryerson.ca/~fernando The Nature of Light There are three theories explain the nature of light: Quantum Theory Light

More information

NUMERICAL AND THEORETICAL INVESTIGATIONS ON DETONATION- INERT CONFINEMENT INTERACTIONS

NUMERICAL AND THEORETICAL INVESTIGATIONS ON DETONATION- INERT CONFINEMENT INTERACTIONS NUMERICAL AND THEORETICAL INVESTIGATIONS ON DETONATION- INERT CONFINEMENT INTERACTIONS Tariq D. Aslam and John B. Bdzil Los Alamos National Laboratory Los Alamos, NM 87545 hone: 1-55-667-1367, fax: 1-55-667-6372

More information

Superluminal signal conversion in stimulated Brillouin scattering via an optical fiber ring resonator

Superluminal signal conversion in stimulated Brillouin scattering via an optical fiber ring resonator Suerluminal signal conversion in stimulated rillouin scattering via an otical fiber ring resonator Liang Zhang, Li Zhan *, Jinmei Liu, Gaomeng Wang, Fangying Tao, Taohu Xu,Qishun Shen Deartment of Physics,

More information

Polarization Mode Dispersion Mitigation through Spun Fibers

Polarization Mode Dispersion Mitigation through Spun Fibers INTERNATIONAL JOURNAL O MICROWAVE AND OPTICAL TECHNOLOGY, 176 VOL.5 NO.3 MAY 1 Polarization Mode Disersion Mitigation through Sun ibers Dowluru Ravi Kumar*, Dr.. Prabhakara Rao * Lecturer in ECE, Deartment

More information

Controllable Spatial Array of Bessel-like Beams with Independent Axial Intensity Distributions for Laser Microprocessing

Controllable Spatial Array of Bessel-like Beams with Independent Axial Intensity Distributions for Laser Microprocessing JLMN-Journal of Laser Micro/Nanoengineering Vol. 3, No. 3, 08 Controllable Satial Array of Bessel-like Beams with Indeendent Axial Intensity Distributions for Laser Microrocessing Sergej Orlov, Alfonsas

More information

Lecture 4 Fiber Optical Communication Lecture 4, Slide 1

Lecture 4 Fiber Optical Communication Lecture 4, Slide 1 ecture 4 Dispersion in single-mode fibers Material dispersion Waveguide dispersion imitations from dispersion Propagation equations Gaussian pulse broadening Bit-rate limitations Fiber losses Fiber Optical

More information

Feedback-error control

Feedback-error control Chater 4 Feedback-error control 4.1 Introduction This chater exlains the feedback-error (FBE) control scheme originally described by Kawato [, 87, 8]. FBE is a widely used neural network based controller

More information

UNIT 1. By: Ajay Kumar Gautam Asst. Prof. Electronics & Communication Engineering Dev Bhoomi Institute of Technology & Engineering, Dehradun

UNIT 1. By: Ajay Kumar Gautam Asst. Prof. Electronics & Communication Engineering Dev Bhoomi Institute of Technology & Engineering, Dehradun UNIT 1 By: Ajay Kumar Gautam Asst. Prof. Electronics & Communication Engineering Dev Bhoomi Institute of Technology & Engineering, Dehradun Syllabus Introduction: Demand of Information Age, Block Diagram

More information

Optical Fibre Communication Systems

Optical Fibre Communication Systems Optical Fibre Communication Systems Lecture 2: Nature of Light and Light Propagation Professor Z Ghassemlooy Northumbria Communications Laboratory Faculty of Engineering and Environment The University

More information

ε(ω,k) =1 ω = ω'+kv (5) ω'= e2 n 2 < 0, where f is the particle distribution function and v p f v p = 0 then f v = 0. For a real f (v) v ω (kv T

ε(ω,k) =1 ω = ω'+kv (5) ω'= e2 n 2 < 0, where f is the particle distribution function and v p f v p = 0 then f v = 0. For a real f (v) v ω (kv T High High Power Power Laser Laser Programme Programme Theory Theory and Comutation and Asects of electron acoustic wave hysics in laser backscatter N J Sircombe, T D Arber Deartment of Physics, University

More information

Baroclinic flows can also support Rossby wave propagation. This is most easily

Baroclinic flows can also support Rossby wave propagation. This is most easily 17. Quasi-geostrohic Rossby waves Baroclinic flows can also suort Rossby wave roagation. This is most easily described using quasi-geostrohic theory. We begin by looking at the behavior of small erturbations

More information

On Line Parameter Estimation of Electric Systems using the Bacterial Foraging Algorithm

On Line Parameter Estimation of Electric Systems using the Bacterial Foraging Algorithm On Line Parameter Estimation of Electric Systems using the Bacterial Foraging Algorithm Gabriel Noriega, José Restreo, Víctor Guzmán, Maribel Giménez and José Aller Universidad Simón Bolívar Valle de Sartenejas,

More information

Design, fabrication and testing of high performance fiber optic depolarizer

Design, fabrication and testing of high performance fiber optic depolarizer Design, fabrication and testing of high erformance fiber otic deolarizer Jagannath Naak *a, Pradee Kumar a, Himansu Shekhar Pattanaik b, S. Sarath Chandra b a Research Center Imarat, Vignana Kancha, Hderabad,

More information

Simple geometric interpretation of signal evolution in phase-sensitive fibre optic parametric amplifier

Simple geometric interpretation of signal evolution in phase-sensitive fibre optic parametric amplifier Simle geometric interretation of signal evolution in hase-sensitive fibre otic arametric amlifier A.A. REDYUK,,,* A.E. BEDNYAKOVA,, S.B. MEDVEDEV, M.P. FEDORUK,, AND S.K. TURITSYN,3 Novosibirsk State University,

More information

On the relationship between sound intensity and wave impedance

On the relationship between sound intensity and wave impedance Buenos Aires 5 to 9 Setember, 16 Acoustics for the 1 st Century PROCEEDINGS of the nd International Congress on Acoustics Sound Intensity and Inverse Methods in Acoustics: Paer ICA16-198 On the relationshi

More information

Focal Waveform of a Prolate-Spheroidal IRA

Focal Waveform of a Prolate-Spheroidal IRA Sensor and Simulation Notes Note 59 February 6 Focal Waveform of a Prolate-Sheroidal IRA Carl E. Baum University of New Mexico Deartment of Electrical and Comuter Engineering Albuquerque New Mexico 873

More information

An Improved Calibration Method for a Chopped Pyrgeometer

An Improved Calibration Method for a Chopped Pyrgeometer 96 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 17 An Imroved Calibration Method for a Choed Pyrgeometer FRIEDRICH FERGG OtoLab, Ingenieurbüro, Munich, Germany PETER WENDLING Deutsches Forschungszentrum

More information

Thickness and refractive index measurements using multiple beam interference fringes (FECO)

Thickness and refractive index measurements using multiple beam interference fringes (FECO) Journal of Colloid and Interface Science 264 2003 548 553 Note www.elsevier.com/locate/jcis Thickness and refractive index measurements using multile beam interference fringes FECO Rafael Tadmor, 1 Nianhuan

More information

Section 4: Electromagnetic Waves 2

Section 4: Electromagnetic Waves 2 Frequency deendence and dielectric constant Section 4: Electromagnetic Waves We now consider frequency deendence of electromagnetic waves roagating in a dielectric medium. As efore we suose that the medium

More information

Chapter 24 Photonics Question 1 Question 2 Question 3 Question 4 Question 5

Chapter 24 Photonics Question 1 Question 2 Question 3 Question 4 Question 5 Chapter 24 Photonics Data throughout this chapter: e = 1.6 10 19 C; h = 6.63 10 34 Js (or 4.14 10 15 ev s); m e = 9.1 10 31 kg; c = 3.0 10 8 m s 1 Question 1 Visible light has a range of photons with wavelengths

More information

I Poles & zeros. I First-order systems. I Second-order systems. I E ect of additional poles. I E ect of zeros. I E ect of nonlinearities

I Poles & zeros. I First-order systems. I Second-order systems. I E ect of additional poles. I E ect of zeros. I E ect of nonlinearities EE C28 / ME C34 Lecture Chater 4 Time Resonse Alexandre Bayen Deartment of Electrical Engineering & Comuter Science University of California Berkeley Lecture abstract Toics covered in this resentation

More information

Pretest (Optional) Use as an additional pacing tool to guide instruction. August 21

Pretest (Optional) Use as an additional pacing tool to guide instruction. August 21 Trimester 1 Pretest (Otional) Use as an additional acing tool to guide instruction. August 21 Beyond the Basic Facts In Trimester 1, Grade 8 focus on multilication. Daily Unit 1: Rational vs. Irrational

More information

Seafloor Reflectivity A Test of an Inversion Technique

Seafloor Reflectivity A Test of an Inversion Technique Seafloor Reflectivity A Test of an Inversion Technique Adrian D. Jones 1, Justin Hoffman and Paul A. Clarke 1 1 Defence Science and Technology Organisation, Australia, Student at Centre for Marine Science

More information

CSE 599d - Quantum Computing When Quantum Computers Fall Apart

CSE 599d - Quantum Computing When Quantum Computers Fall Apart CSE 599d - Quantum Comuting When Quantum Comuters Fall Aart Dave Bacon Deartment of Comuter Science & Engineering, University of Washington In this lecture we are going to begin discussing what haens to

More information

Control the high-order harmonics cutoff through the. combination of chirped laser and static electric field

Control the high-order harmonics cutoff through the. combination of chirped laser and static electric field Control the high-order harmonics cutoff through the combination of chired laser and static electric field Yang Xiang,, Yueing iu Shangqing Gong State Key Laboratory of High Field Laser Physics, Shanghai

More information

Landau Theory of the Fermi Liquid

Landau Theory of the Fermi Liquid Chater 5 Landau Theory of the Fermi Liquid 5. Adiabatic Continuity The results of the revious lectures, which are based on the hysics of noninteracting systems lus lowest orders in erturbation theory,

More information

Ultrasound Beam Focusing Considering the Cutaneous Fat Layer Effects

Ultrasound Beam Focusing Considering the Cutaneous Fat Layer Effects Ultrasound Beam Focusing Considering the Cutaneous Fat Layer Effects A. B. M. Aowlad Hossain 1*, Laehoon H. Kang 1 Deartment of Electronics and Communication Engineering Khulna University of Engineering

More information

Bistable behaviors of weak probe light via coherent and incoherent fields. H. Jafarzadeh, E. Ahmadi Sangachin and Seyyed Hossein Asadpour

Bistable behaviors of weak probe light via coherent and incoherent fields. H. Jafarzadeh, E. Ahmadi Sangachin and Seyyed Hossein Asadpour Page 1 of Bistable behaviors of weak robe light via coherent and incoherent fields H. Jafarzadeh, E. Ahmadi Sangachin and Seyyed Hossein Asadour Sama Technical and Vocational Training College, Islamic

More information

Experiments on ring wave packet generated by water drop

Experiments on ring wave packet generated by water drop Chinese Science Bulletin 2008 SCIENCE IN CHINA PRESS Sringer Exeriments on ring wave acket generated by water dro ZHU GuoZhen, LI ZhaoHui & FU DeYong Deartment of Physics, Tsinghua University, Beijing

More information

Chapter 8_L20. Relaxation oscillation

Chapter 8_L20. Relaxation oscillation Chater 8_L Relaxation oscillation Carrier number (1 7 ) Photon number (1 4 ) Relaxation oscillation 3 Relaxation oscillation: when the laser undergoes an external erturbation, the laser s couled carrier

More information

Nanoscale fluctuations and surface tension measurements in droplets using phase-resolved low-coherence interferometry

Nanoscale fluctuations and surface tension measurements in droplets using phase-resolved low-coherence interferometry Nanoscale fluctuations and surface tension measurements in drolets using hase-resolved low-coherence interferometry Ru Wang, 1 Taewoo Kim, 2 Mustafa Mir, 2 and Gabriel Poescu 2, * 1 Quantitative Light

More information

Optical Fiber Concept

Optical Fiber Concept Optical Fiber Concept Optical fibers are light pipes Communications signals can be transmitted over these hair-thin strands of glass or plastic Concept is a century old But only used commercially for the

More information

Enhancement of Light Extraction Efficiency in Organic Light Emitting Device with Multi-Stacked Cathode and High Refractive Index Anode

Enhancement of Light Extraction Efficiency in Organic Light Emitting Device with Multi-Stacked Cathode and High Refractive Index Anode Enhancement of Light Extraction Efficiency in Organic Light Emitting Device with Multi-Stacked Cathode and High Refractive Index Anode Kanazawa Institute of Technology, Jaan Akiyoshi Mikami and Takao Goto

More information

Emittance Growth Caused by Surface Roughness

Emittance Growth Caused by Surface Roughness Emittance Growth Caused by Surface Roughness he hang, Chuanxiang Tang Tsinghua University, Beijing Oct. 17th, 2016 Motivation What causes the emittance growth Dowell s equations of QE & emittance for bulk

More information

Fault Tolerant Quantum Computing Robert Rogers, Thomas Sylwester, Abe Pauls

Fault Tolerant Quantum Computing Robert Rogers, Thomas Sylwester, Abe Pauls CIS 410/510, Introduction to Quantum Information Theory Due: June 8th, 2016 Sring 2016, University of Oregon Date: June 7, 2016 Fault Tolerant Quantum Comuting Robert Rogers, Thomas Sylwester, Abe Pauls

More information

Quaternionic Projective Space (Lecture 34)

Quaternionic Projective Space (Lecture 34) Quaternionic Projective Sace (Lecture 34) July 11, 2008 The three-shere S 3 can be identified with SU(2), and therefore has the structure of a toological grou. In this lecture, we will address the question

More information

Chapter2 Fundamentals of VCSEL and Febry-Perot Resonator

Chapter2 Fundamentals of VCSEL and Febry-Perot Resonator Chater Fundamentals of VCSEL and Febry-Perot Resonator. Introduction to VCSELs [5-7] What is VCSEL? It is a contracted name of vertical cavity surface emitting laser and it is a kind of semiconductor laser.

More information

An Investigation on the Numerical Ill-conditioning of Hybrid State Estimators

An Investigation on the Numerical Ill-conditioning of Hybrid State Estimators An Investigation on the Numerical Ill-conditioning of Hybrid State Estimators S. K. Mallik, Student Member, IEEE, S. Chakrabarti, Senior Member, IEEE, S. N. Singh, Senior Member, IEEE Deartment of Electrical

More information

Classical gas (molecules) Phonon gas Number fixed Population depends on frequency of mode and temperature: 1. For each particle. For an N-particle gas

Classical gas (molecules) Phonon gas Number fixed Population depends on frequency of mode and temperature: 1. For each particle. For an N-particle gas Lecture 14: Thermal conductivity Review: honons as articles In chater 5, we have been considering quantized waves in solids to be articles and this becomes very imortant when we discuss thermal conductivity.

More information

Optical Accelerator: Scaling Laws and Figures of Merit

Optical Accelerator: Scaling Laws and Figures of Merit SLAC-PUB-11501 Otical Accelerator: Scaling Laws and Figures of Merit Levi Schächter (1), obert L. Byer () and obert H. Siemann (3) (1) lectrical ngineering Deartment, Technion IIT, Haifa 3000, ISAL ()

More information

ATM The thermal wind Fall, 2016 Fovell

ATM The thermal wind Fall, 2016 Fovell ATM 316 - The thermal wind Fall, 2016 Fovell Reca and isobaric coordinates We have seen that for the synotic time and sace scales, the three leading terms in the horizontal equations of motion are du dt

More information

The decision-feedback equalizer optimization for Gaussian noise

The decision-feedback equalizer optimization for Gaussian noise Journal of Theoretical and Alied Comuter Science Vol. 8 No. 4 4. 5- ISSN 99-634 (rinted 3-5653 (online htt://www.jtacs.org The decision-feedback eualizer otimization for Gaussian noise Arkadiusz Grzbowski

More information

2. Dispersion in the Planar Waveguide

2. Dispersion in the Planar Waveguide Chapt.2_2 Words Dispersion diagram( 色散图 ), modal/intermodal dispersion( 模间色散 ), intermodal coupling( 模间耦合 ), intramodal dispersion( 模内色散 ), penetration depth( 渗透深度 ), mode field distance(mfd, 模场距离 ), 2.

More information

Study of terahertz radiation from InAs and InSb

Study of terahertz radiation from InAs and InSb JOURNAL OF APPLIED PHYSICS VOLUME 91, NUMBER 9 1 MAY 2002 Study of terahertz radiation from InAs and InSb Ping Gu, a) Masahiko Tani, Shunsuke Kono, b) and Kiyomi Sakai Kansai Advanced Research Center,

More information

%(*)= E A i* eiujt > (!) 3=~N/2

%(*)= E A i* eiujt > (!) 3=~N/2 CHAPTER 58 Estimating Incident and Reflected Wave Fields Using an Arbitrary Number of Wave Gauges J.A. Zelt* A.M. ASCE and James E. Skjelbreia t A.M. ASCE 1 Abstract A method based on linear wave theory

More information

Waveguide Coupler I. Class: Integrated Photonic Devices Time: Fri. 8:00am ~ 11:00am. Classroom: 資電 206 Lecturer: Prof. 李明昌 (Ming-Chang Lee)

Waveguide Coupler I. Class: Integrated Photonic Devices Time: Fri. 8:00am ~ 11:00am. Classroom: 資電 206 Lecturer: Prof. 李明昌 (Ming-Chang Lee) Waveguide Couler I Class: Integrated Photonic Devices Time: Fri. 8:am ~ 11:am. Classroom: 資電 6 Lecturer: Prof. 李明昌 (Ming-Chang Lee) Waveguide Couler n 1 > n n Waveguide 1 n 1 n Waveguide n 1 n How to switch

More information

Left-handed metamaterial coatings for subwavelength-resolution imaging

Left-handed metamaterial coatings for subwavelength-resolution imaging 99 J. Ot. Soc. Am. A / Vol. 9, No. 9 / Setember Zaata-Rodríguez et al. Left-handed metamaterial coatings for subwavelength-resolution imaging Carlos J. Zaata-Rodríguez,, * David Pastor, Luis E. Martínez,

More information

NEUTRON STARS. Maximum mass of a neutron star:

NEUTRON STARS. Maximum mass of a neutron star: NEUTRON STARS 193: Baade and Zwicky roosed that suernovae reresented the transition of normal stars to neutron stars 1939: Oenheimer and Volkoff ublished the first theoretical model 1967: discovery of

More information

Lecture 4: Polarisation of light, introduction

Lecture 4: Polarisation of light, introduction Lecture 4: Polarisation of light, introduction Lecture aims to explain: 1. Light as a transverse electro-magnetic wave 2. Importance of polarisation of light 3. Linearly polarised light 4. Natural light

More information

Step index planar waveguide

Step index planar waveguide N. Dubreuil S. Lebrun Exam without document Pocket calculator permitted Duration of the exam: 2 hours The exam takes the form of a multiple choice test. Annexes are given at the end of the text. **********************************************************************************

More information

Lecture 1.2 Units, Dimensions, Estimations 1. Units To measure a quantity in physics means to compare it with a standard. Since there are many

Lecture 1.2 Units, Dimensions, Estimations 1. Units To measure a quantity in physics means to compare it with a standard. Since there are many Lecture. Units, Dimensions, Estimations. Units To measure a quantity in hysics means to comare it with a standard. Since there are many different quantities in nature, it should be many standards for those

More information

Chapter 1 Fundamentals

Chapter 1 Fundamentals Chater Fundamentals. Overview of Thermodynamics Industrial Revolution brought in large scale automation of many tedious tasks which were earlier being erformed through manual or animal labour. Inventors

More information

Characterizing the Behavior of a Probabilistic CMOS Switch Through Analytical Models and Its Verification Through Simulations

Characterizing the Behavior of a Probabilistic CMOS Switch Through Analytical Models and Its Verification Through Simulations Characterizing the Behavior of a Probabilistic CMOS Switch Through Analytical Models and Its Verification Through Simulations PINAR KORKMAZ, BILGE E. S. AKGUL and KRISHNA V. PALEM Georgia Institute of

More information

Charge-Pump Phase-Locked Loops

Charge-Pump Phase-Locked Loops Phase-Locked Loos Charge-Pum Phase-Locked Loos Ching-Yuan Yang National Chung-Hsing University Deartment of Electrical Engineering Concetual oeration of a hase-frequency detector (PFD) PFD 5- Ching-Yuan

More information

Analysis of Single Mode Step Index Fibres using Finite Element Method. * 1 Courage Mudzingwa, 2 Action Nechibvute,

Analysis of Single Mode Step Index Fibres using Finite Element Method. * 1 Courage Mudzingwa, 2 Action Nechibvute, Analysis of Single Mode Step Index Fibres using Finite Element Method. * 1 Courage Mudzingwa, 2 Action Nechibvute, 1,2 Physics Department, Midlands State University, P/Bag 9055, Gweru, Zimbabwe Abstract

More information

OPTIMISATION OF TRANSMISSION PREDICTIONS FOR A SONAR PERFORMANCE MODEL FOR SHALLOW OCEAN REGIONS

OPTIMISATION OF TRANSMISSION PREDICTIONS FOR A SONAR PERFORMANCE MODEL FOR SHALLOW OCEAN REGIONS OPTIMISATION OF TRANSMISSION PREDICTIONS FOR A SONAR PERFORMANCE MODEL FOR SHALLOW OCEAN REGIONS Adrian D. Jones*, Janice S. Sendt, Z. Yong Zhang*, Paul A. Clarke* and Jarrad R. Exelby* *Maritime Oerations

More information

COMPARISON OF FREQUENCY DEPENDENT EQUIVALENT LINEAR ANALYSIS METHODS

COMPARISON OF FREQUENCY DEPENDENT EQUIVALENT LINEAR ANALYSIS METHODS October 2-7, 28, Beijing, China COMPARISON OF FREQUENCY DEPENDENT EQUIVALENT LINEAR ANALYSIS METHODS Dong-Yeo Kwak Chang-Gyun Jeong 2 Duhee Park 3 and Sisam Park 4 Graduate student, Det. of Civil Engineering,

More information

Chapter 1 - The Nature of Light

Chapter 1 - The Nature of Light David J. Starling Penn State Hazleton PHYS 214 Electromagnetic radiation comes in many forms, differing only in wavelength, frequency or energy. Electromagnetic radiation comes in many forms, differing

More information

Central Force Motion Challenge Problems

Central Force Motion Challenge Problems Central Force Motion Challenge Problems Problem 1: Ellitic Orbit A satellite of mass m s is in an ellitical orbit around a lanet of mass m which is located at one focus of the ellise. The satellite has

More information

Equivalence of Wilson actions

Equivalence of Wilson actions Prog. Theor. Ex. Phys. 05, 03B0 7 ages DOI: 0.093/te/tv30 Equivalence of Wilson actions Physics Deartment, Kobe University, Kobe 657-850, Jaan E-mail: hsonoda@kobe-u.ac.j Received June 6, 05; Revised August

More information

arxiv:cond-mat/ v2 25 Sep 2002

arxiv:cond-mat/ v2 25 Sep 2002 Energy fluctuations at the multicritical oint in two-dimensional sin glasses arxiv:cond-mat/0207694 v2 25 Se 2002 1. Introduction Hidetoshi Nishimori, Cyril Falvo and Yukiyasu Ozeki Deartment of Physics,

More information

Chapter 12: Three-Phase Circuits

Chapter 12: Three-Phase Circuits Chater 1: Three-Phase Circuits 1.1 ntroduction 1. Balanced Three-Phase oltages 1.3 Balanced Wye-Wye connection 1.4 Balanced Wye-Delta Connection 1.7 Power in a Balanced System 1.1 NTRODUCTON A single-hase

More information

Velocity Changing and Dephasing collisions Effect on electromagnetically induced transparency in V-type Three level Atomic System.

Velocity Changing and Dephasing collisions Effect on electromagnetically induced transparency in V-type Three level Atomic System. Velocity Changing and Dehasing collisions Effect on electromagnetically induced transarency in V-tye Three level Atomic System. Anil Kumar M. and Suneel Singh University of Hyderabad, School of hysics,

More information

Millimeter wave scattering and diffraction in 110 GHz air breakdown plasma

Millimeter wave scattering and diffraction in 110 GHz air breakdown plasma PSFC/JA-13-54 Millimeter wave scattering and diffraction in 11 GHz air breakdown lasma Cook, A.M., Hummelt, J.S., Shairo, M.A, Temkin, R.J. February, 213 Plasma Science and Fusion Center Massachusetts

More information

Linear beam dynamics and radiation damping

Linear beam dynamics and radiation damping Fourth nternational Accelerator School for Linear Colliders Beijing, Setember 9 Course A4: Daming Ring Design and Phsics ssues Lecture Review of Linear Beam Dnamics and Radiation Daming And Wolski niversit

More information

LUMINOSITY DETERMINATION AT THE TEVATRON*

LUMINOSITY DETERMINATION AT THE TEVATRON* LUMINOSITY DETERMINATION AT THE TEVATRON* V. Paadimitriou #, Fermilab, Batavia, IL 60510, U.S.A. Abstract In this aer we discuss the luminosity determination at the Tevatron. We discuss luminosity measurements

More information

Lecture contents. Metals: Drude model Conductivity frequency dependence Plasma waves Difficulties of classical free electron model

Lecture contents. Metals: Drude model Conductivity frequency dependence Plasma waves Difficulties of classical free electron model Lecture contents Metals: Drude model Conductivity frequency deendence Plasma waves Difficulties of classical free electron model Paul Karl Ludwig Drude (German: [ˈdʀuːdə]; July, 863 July 5, 96) Phenomenology

More information

pp physics, RWTH, WS 2003/04, T.Hebbeker

pp physics, RWTH, WS 2003/04, T.Hebbeker 1. PP TH 03/04 Accelerators and Detectors 1 hysics, RWTH, WS 2003/04, T.Hebbeker 2003-12-03 1. Accelerators and Detectors In the following, we concentrate on the three machines SPS, Tevatron and LHC with

More information

OPTICAL COMMUNICATIONS S

OPTICAL COMMUNICATIONS S OPTICAL COMMUNICATIONS S-108.3110 1 Course program 1. Introduction and Optical Fibers 2. Nonlinear Effects in Optical Fibers 3. Fiber-Optic Components I 4. Transmitters and Receivers 5. Fiber-Optic Measurements

More information

Analysis of Group Coding of Multiple Amino Acids in Artificial Neural Network Applied to the Prediction of Protein Secondary Structure

Analysis of Group Coding of Multiple Amino Acids in Artificial Neural Network Applied to the Prediction of Protein Secondary Structure Analysis of Grou Coding of Multile Amino Acids in Artificial Neural Networ Alied to the Prediction of Protein Secondary Structure Zhu Hong-ie 1, Dai Bin 2, Zhang Ya-feng 1, Bao Jia-li 3,* 1 College of

More information