Physics 2D Lecture Slides Lecture 17: Feb 10 th

Size: px
Start display at page:

Download "Physics 2D Lecture Slides Lecture 17: Feb 10 th"

Transcription

1 Physics 2D Lecture Slides Lecture 17: Feb 10 th Vivek Sharma UCSD Physics

2 Just What is Waving in Matter Waves? For waves in an ocean, it s the water that waves For sound waves, it s the molecules in medium For light it s the E & B vectors that oscillate What s waving for matter waves? It s the PROBABLILITY OF FINDING THE PARTICLE that waves! Particle can be reresented by a wave acket At a certain location (x) At a certain time (t) Made by suerosition of many sinusoidal waves of different amlitudes, wavelengths λ and frequency f It s a ulse of robability in sacetime What Wave Does Not Describe a Particle y y = A cos ( kx ωt+φ) 2 k = π, w = 2 π f λ x,t What wave form can be associated with article s ilot wave? A traveling sinusoidal wave? y = A cos ( kx ωt+φ) Since de Broglie ilot wave reresents article, it must travel with same seed as article (like me and my shadow) Phase velocity (v ) of sinusoidal wave: v In Matter: h h ( a) λ = = γ mv 2 E γ mc (b) f = = h h E γ mc c v = λ f = = = γ mv v > c! = λ f Conflicts with Relativity Unhysical Single sinusoidal wave of infinite extent does not reresent article localized in sace Need wave ackets localized Satially (x) and Temorally (t)

3 Wave Grou or Wave Pulse Wave Grou/acket: Suerosition of many sinusoidal waves with different wavelengths and frequencies Localized in sace, time Size designated by x or t Wave grous travel with the seed v g = v 0 of article Constructing Wave Packets Add waves of diff λ, For each wave, ick Amlitude Phase Constructive interference over the sace-time of article Destructive interference elsewhere! Imagine Wave ulse moving along a string: its localized in time and sace (unlike a ure harmonic wave) Wave acket reresents article rob localized How To Make Wave Packets : Just Beat it! Suerosition of two sound waves of slightly different frequencies f 1 and f 2, f 1 f 2 Pattern of beats is a series of wave ackets Beat frequency f beat = f 2 f 1 = f f = range of frequencies that are suerimosed to form the wave acket

4 Addition of 2 Waves with slightly Resulting wave's "dislacement " y = y 1+ y2 : different wavelengths and y = A[ cos( k1x wt 1 ) + cos( k2x w2t) ] slightly different frequencies A+B A-B Trignometry : cosa+cos B =2cos( ) cos( ) k2 k1 w2 w1 k2 k1 w2 w1 y 2A cos( x t) cos( + x + = t) since k k k, w w w, k k, w w 2 1 ave 2 k w A' = 2A cos( x t ) = modulated amlitude 1 ave k w y = 2A cos( x t) kx w, Phase Vel wave V = kave Grou Vel w Vg = k dw Vg : Vel of enveloe= dk ' cos( t) y = A cos( kx wt) A' oscillates in x,t Wave Grou Or acket Non-reeating wave acket can be created thru suerosition Of many waves of similar (but different) frequencies and wavelengths

5 Wave Packet : Localization Finite # of diff. Monochromatic waves always roduce INFINTE sequence of reeating wave grous can t describe (localized) article To make localized wave acket, add infinite # of waves with Well chosen Aml A, Wave# k, ang. Freq. w ψ ( xt, ) = A( k) e i( kx wt) A( k) = Amlitude Fn diff waves of diff k have different amlitudes A(k) w = w(k), deends on tye of wave, media Grou Velocity V g dk dw = dk k= k0 v g t x localized Grou, Velocity, Phase Velocity and Disersion In a Wave Packet: w= w( k) Grou Velocity V k= k0 Since V = wk ( def ) w = kv g dk k = k 0 dk k= k0 g dw = dk dw dv V = = V + k usually V = V( k orλ) 1ns laser ulse diserse Material in which V varies with λ are said to be Disersive By x30 after travelling Individual harmonic waves making a wave ulse travel at 1km in otical fiber different V thus changing shae of ulse and become sread out In non-disersive media, V In disersive media V g V g = V,deends on dv dk

6 Grou Velocity of Wave Packets: V g Consider An Electron: mass = m velocity = v, momentum = 2 2π Energy E = hf = γ mc ; ω = 2 π f = γmc h h 2π 2π Wavelength λ = ; k = k = γ mv λ h dw dw / dv Grou Velocity : Vg = = dk dk / dv v g t 2π 2 dw d mc 2 mv 2 m = h π dk d 2π π & dv dv v = = v v 2 1/ 2 v [1-( ) ] h[1-( ) ] dv dv mv = h[1-( ) ] h[1-( ) ] c c c c dw dw / dv Vg = = = v dk dk / dv Grou velocity of electron Wave acket "ilot wave" is same as electron's hysical velociy t 2 2 1/ 3/ 3/2 But velocity of individual waves making u the wave acket V 2 = w c c! (not hysical) k = v > x Wave Packets & Uncertainty Princiles We added two Sinusoidal waves k w y = 2A cos( x t) cos( kx wt) Amlitude Modulation x 1 x 2 Distance X between adjacent minima = (X 2 ) node -(X 1 ) node Define X 1 =0 then hase diff from X 1 X 2 = π (similarly for t 1 t 2 ) What can we learn from this simle model? w k Node at y = 0 = 2A cos ( t x), Examine x or t behavior in x: k. x= π Need to combine many waves of diff. k to make small x ulse π x=, for small x 0 k & Vice Verca k ad n In t : w. t = π Need to combine many waves of diff ω to make small t ulse π t=, for small t 0 ω & Vice Verca ω

7 Signal Transmission and Bandwidth Theory Short duration ulses are used to transmit digital info Over hone line as brief tone ulses Over satellite link as brief radio ulses Over otical fiber as brief laser light ulses Ragardless of tye of wave or medium, any wave ulse must obey the fundamental relation» ω t π Range of frequencies that can be transmitted are called bandwidth of the medium Shortest ossible ulse that can be transmitted thru a medium is t min π/ ω Higher bandwidths transmits shorter ulses & allows high data rate Wave Packets & Uncertainty Princiles of Subatomic Physics in sace x: k. x= π 2π h since k =, = λ λ. x= h/2 usually one writes. x /2 aroximate relation In time t : w. t = π since ω=2 π f, E = hf E. t = h/2 usually one writes E. t /2 aroximate relation What do these inequalities mean hysically?

8 Know the Error of Thy Ways: Measurement Error Measurements are made by observing something : length, time, momentum, energy All measurements have some (limited) recision` no matter the instrument used Examles: How long is a desk? L = (5 ± 0.1) m = L ± L (deends on ruler used) How long was this lecture? T = (50 ± 1)minutes = T ± T (deends on the accuracy of your watch) How much does Prof. Sharma weigh? M = (1000 ± 700) kg = m ± m Is this a correct measure of my weight? Correct (because of large error reorted) but imrecise My correct weight is covered by the (large) error in observation Length Measure Voltage (or time) Measure r Measurement Error : x ± x Measurement errors are unavoidable since the measurement rocedure is an exerimental one True value of an measurable quantity is an abstract concet In a set of reeated measurements with random errors, the distribution of measurements resembles a Gaussian distribution characterized by the arameter σ or characterizing the width of the distribution Measurement error large Measurement error smaller

9 Interreting Measurements with random Error : True value Where in the World is Carmen San Diego? Carmen San Diego hidden inside a big box of length L Suose you can t see thru the (blue) box, what is you best estimate of her location inside box (she could be anywhere inside the box) X=0 X=L x Your best unbiased measure would be x = L/2 ± L/2 There is no erfect measurement, there are always measurement error

10 Wave Packets & Matter Waves What is the Wave Length of this wave acket? λ λ < λ < λ+ λ De Broglie wavelength λ = h/ Momentum Uncertainty: - < < + Similarly for frequency ω or f ω ω < ω < ω+ ω Planck s condition E= hf = hω/2 E- E < E < E + E Back to Heisenberg s Uncertainty Princile & x. h/4π If the measurement of the osition of a article is made with a recision x and a SIMULTANEOUS measurement of its momentum x in the X direction, then the roduct of the two uncertainties (measurement errors) can never be smaller than h/4π irresective of how recise the measurement tools E. t h/4π If the measurement of the energy E of a article is made with a recision E and it took time t to make that measurement, then the roduct of the two uncertainties (measurement errors) can never be smaller than h/4π irresective of how recise the measurement tools These rules arise from the way we constructed the Wave ackets describing Matter ilot waves Perhas these rules Are bogus, can we verify this with some hysical icture??

11 The Act of Observation (Comton Scattering) Act of observation disturbs the observed system Comton Scattering: Shining light to observe electron Light (hoton) λ=h/= hc/e scattering = c/f off an electron I watch the hoton as it enters my eye hgg g The act of Observation DISTURBS the object being watched, here the electron moves away from where it was originally

12 Act of Watching: A Thought Exeriment Observed Diffraction attern Photons that go thru are restricted to this region of lens Eye Diffraction By a Circular Aerture (Lens) See Resnick, Halliday Walker 6 th Ed (on S.Reserve), Ch 37, ages Diffracted image of a oint source of light thru a lens ( circular aerture of size d ) First minimum of diffraction attern is located by sinθ = 1.22 d λ See revious icture for definitions of ϑ, λ, d

13 Resolving Power of Light Thru a Lens Image of 2 searate oint sources formed by a converging lens of diameter d, ability to resolve them deends on λ & d because of the Inherent diffraction in image formation d X Not resolved barely resolved resolved Resolving ower x λ 2sinθ ϑ Deends on d Putting it all together: act of Observing an electron Photons that go thru are restricted to this region of lens Observed Diffraction attern Eye Incident light (,λ) scatters off electron To be collected by lens γ must scatter thru angle α -ϑ α ϑ Due to Comton scatter, electron icks u momentum P X, P Y h h sinθ Px sinθ λ λ electron momentum uncertainty is ~2h sinθ λ After assing thru lens, hoton diffracts, lands somewhere on screen, image (of electron) is fuzzy How fuzzy? Otics says shortest distance between two resolvable oints is : λ x = 2sinθ Larger the lens radius, larger the ϑ better resolution 2hsinθ λ. x = h λ 2sinθ. x / 2

14 Pseudo-Philosohical Aftermath of Uncertainty Princile Newtonian Physics & Deterministic hysics toles over Newton s laws told you all you needed to know about trajectory of a article Aly a force, watch the article go! Know every thing! X, v,, F, a Can redict exact trajectory of article if you had erfect device No so in the subatomic world! Of small momenta, forces, energies Cant redict anything exactly Can only redict robabilities There is so much chance that the article landed here or there Cant be sure!...cognizant of the errors of thy observations Philosohers went nuts!...what has haened to nature Philosohers just talk, don t do real life exeriments! All Measurements Have Associated Errors If your measuring aaratus has an intrinsic inaccuracy (error) of amount Then results of measurement of momentum of an object at rest can easily yield a range of values accommodated by the measurement imrecision : - Similarly for all measurable quantities like x, t, Energy!

15 Matter Diffraction & Uncertainty Princile x Y Incident Electron beam In Y direction Momentum measurement beyond slit show article not moving exactly in Y direction, develos a X comonent Of motion P X =h/(2π a) Probability slit size: a 0 P X X comonent P X of momentum Particle at Rest Between Two Walls Object of mass M at rest between two walls originally at infinity What haens to our ercetion of George as the walls are brought in? L m 0 George s Momentum On average, measure <> = 0 but there are quite large fluctuations! Width of Distribution = P ( P ) ave ( Pave) ; P = P L

Physics 2D Lecture Slides Lecture 17: Feb 8th 2005

Physics 2D Lecture Slides Lecture 17: Feb 8th 2005 Physics 2D Lecture Slides Lecture 17: Feb 8th 2005 Vivek Sharma UCSD Physics A PhD Thesis Fit For a Prince Matter Wave! Pilot wave of λ = h/ = h / (γmv) frequency f = E/h Consequence: If matter has wave

More information

4E : The Quantum Universe. Lecture 9, April 13 Vivek Sharma

4E : The Quantum Universe. Lecture 9, April 13 Vivek Sharma 4E : The Quantum Universe Lecture 9, April 13 Vivek Sharma modphys@hepmail.ucsd.edu Just What is Waving in Matter Waves? For waves in an ocean, it s the water that waves For sound waves, it s the molecules

More information

Physics 2D Lecture Slides Week of May 11,2009. Sunil Sinha UCSD Physics

Physics 2D Lecture Slides Week of May 11,2009. Sunil Sinha UCSD Physics Physics 2D Lecture Slides Week of May 11,2009 Sunil Sinha UCSD Physics Recap!! Wave Packet : Localization Finite # of diff. Monochromatic waves always produce INFINTE sequence of repeating wave groups

More information

Waves and Particles. Photons. Summary. Photons. Photoeffect (cont d) Photoelectric Effect. Photon momentum: V stop

Waves and Particles. Photons. Summary. Photons. Photoeffect (cont d) Photoelectric Effect. Photon momentum: V stop Waves and Particles Today: 1. Photon: the elementary article of light.. Electron waves 3. Wave-article duality Photons Light is Quantized Einstein, 195 Energy and momentum is carried by hotons. Photon

More information

Confirmed: 2D Final Exam:Thursday 18 th March 11:30-2:30 PM WLH Physics 2D Lecture Slides Lecture 19: Feb 17 th. Vivek Sharma UCSD Physics

Confirmed: 2D Final Exam:Thursday 18 th March 11:30-2:30 PM WLH Physics 2D Lecture Slides Lecture 19: Feb 17 th. Vivek Sharma UCSD Physics Confirmed: 2D Final Exam:Thursday 18 th March 11:30-2:30 PM WLH 2005 Physics 2D Lecture Slides Lecture 19: Feb 17 th Vivek Sharma UCSD Physics 20 Quiz 5 # of Students 15 10 5 0 0 1 2 3 4 5 6 7 8 9 10 11

More information

Optical Fibres - Dispersion Part 1

Optical Fibres - Dispersion Part 1 ECE 455 Lecture 05 1 Otical Fibres - Disersion Part 1 Stavros Iezekiel Deartment of Electrical and Comuter Engineering University of Cyrus HMY 445 Lecture 05 Fall Semester 016 ECE 455 Lecture 05 Otical

More information

The individual electric and magnetic waves are in phase. The fields peak at the same position at the same time.

The individual electric and magnetic waves are in phase. The fields peak at the same position at the same time. 1 Part 3: Otics 3.1: Electromagnetic Waves An electromagnetic wave (light wave) consists of oscillating electric and magnetic fields. The directions of the electric and magnetic fields are erendicular.

More information

1. Newton's Laws provide a good description of the flight of a baseball because:

1. Newton's Laws provide a good description of the flight of a baseball because: 1. Newton's Laws rovide a good descrition of the flight of a baseball because: A) Its seed is small coma to c and its size is large coma to atomic scales. B) Planck's constant is nonzero. C) The earth

More information

LECTURE 3 BASIC QUANTUM THEORY

LECTURE 3 BASIC QUANTUM THEORY LECTURE 3 BASIC QUANTUM THEORY Matter waves and the wave function In 194 De Broglie roosed that all matter has a wavelength and exhibits wave like behavior. He roosed that the wavelength of a article of

More information

Richard Feynman: Electron waves are probability waves in the ocean of uncertainty.

Richard Feynman: Electron waves are probability waves in the ocean of uncertainty. Richard Feynman: Electron waves are probability waves in the ocean of uncertainty. Last Time We Solved some of the Problems with Classical Physics Discrete Spectra? Bohr Model but not complete. Blackbody

More information

Class 17: The Uncertainty Principle

Class 17: The Uncertainty Principle Class 7: The Uncertainty Princile Wae ackets and uncertainty A natural question to ask is if articles behae like waes, what is waing? The arying quantity is related to the robability of finding the article

More information

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I 5.1 X-Ray Scattering 5.2 De Broglie Waves 5.3 Electron Scattering 5.4 Wave Motion 5.5 Waves or Particles? 5.6 Uncertainty Principle 5.7 Probability,

More information

PHYSICAL REVIEW LETTERS

PHYSICAL REVIEW LETTERS PHYSICAL REVIEW LETTERS VOLUME 81 20 JULY 1998 NUMBER 3 Searated-Path Ramsey Atom Interferometer P. D. Featonby, G. S. Summy, C. L. Webb, R. M. Godun, M. K. Oberthaler, A. C. Wilson, C. J. Foot, and K.

More information

Chapter (5) Matter Waves

Chapter (5) Matter Waves Chapter (5) Matter Waves De Broglie wavelength Wave groups Consider a one- dimensional wave propagating in the positive x- direction with a phase speed v p. Where v p is the speed of a point of constant

More information

Reminder: Exam 3 Friday, July 6. The Compton Effect. General Physics (PHY 2140) Lecture questions. Show your work for credit.

Reminder: Exam 3 Friday, July 6. The Compton Effect. General Physics (PHY 2140) Lecture questions. Show your work for credit. General Pysics (PHY 2140) Lecture 15 Modern Pysics Cater 27 1. Quantum Pysics Te Comton Effect Potons and EM Waves Wave Proerties of Particles Wave Functions Te Uncertainty Princile Reminder: Exam 3 Friday,

More information

( ) # velocity. Wavelengths of massive objects. From Last Time. Wavelength of electron. Wavelength of 1 ev electron. A little complicated ( ) " = h mv

( ) # velocity. Wavelengths of massive objects. From Last Time. Wavelength of electron. Wavelength of 1 ev electron. A little complicated ( )  = h mv From Last Time Wavelengths of massive objects Light shows both particle and wavelike properties Matter shows both particle and wavelike properties. How can we make sense of this? debroglie wavelength =

More information

Physics 2D Lecture Slides Feb 10. Vivek Sharma UCSD Physics

Physics 2D Lecture Slides Feb 10. Vivek Sharma UCSD Physics Physics 2D Lecture Slides Feb 10 Vivek Sharma UCSD Physics Bohr s Explanation of Hydrogen like atoms Bohr s Semiclassical theory explained some spectroscopic data Nobel Prize : 1922 The hotch-potch of

More information

PHYS 3313 Section 001 Lecture #16

PHYS 3313 Section 001 Lecture #16 PHYS 3313 Section 001 Lecture #16 Monday, Mar. 24, 2014 De Broglie Waves Bohr s Quantization Conditions Electron Scattering Wave Packets and Packet Envelops Superposition of Waves Electron Double Slit

More information

Wave nature of particles

Wave nature of particles Wave nature of particles We have thus far developed a model of atomic structure based on the particle nature of matter: Atoms have a dense nucleus of positive charge with electrons orbiting the nucleus

More information

Mid Term Exam 1. Feb 13, 2009

Mid Term Exam 1. Feb 13, 2009 Name: ID: Mid Term Exam 1 Phys 48 Feb 13, 009 Print your name and ID number clearly above. To receive full credit you must show all your work. If you only provide your final answer (in the boxes) and do

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Introduction to Quantum Mechanics In order to understand the current-voltage characteristics, we need some knowledge of electron behavior in semiconductor when the electron is subjected to various potential

More information

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009 University of North Carolina-Charlotte Deartment of Electrical and Comuter Engineering ECG 4143/5195 Electrical Machinery Fall 9 Problem Set 5 Part Due: Friday October 3 Problem 3: Modeling the exerimental

More information

Lecture 9: Introduction to QM: Review and Examples

Lecture 9: Introduction to QM: Review and Examples Lecture 9: Introduction to QM: Review and Examples S 1 S 2 Lecture 9, p 1 Photoelectric Effect V stop (v) KE e V hf F max stop Binding energy F The work function: F is the minimum energy needed to strip

More information

Wave function and Quantum Physics

Wave function and Quantum Physics Wave function and Quantum Physics Properties of matter Consists of discreet particles Atoms, Molecules etc. Matter has momentum (mass) A well defined trajectory Does not diffract or interfere 1 particle

More information

David J. Starling Penn State Hazleton PHYS 214

David J. Starling Penn State Hazleton PHYS 214 All the fifty years of conscious brooding have brought me no closer to answer the question, What are light quanta? Of course today every rascal thinks he knows the answer, but he is deluding himself. -Albert

More information

Journal of System Design and Dynamics

Journal of System Design and Dynamics Vol. 5, No. 6, Effects of Stable Nonlinear Normal Modes on Self-Synchronized Phenomena* Hiroki MORI**, Takuo NAGAMINE**, Yukihiro AKAMATSU** and Yuichi SATO** ** Deartment of Mechanical Engineering, Saitama

More information

Chapter 38 Quantum Mechanics

Chapter 38 Quantum Mechanics Chapter 38 Quantum Mechanics Units of Chapter 38 38-1 Quantum Mechanics A New Theory 37-2 The Wave Function and Its Interpretation; the Double-Slit Experiment 38-3 The Heisenberg Uncertainty Principle

More information

Wave properties of matter & Quantum mechanics I. Chapter 5

Wave properties of matter & Quantum mechanics I. Chapter 5 Wave properties of matter & Quantum mechanics I Chapter 5 X-ray diffraction Max von Laue suggested that if x-rays were a form of electromagnetic radiation, interference effects should be observed. Crystals

More information

It Was Probably Heisenberg

It Was Probably Heisenberg Name Partners Date Visual Quantum Mechanics The Next Generation It Was Probably Heisenberg Goal We will use our knowledge of wave functions to create wave packets to describe an electron. We will discover

More information

All-fiber Optical Parametric Oscillator

All-fiber Optical Parametric Oscillator All-fiber Otical Parametric Oscillator Chengao Wang Otical Science and Engineering, Deartment of Physics & Astronomy, University of New Mexico Albuquerque, NM 87131-0001, USA Abstract All-fiber otical

More information

Chapter 6: Sound Wave Equation

Chapter 6: Sound Wave Equation Lecture notes on OPAC0- ntroduction to Acoustics Dr. Eser OLĞAR, 08 Chater 6: Sound Wave Equation. Sound Waves in a medium the wave equation Just like the eriodic motion of the simle harmonic oscillator,

More information

Pulse Propagation in Optical Fibers using the Moment Method

Pulse Propagation in Optical Fibers using the Moment Method Pulse Proagation in Otical Fibers using the Moment Method Bruno Miguel Viçoso Gonçalves das Mercês, Instituto Suerior Técnico Abstract The scoe of this aer is to use the semianalytic technique of the Moment

More information

Analysis: The speed of the proton is much less than light speed, so we can use the

Analysis: The speed of the proton is much less than light speed, so we can use the Section 1.3: Wave Proerties of Classical Particles Tutorial 1 Practice, age 634 1. Given: 1.8! 10 "5 kg # m/s; 6.63! 10 "34 J #s Analysis: Use te de Broglie relation, λ. Solution:! 6.63 " 10#34 kg $ m

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Double Slit Experiment Matter Waves Louis-Victor-Pierre-Raymond, 7th duc de Broglie 1892-1987 Double-Slit Experiment Photons pass through the double-slit apparatus.

More information

The Photoelectric Effect

The Photoelectric Effect Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

Multiparameter entanglement in quantum interferometry

Multiparameter entanglement in quantum interferometry PHYSICAL REVIEW A, 66, 023822 200 Multiarameter entanglement in quantum interferometry Mete Atatüre, 1 Giovanni Di Giusee, 2 Matthew D. Shaw, 2 Alexander V. Sergienko, 1,2 Bahaa E. A. Saleh, 2 and Malvin

More information

Wave Properties of Particles Louis debroglie:

Wave Properties of Particles Louis debroglie: Wave Properties of Particles Louis debroglie: If light is both a wave and a particle, why not electrons? In 194 Louis de Broglie suggested in his doctoral dissertation that there is a wave connected with

More information

pp physics, RWTH, WS 2003/04, T.Hebbeker

pp physics, RWTH, WS 2003/04, T.Hebbeker 1. PP TH 03/04 Accelerators and Detectors 1 hysics, RWTH, WS 2003/04, T.Hebbeker 2003-12-03 1. Accelerators and Detectors In the following, we concentrate on the three machines SPS, Tevatron and LHC with

More information

arxiv: v1 [physics.data-an] 26 Oct 2012

arxiv: v1 [physics.data-an] 26 Oct 2012 Constraints on Yield Parameters in Extended Maximum Likelihood Fits Till Moritz Karbach a, Maximilian Schlu b a TU Dortmund, Germany, moritz.karbach@cern.ch b TU Dortmund, Germany, maximilian.schlu@cern.ch

More information

Feedback-error control

Feedback-error control Chater 4 Feedback-error control 4.1 Introduction This chater exlains the feedback-error (FBE) control scheme originally described by Kawato [, 87, 8]. FBE is a widely used neural network based controller

More information

Lecture 16 Quantum Physics Chapter 28

Lecture 16 Quantum Physics Chapter 28 Lecture 16 Quantum Physics Chapter 28 Particles vs. Waves Physics of particles p = mv K = ½ mv2 Particles collide and do not pass through each other Conservation of: Momentum Energy Electric Charge Physics

More information

Chapter 4. The wave like properties of particle

Chapter 4. The wave like properties of particle Chapter 4 The wave like properties of particle Louis de Broglie 1892 1987 French physicist Originally studied history Was awarded the Nobel Prize in 1929 for his prediction of the wave nature of electrons

More information

Matter Waves. Chapter 5

Matter Waves. Chapter 5 Matter Waves Chapter 5 De Broglie pilot waves Electromagnetic waves are associated with quanta - particles called photons. Turning this fact on its head, Louis de Broglie guessed : Matter particles have

More information

Classical gas (molecules) Phonon gas Number fixed Population depends on frequency of mode and temperature: 1. For each particle. For an N-particle gas

Classical gas (molecules) Phonon gas Number fixed Population depends on frequency of mode and temperature: 1. For each particle. For an N-particle gas Lecture 14: Thermal conductivity Review: honons as articles In chater 5, we have been considering quantized waves in solids to be articles and this becomes very imortant when we discuss thermal conductivity.

More information

Speed of sound measurements in liquid Methane at cryogenic temperature and for pressure up to 10 MPa

Speed of sound measurements in liquid Methane at cryogenic temperature and for pressure up to 10 MPa LNGII - raining Day Delft, August 07 Seed of sound measurements in liquid Methane at cryogenic temerature and for ressure u to 0 MPa Simona Lago*, P. Alberto Giuliano Albo INRiM Istituto Nazionale di Ricerca

More information

Section 4: Electromagnetic Waves 2

Section 4: Electromagnetic Waves 2 Frequency deendence and dielectric constant Section 4: Electromagnetic Waves We now consider frequency deendence of electromagnetic waves roagating in a dielectric medium. As efore we suose that the medium

More information

Do Gravitational Waves Exist?

Do Gravitational Waves Exist? Universidad Central de Venezuela From the electedworks of Jorge A Franco etember, 8 Do Gravitational Waves Exist? Jorge A Franco, Universidad Central de Venezuela Available at: htts://works.beress.com/jorge_franco/13/

More information

Lecture Outline Chapter 30. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 30. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 30 Physics, 4 th Edition James S. Walker Chapter 30 Quantum Physics Units of Chapter 30 Blackbody Radiation and Planck s Hypothesis of Quantized Energy Photons and the Photoelectric

More information

Wave nature of matter

Wave nature of matter Lecture 11 Wave nature of matter Announcements: lecture 10 is posted homework 6 (due Feb 25, in class) solutions are posted on CULearn homework 7 (due March 4, in class) is posted on CULearn reading for

More information

Standing waves [49 marks]

Standing waves [49 marks] Standing waves [49 marks] 1. The graph shows the variation with time t of the velocity v of an object undergoing simple harmonic motion (SHM). At which velocity does the displacement from the mean position

More information

LECTURE 6 QUANTUM PHYSICS II. Instructor: Shih-Chieh Hsu

LECTURE 6 QUANTUM PHYSICS II. Instructor: Shih-Chieh Hsu LECTURE 6 QUANTUM PHYSICS II Instructor: Shih-Chieh Hsu Development of Quantum Mechanics 2 In 1862, Kirchhoff coined black body radiation or known as cavity radiation The experiments raised the question

More information

Chapter 10: Wave Properties of Particles

Chapter 10: Wave Properties of Particles Chapter 10: Wave Properties of Particles Particles such as electrons may demonstrate wave properties under certain conditions. The electron microscope uses these properties to produce magnified images

More information

Quantum Mechanics of Atoms

Quantum Mechanics of Atoms Quantum Mechanics of Atoms Your theory is crazy, but it's not crazy enough to be true N. Bohr to W. Pauli Quantum Mechanics of Atoms 2 Limitations of the Bohr Model The model was a great break-through,

More information

CET PHYSICS 2011 VERSION CODE: A 4

CET PHYSICS 2011 VERSION CODE: A 4 dislacement CET PHYSICS 0 VERSION CODE: 4. If C be the caacitance and V be the electric otential, then the dimensional formula of CV is ) M L T ) M 0 L T 0 ) M L T 4) M L T 0 CV Energy The dimentional

More information

Physics 102: Lecture 23

Physics 102: Lecture 23 Physics 102: Lecture 23 De Broglie Waves & Compton Scattering Physics 102: Lecture 23, Slide 1 Early Indications of Problems with Classical Physics Blackbody radiation Photoelectric effect Wave-particle

More information

Chapter 38. Photons and Matter Waves

Chapter 38. Photons and Matter Waves Chapter 38 Photons and Matter Waves The sub-atomic world behaves very differently from the world of our ordinary experiences. Quantum physics deals with this strange world and has successfully answered

More information

Electron in a Box. A wave packet in a square well (an electron in a box) changing with time.

Electron in a Box. A wave packet in a square well (an electron in a box) changing with time. Electron in a Box A wave packet in a square well (an electron in a box) changing with time. Last Time: Light Wave model: Interference pattern is in terms of wave intensity Photon model: Interference in

More information

9 The Theory of Special Relativity

9 The Theory of Special Relativity 9 The Theory of Secial Relativity Assign: Read Chater 4 of Carrol and Ostlie (2006) Newtonian hysics is a quantitative descrition of Nature excet under three circumstances: 1. In the realm of the very

More information

Physics 101 Final Exam Problem Guide

Physics 101 Final Exam Problem Guide Physics 101 Final Exam Problem Guide Liam Brown, Physics 101 Tutor C.Liam.Brown@gmail.com General Advice Focus on one step at a time don t try to imagine the whole solution at once. Draw a lot of diagrams:

More information

Chapter 1. Introduction

Chapter 1. Introduction I. Classical Physics Chater 1. Introduction Classical Mechanics (Newton): It redicts the motion of classical articles with elegance and accuracy. d F ma, mv F: force a: acceleration : momentum q: osition

More information

Light at a Standstill Tim Kuis June 13, 2008

Light at a Standstill Tim Kuis June 13, 2008 Light at a Standstill Tim Kuis June 13, 008 1. Introduction There is something curious about the seed of light. It is the highest obtainable seed. Nothing can travel faster. But how slow can light go?

More information

2016-r1 Physics 220: Worksheet 02 Name

2016-r1 Physics 220: Worksheet 02 Name 06-r Physics 0: Worksheet 0 Name Concets: Electric Field, lines of force, charge density, diole moment, electric diole () An equilateral triangle with each side of length 0.0 m has identical charges of

More information

Physics 11b Lecture #24. Quantum Mechanics

Physics 11b Lecture #24. Quantum Mechanics Physics 11b Lecture #4 Quantum Mechanics What We Did Last Time Theory of special relativity is based on two postulates: Laws of physics is the same in all reference frames Speed of light is the same in

More information

Quantum Physics Lecture 3

Quantum Physics Lecture 3 Quantum Physics Lecture 3 If light (waves) are particle-like, are particles wave-like? Electron diffraction - Davisson & Germer Experiment Particle in a box -Quantisation of energy Wave Particle?? Wave

More information

Phase velocity and group velocity (c) Zhengqing Yun,

Phase velocity and group velocity (c) Zhengqing Yun, Phase velocity and grou velocity (c) Zhengqing Yun, 2011-2012 Objective: Observe the difference between hase and grou velocity; understand that the grou velocity can be less than, equal to, and greater

More information

Physics 1C Lecture 28C. "For those who are not shocked when they first come across quantum theory cannot possibly have understood it.

Physics 1C Lecture 28C. For those who are not shocked when they first come across quantum theory cannot possibly have understood it. Physics 1C Lecture 28C "For those who are not shocked when they first come across quantum theory cannot possibly have understood it." --Neils Bohr Outline CAPE and extra credit problems Wave-particle duality

More information

Nuclear models: The liquid drop model Fermi-Gas Model

Nuclear models: The liquid drop model Fermi-Gas Model Lecture Nuclear models: The liquid dro model ermi-gas Model WS1/1: Introduction to Nuclear and Particle Physics,, Part I 1 Nuclear models Nuclear models Models with strong interaction between the nucleons

More information

Notes on Optical Pumping Procedure & Theory

Notes on Optical Pumping Procedure & Theory Notes on Otical Puming Procedure & Theory Pre-lab 1. Why is the exeriment called otical uming? What is umed? 2. What is the exerimental signature of having cancelled all magnetic fields in the samle cell?

More information

Department of Physics University of California San Diego

Department of Physics University of California San Diego Page 1 of 8 Department of Physics University of California San Diego Modern Physics (2D) Prof. V. Sharma Final Exam (Dec 10 2003) Page 2 of 8 Page 3 of 8 Page 4 of 8 Page 5 of 8 The Hitchhiker s guide

More information

Polarization of light: Malus law, the Fresnel equations, and optical activity.

Polarization of light: Malus law, the Fresnel equations, and optical activity. Polarization of light: Malus law, the Fresnel equations, and otical activity. PHYS 3330: Exeriments in Otics Deartment of Physics and Astronomy, University of Georgia, Athens, Georgia 30602 (Dated: Revised

More information

Lecture 1.2 Units, Dimensions, Estimations 1. Units To measure a quantity in physics means to compare it with a standard. Since there are many

Lecture 1.2 Units, Dimensions, Estimations 1. Units To measure a quantity in physics means to compare it with a standard. Since there are many Lecture. Units, Dimensions, Estimations. Units To measure a quantity in hysics means to comare it with a standard. Since there are many different quantities in nature, it should be many standards for those

More information

Optimal Recognition Algorithm for Cameras of Lasers Evanescent

Optimal Recognition Algorithm for Cameras of Lasers Evanescent Otimal Recognition Algorithm for Cameras of Lasers Evanescent T. Gaudo * Abstract An algorithm based on the Bayesian aroach to detect and recognise off-axis ulse laser beams roagating in the atmoshere

More information

On Line Parameter Estimation of Electric Systems using the Bacterial Foraging Algorithm

On Line Parameter Estimation of Electric Systems using the Bacterial Foraging Algorithm On Line Parameter Estimation of Electric Systems using the Bacterial Foraging Algorithm Gabriel Noriega, José Restreo, Víctor Guzmán, Maribel Giménez and José Aller Universidad Simón Bolívar Valle de Sartenejas,

More information

PHYSICS 149: Lecture 24

PHYSICS 149: Lecture 24 PHYSICS 149: Lecture 24 Chapter 11: Waves 11.8 Reflection and Refraction 11.10 Standing Waves Chapter 12: Sound 12.1 Sound Waves 12.4 Standing Sound Waves Lecture 24 Purdue University, Physics 149 1 ILQ

More information

The Wave Function. Chapter The Harmonic Wave Function

The Wave Function. Chapter The Harmonic Wave Function Chapter 3 The Wave Function On the basis of the assumption that the de Broglie relations give the frequency and wavelength of some kind of wave to be associated with a particle, plus the assumption that

More information

8.04 Spring 2013 February 13, 2013 Problem 1. (15 points) Radiative collapse of a classical atom

8.04 Spring 2013 February 13, 2013 Problem 1. (15 points) Radiative collapse of a classical atom Problem Set 1 Solutions 8.04 Spring 01 February 1, 01 Problem 1. (15 points) Radiative collapse of a classical atom (a) (5 points) We begin by assuming that the orbit is circular. This seems like circular

More information

16.2. Infinite Series. Introduction. Prerequisites. Learning Outcomes

16.2. Infinite Series. Introduction. Prerequisites. Learning Outcomes Infinite Series 6. Introduction We extend the concet of a finite series, met in section, to the situation in which the number of terms increase without bound. We define what is meant by an infinite series

More information

Today: Finish Color (Ch. 27) Intro to Quantum Theory (Ch.31)

Today: Finish Color (Ch. 27) Intro to Quantum Theory (Ch.31) Final exam: Dec 20, 11.30am -1.30pm, here, cumulative Chs: 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 19, 20, 22, 23, 24, 25, 26, 27, 31 Review Session Tue Dec 13 Today: Finish Color (Ch. 27) Intro to Quantum

More information

Physics 116. Nov 21, Session 31 De Broglie, duality, and uncertainty. R. J. Wilkes

Physics 116. Nov 21, Session 31 De Broglie, duality, and uncertainty. R. J. Wilkes Physics 116 Session 31 De Broglie, duality, and uncertainty Nov 21, 2011 R. J. Wilkes Email: ph116@u.washington.edu Announcements HW 6 due today Clicker scores have been updated on Webassign gradebook

More information

16.2. Infinite Series. Introduction. Prerequisites. Learning Outcomes

16.2. Infinite Series. Introduction. Prerequisites. Learning Outcomes Infinite Series 6.2 Introduction We extend the concet of a finite series, met in Section 6., to the situation in which the number of terms increase without bound. We define what is meant by an infinite

More information

Supporting Information for Relativistic effects in Photon-Induced Near Field Electron Microscopy

Supporting Information for Relativistic effects in Photon-Induced Near Field Electron Microscopy Suorting Information for Relativistic effects in Photon-Induced Near ield Electron Microscoy Sang Tae Park and Ahmed H. Zewail Physical Biology Center for Ultrafast Science and Technology, Arthur Amos

More information

Discovery of the Atomic Nucleus. Conceptual Physics 11 th Edition. Discovery of the Electron. Discovery of the Atomic Nucleus

Discovery of the Atomic Nucleus. Conceptual Physics 11 th Edition. Discovery of the Electron. Discovery of the Atomic Nucleus Conceptual Physics 11 th Edition Chapter 32: THE ATOM AND THE QUANTUM Discovery of the Atomic Nucleus These alpha particles must have hit something relatively massive but what? Rutherford reasoned that

More information

Notes for Special Relativity, Quantum Mechanics, and Nuclear Physics

Notes for Special Relativity, Quantum Mechanics, and Nuclear Physics Notes for Special Relativity, Quantum Mechanics, and Nuclear Physics 1. More on special relativity Normally, when two objects are moving with velocity v and u with respect to the stationary observer, the

More information

Explanation of superluminal phenomena based on wave-particle duality and proposed optical experiments

Explanation of superluminal phenomena based on wave-particle duality and proposed optical experiments Exlanation of suerluminal henomena based on wave-article duality and roosed otical exeriments Hai-Long Zhao * Jiuquan satellite launch center, Jiuquan, 73750, China Abstract: We suggest an exlanation for

More information

Experiments on ring wave packet generated by water drop

Experiments on ring wave packet generated by water drop Chinese Science Bulletin 2008 SCIENCE IN CHINA PRESS Sringer Exeriments on ring wave acket generated by water dro ZHU GuoZhen, LI ZhaoHui & FU DeYong Deartment of Physics, Tsinghua University, Beijing

More information

2 The Failure of Classical Mechanics and Wave-Particle Duality

2 The Failure of Classical Mechanics and Wave-Particle Duality 2 The Failure of Classical Mechanics and Wave-Particle Duality This lecture is more qualitative than the rest of the class. Very roughly speaking, in Classical Mechanics, one can describe motion in terms

More information

NONRELATIVISTIC STRONG-FIELD APPROXIMATION (SFA)

NONRELATIVISTIC STRONG-FIELD APPROXIMATION (SFA) NONRELATIVISTIC STRONG-FIELD APPROXIMATION (SFA) Note: SFA will automatically be taken to mean Coulomb gauge (relativistic or non-diole) or VG (nonrelativistic, diole-aroximation). If LG is intended (rarely),

More information

ECE 6960: Adv. Random Processes & Applications Lecture Notes, Fall 2010

ECE 6960: Adv. Random Processes & Applications Lecture Notes, Fall 2010 ECE 6960: Adv. Random Processes & Alications Lecture Notes, Fall 2010 Lecture 16 Today: (1) Markov Processes, (2) Markov Chains, (3) State Classification Intro Please turn in H 6 today. Read Chater 11,

More information

On the relationship between sound intensity and wave impedance

On the relationship between sound intensity and wave impedance Buenos Aires 5 to 9 Setember, 16 Acoustics for the 1 st Century PROCEEDINGS of the nd International Congress on Acoustics Sound Intensity and Inverse Methods in Acoustics: Paer ICA16-198 On the relationshi

More information

Sometimes light acts like a wave Reminder: Schedule changes (see web page)

Sometimes light acts like a wave Reminder: Schedule changes (see web page) Announcements Sometimes light acts like a wave Reminder: Schedule changes (see web page) No class on Thursday 3/18 Exam 2 pushed back to Tues. 3/30 Today: Quantum Mechanics (Ch.13/14) Bright: Constructive

More information

MATH 2710: NOTES FOR ANALYSIS

MATH 2710: NOTES FOR ANALYSIS MATH 270: NOTES FOR ANALYSIS The main ideas we will learn from analysis center around the idea of a limit. Limits occurs in several settings. We will start with finite limits of sequences, then cover infinite

More information

General Physics I. Lecture 14: Sinusoidal Waves. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 14: Sinusoidal Waves. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 14: Sinusoidal Waves Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Motivation When analyzing a linear medium that is, one in which the restoring force

More information

BASIC WAVE CONCEPTS. Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, Giancoli?

BASIC WAVE CONCEPTS. Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, Giancoli? 1 BASIC WAVE CONCEPTS Reading: Main 9.0, 9.1, 9.3 GEM 9.1.1, 9.1.2 Giancoli? REVIEW SINGLE OSCILLATOR: The oscillation functions you re used to describe how one quantity (position, charge, electric field,

More information

Emittance Growth Caused by Surface Roughness

Emittance Growth Caused by Surface Roughness Emittance Growth Caused by Surface Roughness he hang, Chuanxiang Tang Tsinghua University, Beijing Oct. 17th, 2016 Motivation What causes the emittance growth Dowell s equations of QE & emittance for bulk

More information

The directivity of the forced radiation of sound from panels and openings including the shadow zone

The directivity of the forced radiation of sound from panels and openings including the shadow zone The directivity of the forced radiation of sound from anels and oenings including the shadow zone J. Davy RMIT University, Alied Physics, GPO Box 476V, 3001 Melbourne, Victoria, Australia john.davy@rmit.edu.au

More information

Light as a Transverse Wave.

Light as a Transverse Wave. Waves and Superposition (Keating Chapter 21) The ray model for light (i.e. light travels in straight lines) can be used to explain a lot of phenomena (like basic object and image formation and even aberrations)

More information

Atomic Spectra. if you pass white light through a gas dark narrow lines on a bright continuum "Absorption spectrum"

Atomic Spectra. if you pass white light through a gas dark narrow lines on a bright continuum Absorption spectrum By the end of the 1800 s, classical physics had many successes. One prominent physicist even had suggested that all that remained was to further increase the significant digits for measurements. However,

More information

Light Quanta. Particle-Wave History 11/2/2008. Particle-Wave Nature Continued s

Light Quanta. Particle-Wave History 11/2/2008. Particle-Wave Nature Continued s Light Quanta Particle-Wave History 1700 s Corpuscular Model -- Newton Wave Model Huygens 1801 Thomas Young s double slit experiment waves 1862 Maxwell s prediction that light carried energy as oscillating

More information

Brownian Motion and Random Prime Factorization

Brownian Motion and Random Prime Factorization Brownian Motion and Random Prime Factorization Kendrick Tang June 4, 202 Contents Introduction 2 2 Brownian Motion 2 2. Develoing Brownian Motion.................... 2 2.. Measure Saces and Borel Sigma-Algebras.........

More information

1 Random Experiments from Random Experiments

1 Random Experiments from Random Experiments Random Exeriments from Random Exeriments. Bernoulli Trials The simlest tye of random exeriment is called a Bernoulli trial. A Bernoulli trial is a random exeriment that has only two ossible outcomes: success

More information