Analysis: The speed of the proton is much less than light speed, so we can use the

Size: px
Start display at page:

Download "Analysis: The speed of the proton is much less than light speed, so we can use the"

Transcription

1 Section 1.3: Wave Proerties of Classical Particles Tutorial 1 Practice, age Given: 1.8! 10 "5 kg # m/s; 6.63! 10 "34 J #s Analysis: Use te de Broglie relation, λ. Solution:! 6.63 " 10#34 kg $ m /s 1.8 " 10 #5 kg $ m/s! 3.7 " 10 #9 m Statement: Te de Broglie wavelengt of te is 3.7! 10 "9 m, or 3.7 nm.. Given: m 1.7! 10 "7 kg; v 3.4! 10 5 m/s; 6.63! 10 "34 J # s Analysis: Te seed of te is muc less tan ligt seed, so we can use te classical momentum. Tus, te de Broglie relation, λ Solution:! 6.63" 10 #34 kg $ m /s (1.7 " 10 #7 kg )(3.4 " 10 5 m/s ), becomes! 1.1" 10 #1 m 1 Statement: Te s de Broglie wavelengt is m. 3. Given: m 140 g 1.4! 10 1 kg; v 140 km/; 6.63! 10 "34 J # s λ. Analysis: Te seed of te is muc less tan ligt seed, so we can use te classical momentum. Tus, te de Broglie relation, λ, becomes First, convert kilometres er our to metres er second. 140 km! 103 m 1 km! 1 3.6! 10 3 s 3.89! 101 m/s (one extra digit carried) λ. Solution:! 6.63 " 10 #34 J (1.40 " 10 1 kg)(3.89 " 10 1 m/s)! 1. " 10 #34 m Statement: Te de Broglie wavelengt of te baseball is m. Coyrigt 01 Nelson Education Ltd. Cater 1: Quantum Mecanics 1.3-1

2 4. Te de Broglie wavelengt of te baseball is 19 orders of magnitude smaller tan te diameter of a ; terefore, we could never exect to see any wave-like beavior of a macroscoic object like a baseball. Researc Tis: Exloring Quantum Comuters, age 638 Answers may vary. Samle answers: A. Quantum comuters differ fundamentally from digital comuters in te basic unit of information. For a digital comuter, te basic unit is te bit, an element tat can be in only one of two states, a 0 and a 1. For a quantum comuter, te basic unit is a quantum bit or qubit. A qubit can be in any suerosition of two states, just like te traed in a box (Figure 4 on age 636 of te Student Book) can be in a suerosition of state 1 and state. Moreover, reading te state of a qubit is muc different tan reading te state of a bit. Te reading of te state destroys te quantum suerosition. B. Several roblems resently stand in te way of building ractical quantum comuters. One is te difficulty of making a comuter wit many qubits. Anoter roblem is te fragility of te quantum suerosition state; it is relatively easy to disturb te system, so tat te suerosition state gets destroyed. Anoter difficulty is finding a way to easily read te qubits. C. A quantum comuter s design sould allow it to erform very quickly at some comutations tat are very difficult for digital comuters, so some ossible alications of quantum comuting include te factoring of large numbers, database searcing, and te simulation of quantum mecanical systems. Section 1.3 Questions, age Given: m 9.11! 10 "31 kg; # 150 nm 1.5! 10 7 m; 6.63! 10 "34 J $ s Required: seed of te, v Analysis: Notice tat te wavelengt ere is larger tan tat in te solution to Samle Problem 1 of Tutorial 1, and in tat case te s seed is muc less tan tat of ligt. A larger wavelengt means tat te seed is slower, so use te classical momentum in te de Broglie relation and solve for v.!, so v m!. Solution: v m! 6.63 " 10 #34 J $s (9.11" 10 #31 kg)(1.5 " 10 7 m) v 4.9 " 10 3 m/s Statement: Te s seed is 4.9! 10 3 m/s, a non-relativistic seed.. Given: m /m 1800; λ λ Required: E /E Analysis: Assume tat te two articles are non-relativistic (oterwise, we would need to know if te energy is te total energy or just te kinetic energy). In addition to using te Coyrigt 01 Nelson Education Ltd. Cater 1: Quantum Mecanics 1.3-

3 de Broglie relation, use te classical relation between E and v, as well as tat between and v.! and! But, as λ λ, ten it follows tat. Te classical kinetic energy can be written in terms of te classical momentum. 1 E 1 ( ) m E m Te same relation olds for te. E m Tus, E m E m E m E m Solution: E m E m m m E 1800 E 1 Statement: Wen te s wavelengt equals tat of te, ten tey bot ave te same momentum. And wen tey ave te same momentum and ave nonrelativistic seeds, ten te ratio of teir classical kinetic energies is 1800:1, wit te aving te iger energy because it is ligter. Coyrigt 01 Nelson Education Ltd. Cater 1: Quantum Mecanics 1.3-3

4 3. (a) Given: m kg; v km/; 6.63! 10 "34 J #s Analysis: Use te de Broglie relation, assuming non-relativistic seed: First, convert kilometres er our to metres er second km! 103 m 1 km! 1 3.6!10 3 s.778!101 m/s (one extra digit carried) λ. Solution:! 6.63"10 #34 J $s ( kg)(.778 "10 1 m/s)!.39 "10 #38 m Statement: Te de Broglie wavelengt of te car travelling at km/ is.39!10 "38 m. (b) Given: m kg; v 10.0!10 3 km/ 1.0!10 4 km/; 6.63!10 "34 J #s Analysis: Te car s seed, toug fast, is still non-relativistic (~800 m/s), so we can use te same relation as in (a), λ. First, convert kilometres er our to metres er second. 1.0!10 4 km! 103 m 1 km! 1 3.6!10 3 s.778!103 m/s (one extra digit carried) Solution:! 6.63"10 #34 J ( kg)(.778 "10 3 m/s)!.39 "10 #40 m Statement: Te de Broglie wavelengt of te car travelling at 1.0!10 4 km/ is.39!10 "40 m. (c) Te de Broglie wavelengt of te car at rest is undefined. As te seed decreases, te wavelengt increases, and at zero seed, te wavelengt blows u. (Tis result seems imossible, because we always see arked cars as solid objects and not sread out. However, consider ow small te seed needs to be for te wavelengt of te car to exceed 1 µm. Te observer would ave to establis tat te seed of te car was less tan about m/s. Suc a determination would be imossible, so we do not see arked cars sread out like a wave.) 4. In classical ysics, articles occuy a definite osition in sace, and we can calculate exactly ow a article s osition canges wit time. Moreover, we can determine bot te article s osition and te article s velocity at eac instant of time wit arbitrary recision. In quantum mecanics, we do not know wat aens to te article between Coyrigt 01 Nelson Education Ltd. Cater 1: Quantum Mecanics 1.3-4

5 measurements. Moreover, a measurement cannot determine te article s osition and velocity wit arbitrary recision. Instead, quantum mecanics gives us te robabilities for obtaining various outcomes of te measurement. 5. Answers may vary. Samle answers: (a) An examle of exerimental evidence for wave-like roerties of matter is te Davisson Germer exeriment wit s diffracting from a crystal. Oter exeriments ave sown diffraction of larger articles. (b) An examle of exerimental evidence for article-like roerties of electromagnetic radiation is te early exeriments by Heinric Hertz on te otoelectric effect. (Oter exeriments include tat of te otovoltaic effect (e.g., solar cells)). 6. I tink wave functions are real. Wave functions cannot be observed directly, so one migt conclude tat tey are not real. However, we can say te same ting about atoms, and yet atoms seem to be quite real; we can touc objects and we can feel te wind. Similarly, we can infer te existence of wave functions troug teir influence on measurements. For examle, te robability distribution of s striking te wall beind a air of slits is a result of te s wave function. 7. Presently, all interretations of quantum mecanics are consistent wit te same observable results tat we measure and exerience. Yet quantum mecanics describes tings tat we cannot observe directly, suc as te wave function. Tis indeterminacy of various asects of quantum mecanics makes it ossible for several views to be consistent wit wat we observe. Tus, different interretations of quantum mecanics exist. I tink te Coenagen interretation is most likely because I am comfortable wit te idea tat tere are tings we simly cannot know. I do not like te ilot-wave interretation, as it seems to imly tat future events are redetermined. Future events migt be redetermined, but I am not comfortable wit te idea. Similarly, I do not like te many-worlds interretation because it is ard for me to icture te universe continually slitting in two. Te collase interretation is not so objectionable, but I refer te Coenagen interretation. 8. According to te Heisenberg uncertainty rincile, one cannot take exact measurements of an (or any oter object) wen it is at rest. If te is at rest, ten Δ 0 and Δx, te uncertainty in te s osition, blows u. Tus, we could not determine were te was. 9. Willard Boyle earned a PD in ysics from McGill University. He worked at Bell Labs in New Jersey, ten left for a job roviding NASA wit tecnological suort for te Aollo sace rogram, and ten returned to Bell Labs in 1964, were e worked on develoing ic devices, including te carge-couled device. Carge-couled devices (CCDs) are designed around te otoelectric effect and te quantum mecanics of semiconductors. Oter ysical asects of teir oeration are te motion of carges under an alied voltage, and for CCDs used for imaging, teir oeration deends on otics. Tey were originally designed to be used in several alications, including use as a memory device and sift register, but teir most common alication is for imaging. Tey were immediately useful in astronomy because, as imaging sensors, tey could detect far fainter objects tan tose detected using film. Tey are now used in nearly all digital cameras. Coyrigt 01 Nelson Education Ltd. Cater 1: Quantum Mecanics 1.3-5

Reminder: Exam 3 Friday, July 6. The Compton Effect. General Physics (PHY 2140) Lecture questions. Show your work for credit.

Reminder: Exam 3 Friday, July 6. The Compton Effect. General Physics (PHY 2140) Lecture questions. Show your work for credit. General Pysics (PHY 2140) Lecture 15 Modern Pysics Cater 27 1. Quantum Pysics Te Comton Effect Potons and EM Waves Wave Proerties of Particles Wave Functions Te Uncertainty Princile Reminder: Exam 3 Friday,

More information

A Reconsideration of Matter Waves

A Reconsideration of Matter Waves A Reconsideration of Matter Waves by Roger Ellman Abstract Matter waves were discovered in te early 20t century from teir wavelengt, predicted by DeBroglie, Planck's constant divided by te particle's momentum,

More information

Notes on wavefunctions II: momentum wavefunctions

Notes on wavefunctions II: momentum wavefunctions Notes on wavefunctions II: momentum wavefunctions and uncertainty Te state of a particle at any time is described by a wavefunction ψ(x). Tese wavefunction must cange wit time, since we know tat particles

More information

A NEW INTERPRETATION OF PHOTON. Kunwar Jagdish Narain

A NEW INTERPRETATION OF PHOTON. Kunwar Jagdish Narain 1 A NW INTRPRTATION OF PHOTON a) b) Kunwar Jagdis Narain (Retired Professor of Pysics) Te resent interretation of oton is as: A oton = a quantum of radiation energy + energy, were te quantum of radiation

More information

nucleus orbital electron wave 2/27/2008 Quantum ( F.Robilliard) 1

nucleus orbital electron wave 2/27/2008 Quantum ( F.Robilliard) 1 r nucleus orbital electron wave λ /7/008 Quantum ( F.Robilliard) 1 Wat is a Quantum? A quantum is a discrete amount of some quantity. For example, an atom is a mass quantum of a cemical element te mass

More information

Introduction. Learning Objectives. On completion of this chapter you will be able to:

Introduction. Learning Objectives. On completion of this chapter you will be able to: Introduction Learning Objectives On completion of tis capter you will be able to: 1. Define Compton Effect. 2. Derive te sift in incident ligt wavelengt and Compton wavelengt. 3. Explain ow te Compton

More information

APPENDIXES. Let the following constants be established for those using the active Mathcad

APPENDIXES. Let the following constants be established for those using the active Mathcad 3 APPENDIXES Let te following constants be establised for tose using te active Matcad form of tis book: m.. e 9.09389700 0 3 kg Electron rest mass. q.. o.6077330 0 9 coul Electron quantum carge. µ... o.5663706

More information

Chapters 19 & 20 Heat and the First Law of Thermodynamics

Chapters 19 & 20 Heat and the First Law of Thermodynamics Capters 19 & 20 Heat and te First Law of Termodynamics Te Zerot Law of Termodynamics Te First Law of Termodynamics Termal Processes Te Second Law of Termodynamics Heat Engines and te Carnot Cycle Refrigerators,

More information

Chemistry. Slide 1 / 63 Slide 2 / 63. Slide 4 / 63. Slide 3 / 63. Slide 6 / 63. Slide 5 / 63. Optional Review Light and Matter.

Chemistry. Slide 1 / 63 Slide 2 / 63. Slide 4 / 63. Slide 3 / 63. Slide 6 / 63. Slide 5 / 63. Optional Review Light and Matter. Slide 1 / 63 Slide 2 / 63 emistry Optional Review Ligt and Matter 2015-10-27 www.njctl.org Slide 3 / 63 Slide 4 / 63 Ligt and Sound Ligt and Sound In 1905 Einstein derived an equation relating mass and

More information

Graviton Induced Nuclear Fission through Electromagnetic Wave Flux Phil Russell, * Jerry Montgomery

Graviton Induced Nuclear Fission through Electromagnetic Wave Flux Phil Russell, * Jerry Montgomery Graviton Induced Nuclear Fission troug Electromagnetic Wave Flux Pil Russell, * Jerry Montgomery Nort Carolina Central University, Duram, NC 27707 Willowstick Tecnologies LLC, Draper, UT 84020 (Dated:

More information

6.4: THE WAVE BEHAVIOR OF MATTER

6.4: THE WAVE BEHAVIOR OF MATTER 6.4: THE WAVE BEHAVIOR OF MATTER SKILLS TO DEVELOP To understand te wave particle duality of matter. Einstein s potons of ligt were individual packets of energy aving many of te caracteristics of particles.

More information

Classical AI and ML research ignored this phenomena Another example

Classical AI and ML research ignored this phenomena Another example Wat is tis? Classical AI and ML researc ignored tis enomena Anoter eamle you want to catc a fligt at 0:00am from Pitt to SF, can I make it if I leave at 8am and take a Marta at Gatec? artial observability

More information

FOCUS ON THEORY. We recall that a function g(x) is differentiable at the point a if the limit

FOCUS ON THEORY. We recall that a function g(x) is differentiable at the point a if the limit FOCUS ON THEORY 653 DIFFERENTIABILITY Notes on Differentiabilit In Section 13.3 we gave an informal introduction to te concet of differentiabilit. We called a function f (; ) differentiable at a oint (a;

More information

Quantum Mechanics Chapter 1.5: An illustration using measurements of particle spin.

Quantum Mechanics Chapter 1.5: An illustration using measurements of particle spin. I Introduction. Quantum Mecanics Capter.5: An illustration using measurements of particle spin. Quantum mecanics is a teory of pysics tat as been very successful in explaining and predicting many pysical

More information

3.1 Extreme Values of a Function

3.1 Extreme Values of a Function .1 Etreme Values of a Function Section.1 Notes Page 1 One application of te derivative is finding minimum and maimum values off a grap. In precalculus we were only able to do tis wit quadratics by find

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

Final exam: Tuesday, May 11, 7:30-9:30am, Coates 143

Final exam: Tuesday, May 11, 7:30-9:30am, Coates 143 Final exam: Tuesday, May 11, 7:30-9:30am, Coates 143 Approximately 7 questions/6 problems Approximately 50% material since last test, 50% everyting covered on Exams I-III About 50% of everyting closely

More information

Chapter A 9.0-V battery is connected to a lightbulb, as shown below. 9.0-V Battery. a. How much power is delivered to the lightbulb?

Chapter A 9.0-V battery is connected to a lightbulb, as shown below. 9.0-V Battery. a. How much power is delivered to the lightbulb? Capter continued carges on te plates were reversed, te droplet would accelerate downward since all forces ten act in te same direction as gravity. 5. A 0.5-F capacitor is able to store 7.0 0 C of carge

More information

Physics Teach Yourself Series Topic 15: Wavelike nature of matter (Unit 4)

Physics Teach Yourself Series Topic 15: Wavelike nature of matter (Unit 4) Pysics Teac Yourself Series Topic 15: Wavelie nature of atter (Unit 4) A: Level 14, 474 Flinders Street Melbourne VIC 3000 T: 1300 134 518 W: tss.co.au E: info@tss.co.au TSSM 2017 Page 1 of 8 Contents

More information

Quantum Numbers and Rules

Quantum Numbers and Rules OpenStax-CNX module: m42614 1 Quantum Numbers and Rules OpenStax College Tis work is produced by OpenStax-CNX and licensed under te Creative Commons Attribution License 3.0 Abstract Dene quantum number.

More information

The Electromagnetic Spectrum. Today

The Electromagnetic Spectrum. Today Today Announcements: HW#7 is due after Spring Break on Wednesday Marc 1 t Exam # is on Tursday after Spring Break Te fourt extra credit project will be a super bonus points project. Tis extra credit can

More information

DUAL NATURE OF RADIATION AND MATTER

DUAL NATURE OF RADIATION AND MATTER DUAL NATURE OF RADIATION AND MATTER Important Points: 1. J.J. Tomson and Sir William Crookes studied te discarge of electricity troug gases. At about.1 mm of Hg and at ig voltage invisible streams called

More information

Polarizability of a metallic nanosphere: Local random-phase approximation (LRPA)

Polarizability of a metallic nanosphere: Local random-phase approximation (LRPA) Sri Lankan Journal of Pysics, Vol. 1(1) (01) 41-47 Institute of Pysics - Sri Lanka Researc Article Polarizability of a metallic nanosere: Local random-ase aroximation (LRPA) Prabat Hewageegana * Deartment

More information

Solution for the Homework 4

Solution for the Homework 4 Solution for te Homework 4 Problem 6.5: In tis section we computed te single-particle translational partition function, tr, by summing over all definite-energy wavefunctions. An alternative approac, owever,

More information

Problem Set 4 Solutions

Problem Set 4 Solutions University of Alabama Department of Pysics and Astronomy PH 253 / LeClair Spring 2010 Problem Set 4 Solutions 1. Group velocity of a wave. For a free relativistic quantum particle moving wit speed v, te

More information

3.4 Worksheet: Proof of the Chain Rule NAME

3.4 Worksheet: Proof of the Chain Rule NAME Mat 1170 3.4 Workseet: Proof of te Cain Rule NAME Te Cain Rule So far we are able to differentiate all types of functions. For example: polynomials, rational, root, and trigonometric functions. We are

More information

2.3 Product and Quotient Rules

2.3 Product and Quotient Rules .3. PRODUCT AND QUOTIENT RULES 75.3 Product and Quotient Rules.3.1 Product rule Suppose tat f and g are two di erentiable functions. Ten ( g (x)) 0 = f 0 (x) g (x) + g 0 (x) See.3.5 on page 77 for a proof.

More information

The total error in numerical differentiation

The total error in numerical differentiation AMS 147 Computational Metods and Applications Lecture 08 Copyrigt by Hongyun Wang, UCSC Recap: Loss of accuracy due to numerical cancellation A B 3, 3 ~10 16 In calculating te difference between A and

More information

1 Limits and Continuity

1 Limits and Continuity 1 Limits and Continuity 1.0 Tangent Lines, Velocities, Growt In tion 0.2, we estimated te slope of a line tangent to te grap of a function at a point. At te end of tion 0.3, we constructed a new function

More information

2.2 WAVE AND PARTICLE DUALITY OF RADIATION

2.2 WAVE AND PARTICLE DUALITY OF RADIATION Quantum Mecanics.1 INTRODUCTION Te motion of particles wic can be observed directly or troug microscope can be explained by classical mecanics. But wen te penomena like potoelectric effect, X-rays, ultraviolet

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

7. QUANTUM THEORY OF THE ATOM

7. QUANTUM THEORY OF THE ATOM 7. QUANTUM TEORY OF TE ATOM Solutions to Practice Problems Note on significant figures: If te final answer to a solution needs to be rounded off, it is given first wit one nonsignificant figure, and te

More information

Excerpt from "Calculus" 2013 AoPS Inc.

Excerpt from Calculus 2013 AoPS Inc. Excerpt from "Calculus" 03 AoPS Inc. Te term related rates refers to two quantities tat are dependent on eac oter and tat are canging over time. We can use te dependent relationsip between te quantities

More information

Exam 1 Review Solutions

Exam 1 Review Solutions Exam Review Solutions Please also review te old quizzes, and be sure tat you understand te omework problems. General notes: () Always give an algebraic reason for your answer (graps are not sufficient),

More information

MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION

MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION Tis tutorial is essential pre-requisite material for anyone stuing mecanical engineering. Tis tutorial uses te principle of

More information

Problem Set 4: Whither, thou turbid wave SOLUTIONS

Problem Set 4: Whither, thou turbid wave SOLUTIONS PH 253 / LeClair Spring 2013 Problem Set 4: Witer, tou turbid wave SOLUTIONS Question zero is probably were te name of te problem set came from: Witer, tou turbid wave? It is from a Longfellow poem, Te

More information

Dual Nature of matter and radiation: m v 1 c

Dual Nature of matter and radiation: m v 1 c Dual Nature of matter and radiation: Potons: Electromagnetic radiation travels in space in te form discrete packets of energy called potons. Tese potons travel in straigt line wit te speed of ligt. Important

More information

Derivatives. By: OpenStaxCollege

Derivatives. By: OpenStaxCollege By: OpenStaxCollege Te average teen in te United States opens a refrigerator door an estimated 25 times per day. Supposedly, tis average is up from 10 years ago wen te average teenager opened a refrigerator

More information

Part C : Quantum Physics

Part C : Quantum Physics Part C : Quantum Pysics 1 Particle-wave duality 1.1 Te Bor model for te atom We begin our discussion of quantum pysics by discussing an early idea for atomic structure, te Bor model. Wile tis relies on

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

SECTION 1.10: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES

SECTION 1.10: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES (Section.0: Difference Quotients).0. SECTION.0: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES Define average rate of cange (and average velocity) algebraically and grapically. Be able to identify, construct,

More information

Teaching Differentiation: A Rare Case for the Problem of the Slope of the Tangent Line

Teaching Differentiation: A Rare Case for the Problem of the Slope of the Tangent Line Teacing Differentiation: A Rare Case for te Problem of te Slope of te Tangent Line arxiv:1805.00343v1 [mat.ho] 29 Apr 2018 Roman Kvasov Department of Matematics University of Puerto Rico at Aguadilla Aguadilla,

More information

2.11 That s So Derivative

2.11 That s So Derivative 2.11 Tat s So Derivative Introduction to Differential Calculus Just as one defines instantaneous velocity in terms of average velocity, we now define te instantaneous rate of cange of a function at a point

More information

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example,

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example, NUMERICAL DIFFERENTIATION James T Smit San Francisco State University In calculus classes, you compute derivatives algebraically: for example, f( x) = x + x f ( x) = x x Tis tecnique requires your knowing

More information

Average Rate of Change

Average Rate of Change Te Derivative Tis can be tougt of as an attempt to draw a parallel (pysically and metaporically) between a line and a curve, applying te concept of slope to someting tat isn't actually straigt. Te slope

More information

Taylor Series and the Mean Value Theorem of Derivatives

Taylor Series and the Mean Value Theorem of Derivatives 1 - Taylor Series and te Mean Value Teorem o Derivatives Te numerical solution o engineering and scientiic problems described by matematical models oten requires solving dierential equations. Dierential

More information

Lab 6 Derivatives and Mutant Bacteria

Lab 6 Derivatives and Mutant Bacteria Lab 6 Derivatives and Mutant Bacteria Date: September 27, 20 Assignment Due Date: October 4, 20 Goal: In tis lab you will furter explore te concept of a derivative using R. You will use your knowledge

More information

Why gravity is not an entropic force

Why gravity is not an entropic force Wy gravity is not an entropic force San Gao Unit for History and Pilosopy of Science & Centre for Time, SOPHI, University of Sydney Email: sgao7319@uni.sydney.edu.au Te remarkable connections between gravity

More information

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225 THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Mat 225 As we ave seen, te definition of derivative for a Mat 111 function g : R R and for acurveγ : R E n are te same, except for interpretation:

More information

5.1 We will begin this section with the definition of a rational expression. We

5.1 We will begin this section with the definition of a rational expression. We Basic Properties and Reducing to Lowest Terms 5.1 We will begin tis section wit te definition of a rational epression. We will ten state te two basic properties associated wit rational epressions and go

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

UNIT-1 MODERN PHYSICS

UNIT-1 MODERN PHYSICS UNIT- MODERN PHYSICS Introduction to blackbody radiation spectrum: A body wic absorbs all radiation tat is incident on it is called a perfect blackbody. Wen radiation allowed to fall on suc a body, it

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY O SASKATCHEWAN Department of Pysics and Engineering Pysics Pysics 117.3 MIDTERM EXAM Regular Sitting NAME: (Last) Please Print (Given) Time: 90 minutes STUDENT NO.: LECTURE SECTION (please ceck):

More information

The Foundations of Chemistry 1

The Foundations of Chemistry 1 Te Foundations of Cemistry 1 1-1 (a) Biocemistry is te study of te cemistry of living tings. (b) Analytical cemistry studies te quantitative and qualitative composition analysis of substances. (c) Geocemistry

More information

Dynamics and Relativity

Dynamics and Relativity Dynamics and Relativity Stepen Siklos Lent term 2011 Hand-outs and examples seets, wic I will give out in lectures, are available from my web site www.damtp.cam.ac.uk/user/stcs/dynamics.tml Lecture notes,

More information

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12.

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12. Capter 6. Fluid Mecanics Notes: Most of te material in tis capter is taken from Young and Freedman, Cap. 12. 6.1 Fluid Statics Fluids, i.e., substances tat can flow, are te subjects of tis capter. But

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

CHAPTER 4 QUANTUM PHYSICS

CHAPTER 4 QUANTUM PHYSICS CHAPTER 4 QUANTUM PHYSICS INTRODUCTION Newton s corpuscular teory of ligt fails to explain te penomena like interference, diffraction, polarization etc. Te wave teory of ligt wic was proposed by Huygen

More information

Tangent Lines-1. Tangent Lines

Tangent Lines-1. Tangent Lines Tangent Lines- Tangent Lines In geometry, te tangent line to a circle wit centre O at a point A on te circle is defined to be te perpendicular line at A to te line OA. Te tangent lines ave te special property

More information

Pre-Calculus Review Preemptive Strike

Pre-Calculus Review Preemptive Strike Pre-Calculus Review Preemptive Strike Attaced are some notes and one assignment wit tree parts. Tese are due on te day tat we start te pre-calculus review. I strongly suggest reading troug te notes torougly

More information

1watt=1W=1kg m 2 /s 3

1watt=1W=1kg m 2 /s 3 Appendix A Matematics Appendix A.1 Units To measure a pysical quantity, you need a standard. Eac pysical quantity as certain units. A unit is just a standard we use to compare, e.g. a ruler. In tis laboratory

More information

Copyright c 2008 Kevin Long

Copyright c 2008 Kevin Long Lecture 4 Numerical solution of initial value problems Te metods you ve learned so far ave obtained closed-form solutions to initial value problems. A closedform solution is an explicit algebriac formula

More information

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative Matematics 5 Workseet 11 Geometry, Tangency, and te Derivative Problem 1. Find te equation of a line wit slope m tat intersects te point (3, 9). Solution. Te equation for a line passing troug a point (x

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

Work and Energy. Introduction. Work. PHY energy - J. Hedberg

Work and Energy. Introduction. Work. PHY energy - J. Hedberg Work and Energy PHY 207 - energy - J. Hedberg - 2017 1. Introduction 2. Work 3. Kinetic Energy 4. Potential Energy 5. Conservation of Mecanical Energy 6. Ex: Te Loop te Loop 7. Conservative and Non-conservative

More information

Section 3: The Derivative Definition of the Derivative

Section 3: The Derivative Definition of the Derivative Capter 2 Te Derivative Business Calculus 85 Section 3: Te Derivative Definition of te Derivative Returning to te tangent slope problem from te first section, let's look at te problem of finding te slope

More information

. If lim. x 2 x 1. f(x+h) f(x)

. If lim. x 2 x 1. f(x+h) f(x) Review of Differential Calculus Wen te value of one variable y is uniquely determined by te value of anoter variable x, ten te relationsip between x and y is described by a function f tat assigns a value

More information

Statistical Treatment Choice Based on. Asymmetric Minimax Regret Criteria

Statistical Treatment Choice Based on. Asymmetric Minimax Regret Criteria Statistical Treatment Coice Based on Asymmetric Minimax Regret Criteria Aleksey Tetenov y Deartment of Economics ortwestern University ovember 5, 007 (JOB MARKET PAPER) Abstract Tis aer studies te roblem

More information

Homework 1. L φ = mωr 2 = mυr, (1)

Homework 1. L φ = mωr 2 = mυr, (1) Homework 1 1. Problem: Streetman, Sixt Ed., Problem 2.2: Sow tat te tird Bor postulate, Eq. (2-5) (tat is, tat te angular momentum p θ around te polar axis is an integer multiple of te reduced Planck constant,

More information

Cubic Functions: Local Analysis

Cubic Functions: Local Analysis Cubic function cubing coefficient Capter 13 Cubic Functions: Local Analysis Input-Output Pairs, 378 Normalized Input-Output Rule, 380 Local I-O Rule Near, 382 Local Grap Near, 384 Types of Local Graps

More information

M12/4/PHYSI/HPM/ENG/TZ1/XX. Physics Higher level Paper 1. Thursday 10 May 2012 (afternoon) 1 hour INSTRUCTIONS TO CANDIDATES

M12/4/PHYSI/HPM/ENG/TZ1/XX. Physics Higher level Paper 1. Thursday 10 May 2012 (afternoon) 1 hour INSTRUCTIONS TO CANDIDATES M12/4/PHYSI/HPM/ENG/TZ1/XX 22126507 Pysics Higer level Paper 1 Tursday 10 May 2012 (afternoon) 1 our INSTRUCTIONS TO CANDIDATES Do not open tis examination paper until instructed to do so. Answer all te

More information

Krazy Katt, the mechanical cat

Krazy Katt, the mechanical cat Krazy Katt, te mecanical cat Te cat rigting relex is a cat's innate ability to orient itsel as it alls in order to land on its eet. Te rigting relex begins to appear at 3 4 weeks o age, and is perected

More information

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4.

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4. December 09, 20 Calculus PracticeTest s Name: (4 points) Find te absolute extrema of f(x) = x 3 0 on te interval [0, 4] Te derivative of f(x) is f (x) = 3x 2, wic is zero only at x = 0 Tus we only need

More information

HOMEWORK HELP 2 FOR MATH 151

HOMEWORK HELP 2 FOR MATH 151 HOMEWORK HELP 2 FOR MATH 151 Here we go; te second round of omework elp. If tere are oters you would like to see, let me know! 2.4, 43 and 44 At wat points are te functions f(x) and g(x) = xf(x)continuous,

More information

Practice Problem Solutions: Exam 1

Practice Problem Solutions: Exam 1 Practice Problem Solutions: Exam 1 1. (a) Algebraic Solution: Te largest term in te numerator is 3x 2, wile te largest term in te denominator is 5x 2 3x 2 + 5. Tus lim x 5x 2 2x 3x 2 x 5x 2 = 3 5 Numerical

More information

( ) ! = = = = = = = 0. ev nm. h h hc 5-4. (from Equation 5-2) (a) For an electron:! = = 0. % & (b) For a proton: (c) For an alpha particle:

( ) ! = = = = = = = 0. ev nm. h h hc 5-4. (from Equation 5-2) (a) For an electron:! = = 0. % & (b) For a proton: (c) For an alpha particle: 5-3. ( c) 1 ( 140eV nm) (. )(. ) Ek = evo = = V 940 o = = V 5 m mc e 5 11 10 ev 0 04nm 5-4. c = = = mek mc Ek (from Equation 5-) 140eV nm (a) For an electron: = = 0. 0183nm ( )( 0 511 10 )( 4 5 10 3 )

More information

Phy 231 Sp 02 Homework #6 Page 1 of 4

Phy 231 Sp 02 Homework #6 Page 1 of 4 Py 231 Sp 02 Homework #6 Page 1 of 4 6-1A. Te force sown in te force-time diagram at te rigt versus time acts on a 2 kg mass. Wat is te impulse of te force on te mass from 0 to 5 sec? (a) 9 N-s (b) 6 N-s

More information

Problem Set 3: Solutions

Problem Set 3: Solutions University of Alabama Department of Pysics and Astronomy PH 253 / LeClair Spring 2010 Problem Set 3: Solutions 1. Te energy required to break one OO bond in ozone O 3, OOO) is about 500 kj/mol. Wat is

More information

Problem Solving. Problem Solving Process

Problem Solving. Problem Solving Process Problem Solving One of te primary tasks for engineers is often solving problems. It is wat tey are, or sould be, good at. Solving engineering problems requires more tan just learning new terms, ideas and

More information

CHAPTER 39. Answer to Checkpoint Questions

CHAPTER 39. Answer to Checkpoint Questions CHAPTR 39 PHOTONS AND MATTR WAVS 059 CHAPTR 39 Answer to Ceckoint Questions. (b), (a), (d), (c). (a) litium, sodium, otassium, cesium; (b) all tie 3. (a) same; (b) { (d) x rays 4. (a) roton; (b) same;

More information

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3.

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3. Capter Functions and Graps Section. Ceck Point Exercises. Te slope of te line y x+ is. y y m( x x y ( x ( y ( x+ point-slope y x+ 6 y x+ slope-intercept. a. Write te equation in slope-intercept form: x+

More information

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible.

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible. 004 Algebra Pretest answers and scoring Part A. Multiple coice questions. Directions: Circle te letter ( A, B, C, D, or E ) net to te correct answer. points eac, no partial credit. Wic one of te following

More information

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. Preface Here are my online notes for my course tat I teac ere at Lamar University. Despite te fact tat tese are my class notes, tey sould be accessible to anyone wanting to learn or needing a refreser

More information

Lesson 6: The Derivative

Lesson 6: The Derivative Lesson 6: Te Derivative Def. A difference quotient for a function as te form f(x + ) f(x) (x + ) x f(x + x) f(x) (x + x) x f(a + ) f(a) (a + ) a Notice tat a difference quotient always as te form of cange

More information

Derivatives of Exponentials

Derivatives of Exponentials mat 0 more on derivatives: day 0 Derivatives of Eponentials Recall tat DEFINITION... An eponential function as te form f () =a, were te base is a real number a > 0. Te domain of an eponential function

More information

Quantum Mechanics and Atomic Theory

Quantum Mechanics and Atomic Theory A. Electromagnetic Radiation Quantum Mecanics and Atomic Teory 1. Ligt: consists of waves of oscillating electric field ( E ) and magnetic field ( B ) tat are perpendicular to eac oter and to te direction

More information

Pre-lab Quiz/PHYS 224 Earth s Magnetic Field. Your name Lab section

Pre-lab Quiz/PHYS 224 Earth s Magnetic Field. Your name Lab section Pre-lab Quiz/PHYS 4 Eart s Magnetic Field Your name Lab section 1. Wat do you investigate in tis lab?. For a pair of Helmoltz coils described in tis manual and sown in Figure, r=.15 m, N=13, I =.4 A, wat

More information

Phase space in classical physics

Phase space in classical physics Pase space in classical pysics Quantum mecanically, we can actually COU te number of microstates consistent wit a given macrostate, specified (for example) by te total energy. In general, eac microstate

More information

Technology-Independent Design of Neurocomputers: The Universal Field Computer 1

Technology-Independent Design of Neurocomputers: The Universal Field Computer 1 Tecnology-Independent Design of Neurocomputers: Te Universal Field Computer 1 Abstract Bruce J. MacLennan Computer Science Department Naval Postgraduate Scool Monterey, CA 9393 We argue tat AI is moving

More information

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t). . Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd, periodic function tat as been sifted upwards, so we will use

More information

The derivative function

The derivative function Roberto s Notes on Differential Calculus Capter : Definition of derivative Section Te derivative function Wat you need to know already: f is at a point on its grap and ow to compute it. Wat te derivative

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

Quaternion Dynamics, Part 1 Functions, Derivatives, and Integrals. Gary D. Simpson. rev 01 Aug 08, 2016.

Quaternion Dynamics, Part 1 Functions, Derivatives, and Integrals. Gary D. Simpson. rev 01 Aug 08, 2016. Quaternion Dynamics, Part 1 Functions, Derivatives, and Integrals Gary D. Simpson gsim1887@aol.com rev 1 Aug 8, 216 Summary Definitions are presented for "quaternion functions" of a quaternion. Polynomial

More information

THE WAVE NATURE OF PARTICLES

THE WAVE NATURE OF PARTICLES THE WAVE NATURE OF PARTICLES 39 39 IDENTIFY and SET UP: λ = = mv For an electron, 3 7 m = 9 kg For a roton, m = 67 kg EXECUTE: (a) 663 J s 3 6 (9 kg)(47 /s) λ = = = 55 55 nm (b) λ is roortional to 3 m,

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition and s James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 8, 2017 Outline 1 Function Composition and Continuity 2 Function

More information

Material for Difference Quotient

Material for Difference Quotient Material for Difference Quotient Prepared by Stepanie Quintal, graduate student and Marvin Stick, professor Dept. of Matematical Sciences, UMass Lowell Summer 05 Preface Te following difference quotient

More information

Differential Calculus (The basics) Prepared by Mr. C. Hull

Differential Calculus (The basics) Prepared by Mr. C. Hull Differential Calculus Te basics) A : Limits In tis work on limits, we will deal only wit functions i.e. tose relationsips in wic an input variable ) defines a unique output variable y). Wen we work wit

More information

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY (Section 3.2: Derivative Functions and Differentiability) 3.2.1 SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY LEARNING OBJECTIVES Know, understand, and apply te Limit Definition of te Derivative

More information

Chapter 2 Ising Model for Ferromagnetism

Chapter 2 Ising Model for Ferromagnetism Capter Ising Model for Ferromagnetism Abstract Tis capter presents te Ising model for ferromagnetism, wic is a standard simple model of a pase transition. Using te approximation of mean-field teory, te

More information

Section 15.6 Directional Derivatives and the Gradient Vector

Section 15.6 Directional Derivatives and the Gradient Vector Section 15.6 Directional Derivatives and te Gradient Vector Finding rates of cange in different directions Recall tat wen we first started considering derivatives of functions of more tan one variable,

More information