16.2. Infinite Series. Introduction. Prerequisites. Learning Outcomes

Size: px
Start display at page:

Download "16.2. Infinite Series. Introduction. Prerequisites. Learning Outcomes"

Transcription

1 Infinite Series 6.2 Introduction We extend the concet of a finite series, met in Section 6., to the situation in which the number of terms increase without bound. We define what is meant by an infinite series being convergent by considering the artial sums of the series. As rime examles of infinite series we examine the harmonic and the alternating harmonic series and show that the former is divergent and the latter is convergent. We consider various tests for the convergence of series, in articular we introduce the ratio test which is a test alicable to series of ositive terms. Finally we define the meaning of the terms absolute and conditional convergence. Prerequisites Before starting this Section you should... Learning Outcomes On comletion you should be able to... be able to use the summation notation be familiar with the roerties of limits be able to use inequalities use the alternating series test on infinite series use the ratio test on infinite series understand the terms absolute and conditional convergence HELM (2008): Section 6.2: Infinite Series 3

2 . Introduction Many of the series considered in Section 6. were examles of finite series in that they all involved the summation of a finite number of terms. When the number of terms in the series increases without bound we refer to the sum as an infinite series. Of articular concern with infinite series is whether they are convergent or divergent. For examle, the infinite series is clearly divergent because the sum of the first n terms increases without bound as more and more terms are taken. It is less clear as to whether the harmonic and alternating harmonic series: converge or diverge. Indeed you may be surrised to find that the first is divergent and the second is convergent. What we shall do in this Section is to consider some simle convergence tests for infinite series. Although we all have an intuitive idea as to the meaning of convergence of an infinite series we must be more recise in our aroach. We need a definition for convergence which we can aly rigorously. First, using an obvious extension of the notation we have used for a finite sum of terms, we denote the infinite series: a + a 2 + a a + by the exression where a is an exression for the th term in the series. So, as examles: a = = since the th term is a 2 since the th term is a = Consider the infinite series: a + a a + = ( ) + a here a ( )+ We consider the sequence of artial sums, S, S 2,..., of this series where S = a S 2 = a + a 2. S n = a + a a n That is, S n is the sum of the first n terms of the infinite series. If the limit of the sequence S, S 2,..., S n,... can be found; that is 4 HELM (2008): Workbook 6: Sequences and Series

3 lim S n = S n (say) then we define the sum of the infinite series to be S: S = a and we say the series converges to S. Another way of stating this is to say that n a = lim a n An infinite series Key Point 4 Convergence of Infinite Series a is convergent if the sequence of artial sums S, S 2, S 3,..., S k,... in which S k = k a is convergent Divergence condition for an infinite series An almost obvious requirement that an infinite series should be convergent is that the individual terms in the series should get smaller and smaller. This leads to the following Key Point: The condition: Key Point 5 a 0 as increases (mathematically lim a = 0) is a necessary condition for the convergence of the series a It is not ossible for an infinite series to be convergent unless this condition holds. HELM (2008): Section 6.2: Infinite Series 5

4 Task Which of the following series cannot be convergent? (a) (b) (c) In each case, use the condition from Key Point 5: (a) a = a = lim + + = Hence series is divergent. lim a = (b) a = lim a = a = lim a = 0 So this series may be convergent. Whether it is or not requires further testing. (c) a = a = ( )+ lim a = lim a = 0 so again this series may be convergent. Divergence of the harmonic series The harmonic series: has a general term a n = which clearly gets smaller and smaller as n. However, surrisingly, n the series is divergent. Its divergence is demonstrated by showing that the harmonic series is greater than another series which is obviously divergent. We do this by grouing the terms of the harmonic series in a articular way: ( ) ( ) ( ) HELM (2008): Workbook 6: Sequences and Series

5 Now ( ) ( ) > = ( ) 6 > = 2 > = 2 and so on. Hence the harmonic series satisfies: ( ) ( ) ( ) + > + 8 ( ) + 2 ( ) + 2 ( ) + 2 The right-hand side of this inequality is clearly divergent so the harmonic series is divergent. Convergence of the alternating harmonic series As with the harmonic series we shall grou the terms of the alternating harmonic series, this time to dislay its convergence. The alternating harmonic series is: S = This series may be re-groued in two distinct ways. st re-grouing ( 5 + = 2 ) 3 ( 4 ) ( 5 6 ) 7 each term in brackets is ositive since 2 > 3, 4 > and so on. So we easily conclude that S < 5 since we are subtracting only ositive numbers from. 2nd re-grouing ( 5 + = ) 2 + ( 3 ) ( ) + 6 Again, each term in brackets is ositive since > 2, 3 > 4, 5 > 6 and so on. So we can also argue that S > 2 since we are adding only ositive numbers to the value of the first term,. The conclusion that is forced uon us is that 2 2 < S < so the alternating series is convergent since its sum, S, lies in the range 2 Section 6.5 that S = ln It will be shown in HELM (2008): Section 6.2: Infinite Series 7

6 2. General tests for convergence The techniques we have alied to analyse the harmonic and the alternating harmonic series are one-off :- they cannot be alied to infinite series in general. However, there are many tests that can be used to determine the convergence roerties of infinite series. Of the large number available we shall only consider two such tests in detail. The alternating series test An alternating series is a secial tye of series in which the sign changes from one term to the next. They have the form a a 2 + a 3 a 4 + (in which each a i, i =, 2, 3,... is a ositive number) Examles are: (a) + + (b) (c) For series of this tye there is a simle criterion for convergence: The alternating series Key Point 6 The Alternating Series Test a a 2 + a 3 a 4 + (in which each a i, i =, 2, 3,... are ositive numbers) is convergent if and only if the terms continually decrease: the terms decrease to zero: a > a 2 > a 3 >... a 0 as increases (mathematically lim a = 0) 8 HELM (2008): Workbook 6: Sequences and Series

7 Task Which of the following series are convergent? (2 ) ( ) + (a) ( ) (b) (2 + ) 2 (a) First, write out the series: Now examine the series for convergence: ( (2 ) (2 + ) = 2 ) ( + as increases. 2 ) Since the individual terms of the series do not converge to zero this is therefore a divergent series. (b) Aly the rocedure used in (a) to roblem (b): This series is an alternating series of the form a a 2 + a 3 a 4 + in which a = 2. The a sequence is a decreasing sequence since > 2 2 > 3 2 >... Also lim = 0. Hence the series is convergent by the alternating series test. 2 HELM (2008): Section 6.2: Infinite Series 9

8 3. The ratio test This test, which is one of the most useful and widely used convergence tests, alies only to series of ositive terms. Key Point 7 Let The Ratio Test a be a series of ositive terms such that, as increases, the limit of a + a a number λ. That is lim a + a = λ. It can be shown that: equals if λ >, then if λ <, then if λ =, then a diverges a converges a may converge or diverge. That is, the test is inconclusive in this case. 20 HELM (2008): Workbook 6: Sequences and Series

9 Examle Use the ratio test to examine the convergence of the series (a) + 2! + 3! + 4! + (b) + x + x2 + x 3 + Solution (a) The general term in this series is! i.e. + 2! + 3! + =! a =! a + = and the ratio a +! = a ( + )! = ( )... (3)(2)() ( + )( )... (3)(2)() = ( + ) a + lim a = lim ( + ) = 0 ( + )! Since 0 < the series is convergent. In fact, it will be easily shown, using the techniques outlined in 6.5, that + 2! + 3! + = e.78 (b) Here we must assume that x > 0 since we can only aly the ratio test to a series of ositive terms. Now so that + x + x 2 + x 3 + = x a = x, a + = x and a + lim a x = lim = lim x x = x Thus, using the ratio test we deduce that (if x is a ositive number) this series will only converge if x <. We will see in Section 6.4 that + x + x 2 + x 3 + = x rovided 0 < x <. HELM (2008): Section 6.2: Infinite Series 2

10 Task Use the ratio test to examine the convergence of the series: ln (ln 3) (ln 3) + 3 First, find the general term of the series: a = ln (ln 3) + = 3 so a 2 (ln 3) = 3 (ln 3) Now find a + : a + = ( + )3 a + = (ln 3) + Finally, obtain lim a + a : a + a + = lim = a a ( ) 3 a + + = a (ln 3). Now ( + a + lim = a (ln 3) < Hence this is a convergent series. ) 3 = ( + ) 3 as increases Note that in all of these Examles and Tasks we have decided uon the convergence or divergence of various series; we have not been able to use the tests to discover what actual number the convergent series converges to. 22 HELM (2008): Workbook 6: Sequences and Series

11 4. Absolute and conditional convergence The ratio test alies to series of ositive terms. Indeed this is true of many related tests for convergence. However, as we have seen, not all series are series of ositive terms. To aly the ratio test such series must first be converted into series of ositive terms. This is easily done. Consider two series a and a. The latter series, obviously directly related to the first, is a series of ositive terms. Using imrecise language, it is harder for the second series to converge than it is for the first, since, in the first, some of the terms may be negative and cancel out art of the contribution from the ositive terms. No such cancellations can take lace in the second series since they are all ositive terms. Thus it is lausible that if a converges so does a. This leads to the following definitions. Key Point 8 Conditional Convergence and Absolute Convergence A convergent series a is said to be conditionally convergent if a is divergent. A convergent series a is said to be absolutely convergent if a is convergent. For examle, the alternating harmonic series: ( ) + = is conditionally convergent since the series of ositive terms (the harmonic series): ( ) + = is divergent. HELM (2008): Section 6.2: Infinite Series 23

12 Task Show that the series 2! + 4! + is absolutely convergent. 6! First, find the general term of the series: 2! + 4! 6! + = ( ) a 2! + 4! 6! + = ( ) (2)! a ( ) (2)! Write down an exression for the related series of ositive terms: 2! + 4! + 6! + = ( ) a = (2)! so a = (2)! Now use the ratio test to examine the convergence of this series: th term = ( + ) th term = th term = (2)! Find lim [ ( + ) th term th term ] : [ ] ( + ) th term lim = th term ( + ) th term = (2( + ))! (2)! (2( + ))! = 2(2 )... (2 + 2)(2 + )2(2 )... = (2 + 2)(2 + ) So the series of ositive terms is convergent by the ratio test. convergent. 0 as increases. Hence ( ) (2)! is absolutely 24 HELM (2008): Workbook 6: Sequences and Series

13 Exercises. Which of the following alternating series are convergent? (a) ( ) ln(3) (b) ( ) Use the ratio test to examine the convergence of the series: e 4 3 (a) (b) (c) (2 + ) +! (d) (0.3) (e) ( ) + 3 (c) sin(2 + ) π 2 ( + 00) 3. For what values of x are the following series absolutely convergent? ( ) x ( ) x (a) (b)! s. (a) convergent, (b) convergent, (c) divergent 2. (a) λ = 0 so convergent (b) λ = 0 so convergent (c) λ = so test is inconclusive. However, since by comarison with the harmonic series. (d) λ = 0/3 so divergent, alied. 3. (a) The related series of ositive terms is /2 > then the given series is divergent (e) Not a series of ositive terms so the ratio test cannot be x. For this series, using the ratio test we find λ = x so the original series is absolutely convergent if x <. x (b) The related series of ositive terms is. For this series, using the ratio test we! find λ = 0 (irresective of the value of x) so the original series is absolutely convergent for all values of x. HELM (2008): Section 6.2: Infinite Series 25

16.2. Infinite Series. Introduction. Prerequisites. Learning Outcomes

16.2. Infinite Series. Introduction. Prerequisites. Learning Outcomes Infinite Series 6. Introduction We extend the concet of a finite series, met in section, to the situation in which the number of terms increase without bound. We define what is meant by an infinite series

More information

16.4. Power Series. Introduction. Prerequisites. Learning Outcomes

16.4. Power Series. Introduction. Prerequisites. Learning Outcomes Power Series 6.4 Introduction In this Section we consider power series. These are examples of infinite series where each term contains a variable, x, raised to a positive integer power. We use the ratio

More information

MATH 2710: NOTES FOR ANALYSIS

MATH 2710: NOTES FOR ANALYSIS MATH 270: NOTES FOR ANALYSIS The main ideas we will learn from analysis center around the idea of a limit. Limits occurs in several settings. We will start with finite limits of sequences, then cover infinite

More information

Testing Series with Mixed Terms

Testing Series with Mixed Terms Testing Series with Mixed Terms Philippe B. Laval KSU Today Philippe B. Laval (KSU) Series with Mixed Terms Today 1 / 17 Outline 1 Introduction 2 Absolute v.s. Conditional Convergence 3 Alternating Series

More information

16.4. Power Series. Introduction. Prerequisites. Learning Outcomes

16.4. Power Series. Introduction. Prerequisites. Learning Outcomes Power Series 6.4 Introduction In this section we consider power series. These are examples of infinite series where each term contains a variable, x, raised to a positive integer power. We use the ratio

More information

About the HELM Project HELM (Helping Engineers Learn Mathematics) materials were the outcome of a three-year curriculum development project

About the HELM Project HELM (Helping Engineers Learn Mathematics) materials were the outcome of a three-year curriculum development project About the HELM Project HELM (Helping Engineers Learn Mathematics) materials were the outcome of a three-year curriculum development project undertaken by a consortium of five English universities led by

More information

Math 4400/6400 Homework #8 solutions. 1. Let P be an odd integer (not necessarily prime). Show that modulo 2,

Math 4400/6400 Homework #8 solutions. 1. Let P be an odd integer (not necessarily prime). Show that modulo 2, MATH 4400 roblems. Math 4400/6400 Homework # solutions 1. Let P be an odd integer not necessarily rime. Show that modulo, { P 1 0 if P 1, 7 mod, 1 if P 3, mod. Proof. Suose that P 1 mod. Then we can write

More information

MATH 250: THE DISTRIBUTION OF PRIMES. ζ(s) = n s,

MATH 250: THE DISTRIBUTION OF PRIMES. ζ(s) = n s, MATH 50: THE DISTRIBUTION OF PRIMES ROBERT J. LEMKE OLIVER For s R, define the function ζs) by. Euler s work on rimes ζs) = which converges if s > and diverges if s. In fact, though we will not exloit

More information

Statics and dynamics: some elementary concepts

Statics and dynamics: some elementary concepts 1 Statics and dynamics: some elementary concets Dynamics is the study of the movement through time of variables such as heartbeat, temerature, secies oulation, voltage, roduction, emloyment, rices and

More information

Testing Series With Mixed Terms

Testing Series With Mixed Terms Testing Series With Mixed Terms Philippe B. Laval Series with Mixed Terms 1. Introduction 2. Absolute v.s. Conditional Convergence 3. Alternating Series 4. The Ratio and Root Tests 5. Conclusion 1 Introduction

More information

Series Handout A. 1. Determine which of the following sums are geometric. If the sum is geometric, express the sum in closed form.

Series Handout A. 1. Determine which of the following sums are geometric. If the sum is geometric, express the sum in closed form. Series Handout A. Determine which of the following sums are geometric. If the sum is geometric, exress the sum in closed form. 70 a) k= ( k ) b) 50 k= ( k )2 c) 60 k= ( k )k d) 60 k= (.0)k/3 2. Find the

More information

23.4. Convergence. Introduction. Prerequisites. Learning Outcomes

23.4. Convergence. Introduction. Prerequisites. Learning Outcomes Convergence 3.4 Introduction In this Section we examine, briefly, the convergence characteristics of a Fourier series. We have seen that a Fourier series can be found for functions which are not necessarily

More information

Absolute Convergence and the Ratio Test

Absolute Convergence and the Ratio Test Absolute Convergence and the Ratio Test MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Bacground Remar: All previously covered tests for convergence/divergence apply only

More information

Applications to stochastic PDE

Applications to stochastic PDE 15 Alications to stochastic PE In this final lecture we resent some alications of the theory develoed in this course to stochastic artial differential equations. We concentrate on two secific examles:

More information

Elementary theory of L p spaces

Elementary theory of L p spaces CHAPTER 3 Elementary theory of L saces 3.1 Convexity. Jensen, Hölder, Minkowski inequality. We begin with two definitions. A set A R d is said to be convex if, for any x 0, x 1 2 A x = x 0 + (x 1 x 0 )

More information

Power Series. Part 1. J. Gonzalez-Zugasti, University of Massachusetts - Lowell

Power Series. Part 1. J. Gonzalez-Zugasti, University of Massachusetts - Lowell Power Series Part 1 1 Power Series Suppose x is a variable and c k & a are constants. A power series about x = 0 is c k x k A power series about x = a is c k x a k a = center of the power series c k =

More information

10.1 Sequences. A sequence is an ordered list of numbers: a 1, a 2, a 3,..., a n, a n+1,... Each of the numbers is called a term of the sequence.

10.1 Sequences. A sequence is an ordered list of numbers: a 1, a 2, a 3,..., a n, a n+1,... Each of the numbers is called a term of the sequence. 10.1 Sequences A sequence is an ordered list of numbers: a 1, a 2, a 3,..., a n, a n+1,... Each of the numbers is called a term of the sequence. Notation: A sequence {a 1, a 2, a 3,...} can be denoted

More information

Averaging sums of powers of integers and Faulhaber polynomials

Averaging sums of powers of integers and Faulhaber polynomials Annales Mathematicae et Informaticae 42 (20. 0 htt://ami.ektf.hu Averaging sums of owers of integers and Faulhaber olynomials José Luis Cereceda a a Distrito Telefónica Madrid Sain jl.cereceda@movistar.es

More information

The Arm Prime Factors Decomposition

The Arm Prime Factors Decomposition The Arm Prime Factors Decomosition Arm Boris Nima arm.boris@gmail.com Abstract We introduce the Arm rime factors decomosition which is the equivalent of the Taylor formula for decomosition of integers

More information

Towards understanding the Lorenz curve using the Uniform distribution. Chris J. Stephens. Newcastle City Council, Newcastle upon Tyne, UK

Towards understanding the Lorenz curve using the Uniform distribution. Chris J. Stephens. Newcastle City Council, Newcastle upon Tyne, UK Towards understanding the Lorenz curve using the Uniform distribution Chris J. Stehens Newcastle City Council, Newcastle uon Tyne, UK (For the Gini-Lorenz Conference, University of Siena, Italy, May 2005)

More information

Introduction to Banach Spaces

Introduction to Banach Spaces CHAPTER 8 Introduction to Banach Saces 1. Uniform and Absolute Convergence As a rearation we begin by reviewing some familiar roerties of Cauchy sequences and uniform limits in the setting of metric saces.

More information

Lecture 6. 2 Recurrence/transience, harmonic functions and martingales

Lecture 6. 2 Recurrence/transience, harmonic functions and martingales Lecture 6 Classification of states We have shown that all states of an irreducible countable state Markov chain must of the same tye. This gives rise to the following classification. Definition. [Classification

More information

ANALYTIC NUMBER THEORY AND DIRICHLET S THEOREM

ANALYTIC NUMBER THEORY AND DIRICHLET S THEOREM ANALYTIC NUMBER THEORY AND DIRICHLET S THEOREM JOHN BINDER Abstract. In this aer, we rove Dirichlet s theorem that, given any air h, k with h, k) =, there are infinitely many rime numbers congruent to

More information

A CONCRETE EXAMPLE OF PRIME BEHAVIOR IN QUADRATIC FIELDS. 1. Abstract

A CONCRETE EXAMPLE OF PRIME BEHAVIOR IN QUADRATIC FIELDS. 1. Abstract A CONCRETE EXAMPLE OF PRIME BEHAVIOR IN QUADRATIC FIELDS CASEY BRUCK 1. Abstract The goal of this aer is to rovide a concise way for undergraduate mathematics students to learn about how rime numbers behave

More information

Cybernetic Interpretation of the Riemann Zeta Function

Cybernetic Interpretation of the Riemann Zeta Function Cybernetic Interretation of the Riemann Zeta Function Petr Klán, Det. of System Analysis, University of Economics in Prague, Czech Reublic, etr.klan@vse.cz arxiv:602.05507v [cs.sy] 2 Feb 206 Abstract:

More information

7.4. The Inverse of a Matrix. Introduction. Prerequisites. Learning Outcomes

7.4. The Inverse of a Matrix. Introduction. Prerequisites. Learning Outcomes The Inverse of a Matrix 7.4 Introduction In number arithmetic every number a 0has a reciprocal b written as a or such that a ba = ab =. Similarly a square matrix A may have an inverse B = A where AB =

More information

Review of Power Series

Review of Power Series Review of Power Series MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Introduction In addition to the techniques we have studied so far, we may use power

More information

#A47 INTEGERS 15 (2015) QUADRATIC DIOPHANTINE EQUATIONS WITH INFINITELY MANY SOLUTIONS IN POSITIVE INTEGERS

#A47 INTEGERS 15 (2015) QUADRATIC DIOPHANTINE EQUATIONS WITH INFINITELY MANY SOLUTIONS IN POSITIVE INTEGERS #A47 INTEGERS 15 (015) QUADRATIC DIOPHANTINE EQUATIONS WITH INFINITELY MANY SOLUTIONS IN POSITIVE INTEGERS Mihai Ciu Simion Stoilow Institute of Mathematics of the Romanian Academy, Research Unit No. 5,

More information

2 Asymptotic density and Dirichlet density

2 Asymptotic density and Dirichlet density 8.785: Analytic Number Theory, MIT, sring 2007 (K.S. Kedlaya) Primes in arithmetic rogressions In this unit, we first rove Dirichlet s theorem on rimes in arithmetic rogressions. We then rove the rime

More information

2 Asymptotic density and Dirichlet density

2 Asymptotic density and Dirichlet density 8.785: Analytic Number Theory, MIT, sring 2007 (K.S. Kedlaya) Primes in arithmetic rogressions In this unit, we first rove Dirichlet s theorem on rimes in arithmetic rogressions. We then rove the rime

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Contents Eigenvalues and Eigenvectors. Basic Concepts. Applications of Eigenvalues and Eigenvectors 8.3 Repeated Eigenvalues and Symmetric Matrices 3.4 Numerical Determination of Eigenvalues and Eigenvectors

More information

On Wald-Type Optimal Stopping for Brownian Motion

On Wald-Type Optimal Stopping for Brownian Motion J Al Probab Vol 34, No 1, 1997, (66-73) Prerint Ser No 1, 1994, Math Inst Aarhus On Wald-Tye Otimal Stoing for Brownian Motion S RAVRSN and PSKIR The solution is resented to all otimal stoing roblems of

More information

14.4. Lengths of Curves and Surfaces of Revolution. Introduction. Prerequisites. Learning Outcomes

14.4. Lengths of Curves and Surfaces of Revolution. Introduction. Prerequisites. Learning Outcomes Lengths of Curves and Surfaces of Revolution 4.4 Introduction Integration can be used to find the length of a curve and the area of the surface generated when a curve is rotated around an axis. In this

More information

COMMUNICATION BETWEEN SHAREHOLDERS 1

COMMUNICATION BETWEEN SHAREHOLDERS 1 COMMUNICATION BTWN SHARHOLDRS 1 A B. O A : A D Lemma B.1. U to µ Z r 2 σ2 Z + σ2 X 2r ω 2 an additive constant that does not deend on a or θ, the agents ayoffs can be written as: 2r rθa ω2 + θ µ Y rcov

More information

Elementary Analysis in Q p

Elementary Analysis in Q p Elementary Analysis in Q Hannah Hutter, May Szedlák, Phili Wirth November 17, 2011 This reort follows very closely the book of Svetlana Katok 1. 1 Sequences and Series In this section we will see some

More information

Various Proofs for the Decrease Monotonicity of the Schatten s Power Norm, Various Families of R n Norms and Some Open Problems

Various Proofs for the Decrease Monotonicity of the Schatten s Power Norm, Various Families of R n Norms and Some Open Problems Int. J. Oen Problems Comt. Math., Vol. 3, No. 2, June 2010 ISSN 1998-6262; Coyright c ICSRS Publication, 2010 www.i-csrs.org Various Proofs for the Decrease Monotonicity of the Schatten s Power Norm, Various

More information

2.4. Characterising Functions. Introduction. Prerequisites. Learning Outcomes

2.4. Characterising Functions. Introduction. Prerequisites. Learning Outcomes Characterising Functions 2.4 Introduction There are a number of different terms used to describe the ways in which functions behave. In this Section we explain some of these terms and illustrate their

More information

An Estimate For Heilbronn s Exponential Sum

An Estimate For Heilbronn s Exponential Sum An Estimate For Heilbronn s Exonential Sum D.R. Heath-Brown Magdalen College, Oxford For Heini Halberstam, on his retirement Let be a rime, and set e(x) = ex(2πix). Heilbronn s exonential sum is defined

More information

11.5. The Chain Rule. Introduction. Prerequisites. Learning Outcomes

11.5. The Chain Rule. Introduction. Prerequisites. Learning Outcomes The Chain Rule 11.5 Introduction In this Section we will see how to obtain the derivative of a composite function (often referred to as a function of a function ). To do this we use the chain rule. This

More information

8.7 Associated and Non-associated Flow Rules

8.7 Associated and Non-associated Flow Rules 8.7 Associated and Non-associated Flow Rules Recall the Levy-Mises flow rule, Eqn. 8.4., d ds (8.7.) The lastic multilier can be determined from the hardening rule. Given the hardening rule one can more

More information

Transpose of the Weighted Mean Matrix on Weighted Sequence Spaces

Transpose of the Weighted Mean Matrix on Weighted Sequence Spaces Transose of the Weighted Mean Matri on Weighted Sequence Saces Rahmatollah Lashkariour Deartment of Mathematics, Faculty of Sciences, Sistan and Baluchestan University, Zahedan, Iran Lashkari@hamoon.usb.ac.ir,

More information

7.3. Determinants. Introduction. Prerequisites. Learning Outcomes

7.3. Determinants. Introduction. Prerequisites. Learning Outcomes Determinants 7.3 Introduction Among other uses, determinants allow us to determine whether a system of linear equations has a unique solution or not. The evaluation of a determinant is a key skill in engineering

More information

HAUSDORFF MEASURE OF p-cantor SETS

HAUSDORFF MEASURE OF p-cantor SETS Real Analysis Exchange Vol. 302), 2004/2005,. 20 C. Cabrelli, U. Molter, Deartamento de Matemática, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires and CONICET, Pabellón I - Ciudad Universitaria,

More information

F(p) y + 3y + 2y = δ(t a) y(0) = 0 and y (0) = 0.

F(p) y + 3y + 2y = δ(t a) y(0) = 0 and y (0) = 0. Page 5- Chater 5: Lalace Transforms The Lalace Transform is a useful tool that is used to solve many mathematical and alied roblems. In articular, the Lalace transform is a technique that can be used to

More information

Convergence of random variables, and the Borel-Cantelli lemmas

Convergence of random variables, and the Borel-Cantelli lemmas Stat 205A Setember, 12, 2002 Convergence of ranom variables, an the Borel-Cantelli lemmas Lecturer: James W. Pitman Scribes: Jin Kim (jin@eecs) 1 Convergence of ranom variables Recall that, given a sequence

More information

10.1 Complex Arithmetic Argand Diagrams and the Polar Form The Exponential Form of a Complex Number De Moivre s Theorem 29

10.1 Complex Arithmetic Argand Diagrams and the Polar Form The Exponential Form of a Complex Number De Moivre s Theorem 29 10 Contents Complex Numbers 10.1 Complex Arithmetic 2 10.2 Argand Diagrams and the Polar Form 12 10.3 The Exponential Form of a Complex Number 20 10.4 De Moivre s Theorem 29 Learning outcomes In this Workbook

More information

MATH 3240Q Introduction to Number Theory Homework 7

MATH 3240Q Introduction to Number Theory Homework 7 As long as algebra and geometry have been searated, their rogress have been slow and their uses limited; but when these two sciences have been united, they have lent each mutual forces, and have marched

More information

MA3H1 TOPICS IN NUMBER THEORY PART III

MA3H1 TOPICS IN NUMBER THEORY PART III MA3H1 TOPICS IN NUMBER THEORY PART III SAMIR SIKSEK 1. Congruences Modulo m In quadratic recirocity we studied congruences of the form x 2 a (mod ). We now turn our attention to situations where is relaced

More information

PRIME NUMBERS YANKI LEKILI

PRIME NUMBERS YANKI LEKILI PRIME NUMBERS YANKI LEKILI We denote by N the set of natural numbers:,2,..., These are constructed using Peano axioms. We will not get into the hilosohical questions related to this and simly assume the

More information

Math 104B: Number Theory II (Winter 2012)

Math 104B: Number Theory II (Winter 2012) Math 104B: Number Theory II (Winter 01) Alina Bucur Contents 1 Review 11 Prime numbers 1 Euclidean algorithm 13 Multilicative functions 14 Linear diohantine equations 3 15 Congruences 3 Primes as sums

More information

Session 5: Review of Classical Astrodynamics

Session 5: Review of Classical Astrodynamics Session 5: Review of Classical Astrodynamics In revious lectures we described in detail the rocess to find the otimal secific imulse for a articular situation. Among the mission requirements that serve

More information

dn i where we have used the Gibbs equation for the Gibbs energy and the definition of chemical potential

dn i where we have used the Gibbs equation for the Gibbs energy and the definition of chemical potential Chem 467 Sulement to Lectures 33 Phase Equilibrium Chemical Potential Revisited We introduced the chemical otential as the conjugate variable to amount. Briefly reviewing, the total Gibbs energy of a system

More information

Absolute Convergence and the Ratio & Root Tests

Absolute Convergence and the Ratio & Root Tests Absolute Convergence and the Ratio & Root Tests Math114 Department of Mathematics, University of Kentucky February 20, 2017 Math114 Lecture 15 1/ 12 ( 1) n 1 = 1 1 + 1 1 + 1 1 + Math114 Lecture 15 2/ 12

More information

Real Analysis 1 Fall Homework 3. a n.

Real Analysis 1 Fall Homework 3. a n. eal Analysis Fall 06 Homework 3. Let and consider the measure sace N, P, µ, where µ is counting measure. That is, if N, then µ equals the number of elements in if is finite; µ = otherwise. One usually

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Contents 6 Exponential and Logarithmic Functions 6.1 The Exponential Function 2 6.2 The Hyperbolic Functions 11 6.3 Logarithms 19 6.4 The Logarithmic Function 27 6.5 Modelling Exercises 38 6.6 Log-linear

More information

Quaternionic Projective Space (Lecture 34)

Quaternionic Projective Space (Lecture 34) Quaternionic Projective Sace (Lecture 34) July 11, 2008 The three-shere S 3 can be identified with SU(2), and therefore has the structure of a toological grou. In this lecture, we will address the question

More information

20.3. Further Laplace Transforms. Introduction. Prerequisites. Learning Outcomes

20.3. Further Laplace Transforms. Introduction. Prerequisites. Learning Outcomes Further Laplace Transforms 2.3 Introduction In this Section we introduce the second shift theorem which simplifies the determination of Laplace and inverse Laplace transforms in some complicated cases.

More information

Practice Final Solutions

Practice Final Solutions Practice Final Solutions 1. True or false: (a) If a is a sum of three squares, and b is a sum of three squares, then so is ab. False: Consider a 14, b 2. (b) No number of the form 4 m (8n + 7) can be written

More information

p-adic Measures and Bernoulli Numbers

p-adic Measures and Bernoulli Numbers -Adic Measures and Bernoulli Numbers Adam Bowers Introduction The constants B k in the Taylor series exansion t e t = t k B k k! k=0 are known as the Bernoulli numbers. The first few are,, 6, 0, 30, 0,

More information

arxiv:cond-mat/ v2 25 Sep 2002

arxiv:cond-mat/ v2 25 Sep 2002 Energy fluctuations at the multicritical oint in two-dimensional sin glasses arxiv:cond-mat/0207694 v2 25 Se 2002 1. Introduction Hidetoshi Nishimori, Cyril Falvo and Yukiyasu Ozeki Deartment of Physics,

More information

Elliptic Curves Spring 2015 Problem Set #1 Due: 02/13/2015

Elliptic Curves Spring 2015 Problem Set #1 Due: 02/13/2015 18.783 Ellitic Curves Sring 2015 Problem Set #1 Due: 02/13/2015 Descrition These roblems are related to the material covered in Lectures 1-2. Some of them require the use of Sage, and you will need to

More information

Principles of Computed Tomography (CT)

Principles of Computed Tomography (CT) Page 298 Princiles of Comuted Tomograhy (CT) The theoretical foundation of CT dates back to Johann Radon, a mathematician from Vienna who derived a method in 1907 for rojecting a 2-D object along arallel

More information

arxiv: v4 [math.nt] 11 Oct 2017

arxiv: v4 [math.nt] 11 Oct 2017 POPULAR DIFFERENCES AND GENERALIZED SIDON SETS WENQIANG XU arxiv:1706.05969v4 [math.nt] 11 Oct 2017 Abstract. For a subset A [N], we define the reresentation function r A A(d := #{(a,a A A : d = a a }

More information

I(n) = ( ) f g(n) = d n

I(n) = ( ) f g(n) = d n 9 Arithmetic functions Definition 91 A function f : N C is called an arithmetic function Some examles of arithmetic functions include: 1 the identity function In { 1 if n 1, 0 if n > 1; 2 the constant

More information

MATH342 Practice Exam

MATH342 Practice Exam MATH342 Practice Exam This exam is intended to be in a similar style to the examination in May/June 2012. It is not imlied that all questions on the real examination will follow the content of the ractice

More information

Introduction to Probability and Statistics

Introduction to Probability and Statistics Introduction to Probability and Statistics Chater 8 Ammar M. Sarhan, asarhan@mathstat.dal.ca Deartment of Mathematics and Statistics, Dalhousie University Fall Semester 28 Chater 8 Tests of Hyotheses Based

More information

IMPROVED BOUNDS IN THE SCALED ENFLO TYPE INEQUALITY FOR BANACH SPACES

IMPROVED BOUNDS IN THE SCALED ENFLO TYPE INEQUALITY FOR BANACH SPACES IMPROVED BOUNDS IN THE SCALED ENFLO TYPE INEQUALITY FOR BANACH SPACES OHAD GILADI AND ASSAF NAOR Abstract. It is shown that if (, ) is a Banach sace with Rademacher tye 1 then for every n N there exists

More information

MTH 3102 Complex Variables Practice Exam 1 Feb. 10, 2017

MTH 3102 Complex Variables Practice Exam 1 Feb. 10, 2017 Name (Last name, First name): MTH 310 Comlex Variables Practice Exam 1 Feb. 10, 017 Exam Instructions: You have 1 hour & 10 minutes to comlete the exam. There are a total of 7 roblems. You must show your

More information

On Doob s Maximal Inequality for Brownian Motion

On Doob s Maximal Inequality for Brownian Motion Stochastic Process. Al. Vol. 69, No., 997, (-5) Research Reort No. 337, 995, Det. Theoret. Statist. Aarhus On Doob s Maximal Inequality for Brownian Motion S. E. GRAVERSEN and G. PESKIR If B = (B t ) t

More information

CSC165H, Mathematical expression and reasoning for computer science week 12

CSC165H, Mathematical expression and reasoning for computer science week 12 CSC165H, Mathematical exression and reasoning for comuter science week 1 nd December 005 Gary Baumgartner and Danny Hea hea@cs.toronto.edu SF4306A 416-978-5899 htt//www.cs.toronto.edu/~hea/165/s005/index.shtml

More information

SECTION 5: FIBRATIONS AND HOMOTOPY FIBERS

SECTION 5: FIBRATIONS AND HOMOTOPY FIBERS SECTION 5: FIBRATIONS AND HOMOTOPY FIBERS In this section we will introduce two imortant classes of mas of saces, namely the Hurewicz fibrations and the more general Serre fibrations, which are both obtained

More information

Pretest (Optional) Use as an additional pacing tool to guide instruction. August 21

Pretest (Optional) Use as an additional pacing tool to guide instruction. August 21 Trimester 1 Pretest (Otional) Use as an additional acing tool to guide instruction. August 21 Beyond the Basic Facts In Trimester 1, Grade 7 focus on multilication. Daily Unit 1: The Number System Part

More information

{ sin(t), t [0, sketch the graph of this f(t) = L 1 {F(p)}.

{ sin(t), t [0, sketch the graph of this f(t) = L 1 {F(p)}. EM Solved roblems Lalace & Fourier transform c Habala 3 EM Solved roblems Lalace & Fourier transform Find the Lalace transform of the following functions: ft t sint; ft e 3t cos3t; 3 ft e 3s ds; { sint,

More information

t 0 Xt sup X t p c p inf t 0

t 0 Xt sup X t p c p inf t 0 SHARP MAXIMAL L -ESTIMATES FOR MARTINGALES RODRIGO BAÑUELOS AND ADAM OSȨKOWSKI ABSTRACT. Let X be a suermartingale starting from 0 which has only nonnegative jums. For each 0 < < we determine the best

More information

01. Simplest example phenomena

01. Simplest example phenomena (March, 20) 0. Simlest examle henomena Paul Garrett garrett@math.umn.edu htt://www.math.umn.edu/ garrett/ There are three tyes of objects in lay: rimitive/rimordial (integers, rimes, lattice oints,...)

More information

Participation Factors. However, it does not give the influence of each state on the mode.

Participation Factors. However, it does not give the influence of each state on the mode. Particiation Factors he mode shae, as indicated by the right eigenvector, gives the relative hase of each state in a articular mode. However, it does not give the influence of each state on the mode. We

More information

Pretest (Optional) Use as an additional pacing tool to guide instruction. August 21

Pretest (Optional) Use as an additional pacing tool to guide instruction. August 21 Trimester 1 Pretest (Otional) Use as an additional acing tool to guide instruction. August 21 Beyond the Basic Facts In Trimester 1, Grade 8 focus on multilication. Daily Unit 1: Rational vs. Irrational

More information

FORMAL DEFINITION OF TOLERANCING IN CAD AND METROLOGY

FORMAL DEFINITION OF TOLERANCING IN CAD AND METROLOGY P. SERRÉ, A. CLÉENT, A. RIVIÈRE FORAL DEFINITION OF TOLERANCING IN CAD AND ETROLOGY Abstract: Our aim is to unify mathematically the secification and the metrological verification of a given geometrical

More information

Chapter 10. Infinite Sequences and Series

Chapter 10. Infinite Sequences and Series 10.6 Alternating Series, Absolute and Conditional Convergence 1 Chapter 10. Infinite Sequences and Series 10.6 Alternating Series, Absolute and Conditional Convergence Note. The convergence tests investigated

More information

STA 250: Statistics. Notes 7. Bayesian Approach to Statistics. Book chapters: 7.2

STA 250: Statistics. Notes 7. Bayesian Approach to Statistics. Book chapters: 7.2 STA 25: Statistics Notes 7. Bayesian Aroach to Statistics Book chaters: 7.2 1 From calibrating a rocedure to quantifying uncertainty We saw that the central idea of classical testing is to rovide a rigorous

More information

Mathematics as the Language of Physics.

Mathematics as the Language of Physics. Mathematics as the Language of Physics. J. Dunning-Davies Deartment of Physics University of Hull Hull HU6 7RX England. Email: j.dunning-davies@hull.ac.uk Abstract. Courses in mathematical methods for

More information

ON THE LEAST SIGNIFICANT p ADIC DIGITS OF CERTAIN LUCAS NUMBERS

ON THE LEAST SIGNIFICANT p ADIC DIGITS OF CERTAIN LUCAS NUMBERS #A13 INTEGERS 14 (014) ON THE LEAST SIGNIFICANT ADIC DIGITS OF CERTAIN LUCAS NUMBERS Tamás Lengyel Deartment of Mathematics, Occidental College, Los Angeles, California lengyel@oxy.edu Received: 6/13/13,

More information

Sets of Real Numbers

Sets of Real Numbers Chater 4 Sets of Real Numbers 4. The Integers Z and their Proerties In our revious discussions about sets and functions the set of integers Z served as a key examle. Its ubiquitousness comes from the fact

More information

The Longest Run of Heads

The Longest Run of Heads The Longest Run of Heads Review by Amarioarei Alexandru This aer is a review of older and recent results concerning the distribution of the longest head run in a coin tossing sequence, roblem that arise

More information

LECTURE 7 NOTES. x n. d x if. E [g(x n )] E [g(x)]

LECTURE 7 NOTES. x n. d x if. E [g(x n )] E [g(x)] LECTURE 7 NOTES 1. Convergence of random variables. Before delving into the large samle roerties of the MLE, we review some concets from large samle theory. 1. Convergence in robability: x n x if, for

More information

Absolute Convergence and the Ratio Test

Absolute Convergence and the Ratio Test Absolute Convergence and the Ratio Test MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Bacground Remar: All previously covered tests for convergence/divergence apply only

More information

Solved Problems. (a) (b) (c) Figure P4.1 Simple Classification Problems First we draw a line between each set of dark and light data points.

Solved Problems. (a) (b) (c) Figure P4.1 Simple Classification Problems First we draw a line between each set of dark and light data points. Solved Problems Solved Problems P Solve the three simle classification roblems shown in Figure P by drawing a decision boundary Find weight and bias values that result in single-neuron ercetrons with the

More information

0.6 Factoring 73. As always, the reader is encouraged to multiply out (3

0.6 Factoring 73. As always, the reader is encouraged to multiply out (3 0.6 Factoring 7 5. The G.C.F. of the terms in 81 16t is just 1 so there is nothing of substance to factor out from both terms. With just a difference of two terms, we are limited to fitting this olynomial

More information

Diophantine Equations and Congruences

Diophantine Equations and Congruences International Journal of Algebra, Vol. 1, 2007, no. 6, 293-302 Diohantine Equations and Congruences R. A. Mollin Deartment of Mathematics and Statistics University of Calgary, Calgary, Alberta, Canada,

More information

Feedback-error control

Feedback-error control Chater 4 Feedback-error control 4.1 Introduction This chater exlains the feedback-error (FBE) control scheme originally described by Kawato [, 87, 8]. FBE is a widely used neural network based controller

More information

MATH 361: NUMBER THEORY THIRD LECTURE

MATH 361: NUMBER THEORY THIRD LECTURE MATH 36: NUMBER THEORY THIRD LECTURE. Introduction The toic of this lecture is arithmetic functions and Dirichlet series. By way of introduction, consider Euclid s roof that there exist infinitely many

More information

Infinitely Many Quadratic Diophantine Equations Solvable Everywhere Locally, But Not Solvable Globally

Infinitely Many Quadratic Diophantine Equations Solvable Everywhere Locally, But Not Solvable Globally Infinitely Many Quadratic Diohantine Equations Solvable Everywhere Locally, But Not Solvable Globally R.A. Mollin Abstract We resent an infinite class of integers 2c, which turn out to be Richaud-Degert

More information

z-transforms 21.1 The z-transform Basics of z-transform Theory z-transforms and Difference Equations 36

z-transforms 21.1 The z-transform Basics of z-transform Theory z-transforms and Difference Equations 36 Contents 21 z-transforms 21.1 The z-transform 2 21.2 Basics of z-transform Theory 12 21.3 z-transforms and Difference Equations 36 21.4 Engineering Applications of z-transforms 64 21.5 Sampled Functions

More information

21.4. Engineering Applications of z-transforms. Introduction. Prerequisites. Learning Outcomes

21.4. Engineering Applications of z-transforms. Introduction. Prerequisites. Learning Outcomes Engineering Applications of z-transforms 21.4 Introduction In this Section we shall apply the basic theory of z-transforms to help us to obtain the response or output sequence for a discrete system. This

More information

22.3. Repeated Eigenvalues and Symmetric Matrices. Introduction. Prerequisites. Learning Outcomes

22.3. Repeated Eigenvalues and Symmetric Matrices. Introduction. Prerequisites. Learning Outcomes Repeated Eigenvalues and Symmetric Matrices. Introduction In this Section we further develop the theory of eigenvalues and eigenvectors in two distinct directions. Firstly we look at matrices where one

More information

HENSEL S LEMMA KEITH CONRAD

HENSEL S LEMMA KEITH CONRAD HENSEL S LEMMA KEITH CONRAD 1. Introduction In the -adic integers, congruences are aroximations: for a and b in Z, a b mod n is the same as a b 1/ n. Turning information modulo one ower of into similar

More information

2.4. Characterising functions. Introduction. Prerequisites. Learning Outcomes

2.4. Characterising functions. Introduction. Prerequisites. Learning Outcomes Characterising functions 2.4 Introduction There are a number of different terms used to describe the ways in which functions behave. In this section we explain some of these terms and illustrate their

More information

A generalization of Amdahl's law and relative conditions of parallelism

A generalization of Amdahl's law and relative conditions of parallelism A generalization of Amdahl's law and relative conditions of arallelism Author: Gianluca Argentini, New Technologies and Models, Riello Grou, Legnago (VR), Italy. E-mail: gianluca.argentini@riellogrou.com

More information

The Arm Prime Factors Decomposition

The Arm Prime Factors Decomposition The Arm Prime Factors Decomosition Boris Arm To cite this version: Boris Arm. The Arm Prime Factors Decomosition. 2013. HAL Id: hal-00810545 htts://hal.archives-ouvertes.fr/hal-00810545 Submitted on 10

More information

Lesson 16 Electric Potential

Lesson 16 Electric Potential Physics 30 Lesson 16 Electric Potential I. Gravitational otential energy revisited There are many similarities between gravitational otential energy and electric otential energy. To hel us understand electric

More information