Light at a Standstill Tim Kuis June 13, 2008

Size: px
Start display at page:

Download "Light at a Standstill Tim Kuis June 13, 2008"

Transcription

1 Light at a Standstill Tim Kuis June 13, Introduction There is something curious about the seed of light. It is the highest obtainable seed. Nothing can travel faster. But how slow can light go? Exeriments have been done to slow down a ulse of light down to only a few meters er second. But that s a few years ago, nowadays ultraslow light is easily available in many lab. But recently a light ulse was even brought to a halt. This ability to tra and hold light ulses is very romising for such fields like quantum informatics or non-linear otics. Also the quantum coherence state where-in the light is contained during standstill might give us information about the foundations of quantum mechanics itself!. Slow light.1 High disersion gives slow grou velocity But what exactly does it mean? Slowing down a light ulse down to a few meters er second? Light always travels with the seed of light. Still, when travelling trough a transarent or translucent medium the light travels slower than it does in vacuum. Classically, this is due to the charges of the electrons in the medium the light-wave it is travelling trough. The charges of each electron interact with the electro-magnetic fields of the light wave, thus slowing its rogress. The amount of which the light is slowed is called the refractive index of the material. This is not a very large effect and can slow (monochromatic) light down to a few times its original seed. Taking into consideration the frequency deendence of the refractive index, we can define the so-called grou velocity of the light. The grou velocity of the wave is the seed of the enveloe of the wave, or in other words the seed of a ulse in the medium. This grou velocity can be much slower than the seed of the light waves itself, and is given by; v g c hcε Ω 0 c dn ω + ω ω µ d ω = n( ) N (1) where n(ω) is the refractive index at frequency ω. The frequency deendence of n is called the disersion of the material. You can see here that strong disersion gives a low grou velocity. The right art of the equation will be exlained in the next section.

2 . EIT (Guiding Beam) To acquire and control a very high disersion electromagnetically induced transarency (EIT) is used. To find a high region of disersion we look at a resonance in the quantum states. Normally, at such a resonance, there is a eak in the absortion of and a stee refractive index deendence of the robe frequency. Now, we do want this high disersion, but the high absortion usually turns the material comletely oaque, making it imossible for a ulse to travel trough the medium. To solve this roblem EIT is used to turn a normally oaque medium into a transarent medium by using a couling laser (also called a control laser). For EIT a three-level FIGURE 1 Schematic view of EIT. The blue line denotes the normal absortion of a ulse frequency, whereas the red line denotes the absortion with the couling laser on, creating a transarent frequency region at resonance. [8] scheme is needed, where the robe beam is at one resonance, the coule beam at another and the third resonance is forbidden. Switching on the couling laser leads to a window at resonance frequency of the robe beam, as can be seen in figure 1, with corresonding high disersion as can be seen in figure. More quantitatively, the right art of equation (1) comes into lay here. Of imortance here are N; the atomic density, µ; the robe resonance diole matrix and Ωc; the Rabi frequency of the couling laser. The square of the Rabi frequency varies linearly with the intensity. N will get higher in dense material. This means to get very low grou velocity a low couling beam ower and a high density material are required, for examle a Bose-Einstein Condensate (BEC). Using this technique, a grou velocity has been reached of 17 m s -1 at 00 nk and a couling beam ower of 1 mw cm -. FIGURE Here the grey line denotes the absortion with the couling laser on and the blue line the refractive index as a function of the robe frequency (both in a.u.). The steeness of the refractive index in this region means a (very) high disersion. [8] The strong disersion leads to strong Kerr nonlinearities. Kerr nonlinearities are broadly used in quantum otics. For EIT on this light a non linear refractive index of 0.18 cm W -1 has been measured. This is about a million times more than normally in cold Cs atoms [4]. Notice here that the light ulse in the disersive medium will have decreased in length by a factor for vg / c and will thus have its energy stored in about one ten thousandth of the normal length, leading to a very high energy density in the

3 material. This energy is stored in the couling wave as well as in the atomic medium. This energy- or information storage is the crucial asect for utting a light ulse to a standstill. 3. Light at a standstill Slow light is one thing, and as been said in the introduction, is widely exerimented with these days in different laboratories, but more recently exeriments have been erformed utting light to a standstill, or rather, saving the information of the light within the material. 3.1 Quantum coherence sin state Using the same method as described in the slow light section, light can be saved within atomic material by switching off the couling beam while the robe ulse is in the medium. The idea is that the information and energy stored within the light are saved in the quantum coherence sin state of the atomic medium (see figure 3c and d), while the total energy and information is reserved as a olariton (figure 3b). To do this a dynamic form of EIT must be used. When smoothly varying the couling field we can slowly turn it off, giving FIGURE 3 Shown here are a; the couling field intensity in time, b; the Total olariton field, which is of constant shae in time, c; the light field and d; the coherence sin state field. [6] the atoms the time to follow the change of the light field, also called writing. And from the right art of equation (1) we can see that with zero couling beam intensity, we have zero Rabi frequency, and thus zero grou velocity. Now, all the information has been transferred to the sin states of the medium. Later switching on the guiding field again makes the medium transarent again and the light will come out of the medium with the same characteristics as before, which means all information about the light was saved within the material in the time between. This is called reading. FIGURE 4 Multile read-outs of one ulse are ossible by ulsing the read-out couling beam. Probe intensities dro over time. [5] By ulsing the couling beam even multile read-outs of the same stored robe ulse are ossible. After some couling beam ulses, all the stored information in the medium is gone and the effect comes to an end. See also figure 4.

4 Exeriments have been erformed with a magnetic field ulse on the medium during the couling beam switch off. This shifts the hase of the sin states, while they contain information about the light. This also changes the hase of the out coming light ulse, thus confirming that the information is indeed stored in the sin states of the medium [5]. 3. Two oosite guiding beams There is another method of saving the light in the medium. Firstly, it has to be saved in the quantum coherence state. Then, in stead of using a single couling beam to get the ulse out again, two oositely directed couling beams are used with equal (or close) Rabi frequencies. The forward and backward couling beams will interfere roducing a satially eriodic intensity, or a standing wave. This standing couling wave leaves the medium oaque in the anti-nodes and transarent in the nodes. The electromagnetic wave is now traed between these absortion regions that act like Bragg mirrors. See also figure 5. All the energy and information of the light must now be saved within about half of the sace, which means the intensity of the traed light will be about twice the intensity of the traed coherence field [1]. FIGURE 5 Light confinement by satial variation of signal field absortion. The blue line is the initial sin state field, the black line is the absortion of the medium and the red lines denote the confined light after couling field switch-on. [1] 4. Lifetime of the stored light Different exeriments have been erformed to kee the light confined in some medium. Peole started out using BECs but later also used hot gas clouds to achieve the same effect. Still, the light cannot be contained forever. For the technique to be useful in different alications we would want to store the light information for as long as ossible. Using a cold cloud of sodium atoms, a decay time of 0.9 ms was found for the atomic coherence of the storage medium, as can be seen in figure 6. For the double couling beam technique as measured on a hot rubidium samle a FIGURE 6 Shown on the left is the decay of the coherence state in a sodium BEC. On the right the intensity decay in the stationary ulses in hot Rubidium. [5] [1] decay time was found of about 7 µs was found, but here

5 it should be noted that only a art of this decay is actually due to coherence decay. Other mechanisms are sreading of the ulse or imerfect EIT. 5. Conclusion The exeriments erformed on the light give rise to many interesting alications, such as quantum informatics and non linear otics. As has been ut forward in the text, very high Kerr nonlinearities can be achieved using the slow light technique, which can be widely used in otical exeriments. But frozen light gives rise to several interesting alications as well, because there is little or no loss, there will also be little or no noise. This is very imortant for quantum informatics where noise needs to at a minimum to avoid decoherence and thus information loss. Lately, it has even been shown that it is ossible to change the light ulse while it is saved in the material [9]. This means that a ulse can be traed and then maniulated with external fields, to later come out in a changed way. This technique oens door for all kinds of alications, besides information technology, the gain of knowledge about the very fundamentals of nature and quantum mechanics. 6. References [1] Bajcsy, M., A. S. Zibrov and M. D. Lukin Stationary ulses of light in an atomic medium [] Cornell, E. A Stoing light in its tracks [3] Griffiths, D. J Introduction to electrodynamics [4] Hau, L. V., S. E. Harris, Z. Dutton and C. H. Behroozi Light seed reduction to 17 meters er second in an ultracold atomic gas [5] Liu, C., Z. Dutton, C. H. Behroozi and L. V. Hau Observation of coherent otical information storage in an atomic medium using halted light ulses [6] Mair, A., J. Hager, D. F. Phillis, R. L. Walsworth, and M. D. Lukin Phase coherence and control of stored hotonic information [7] Scully, M. O., 003. Light at a Standstill [8] htt://en.wikiedia.org/wiki/electromagnetically_induced_transarency [9] Ginsberg, N. S., S. R. Garner and L. V. Hau Coherent control of otical information with matter wave dynamics

Quantum Information Storage with Slow and Stopped Light

Quantum Information Storage with Slow and Stopped Light Quantum Information Storage with Slow and Stopped Light Joseph A. Yasi Department of Physics, University of Illinois at Urbana-Champaign (Dated: December 14, 2006) Abstract This essay describes the phenomena

More information

PHYSICAL REVIEW LETTERS

PHYSICAL REVIEW LETTERS PHYSICAL REVIEW LETTERS VOLUME 81 20 JULY 1998 NUMBER 3 Searated-Path Ramsey Atom Interferometer P. D. Featonby, G. S. Summy, C. L. Webb, R. M. Godun, M. K. Oberthaler, A. C. Wilson, C. J. Foot, and K.

More information

Storage and Retrieval of a Weak Optical Signal Improved by Spontaneously Generated Coherence in an Atomic Assemble

Storage and Retrieval of a Weak Optical Signal Improved by Spontaneously Generated Coherence in an Atomic Assemble Commun. Theor. Phys. 57 (2012) 463 467 Vol. 57, No. 3, March 15, 2012 Storage and Retrieval of a Weak Otical Signal Imroved by Sontaneously Generated Coherence in an Atomic Assemble ZHENG Tao (Ü ), 1 QIU

More information

Optical Fibres - Dispersion Part 1

Optical Fibres - Dispersion Part 1 ECE 455 Lecture 05 1 Otical Fibres - Disersion Part 1 Stavros Iezekiel Deartment of Electrical and Comuter Engineering University of Cyrus HMY 445 Lecture 05 Fall Semester 016 ECE 455 Lecture 05 Otical

More information

Velocity Changing and Dephasing collisions Effect on electromagnetically induced transparency in V-type Three level Atomic System.

Velocity Changing and Dephasing collisions Effect on electromagnetically induced transparency in V-type Three level Atomic System. Velocity Changing and Dehasing collisions Effect on electromagnetically induced transarency in V-tye Three level Atomic System. Anil Kumar M. and Suneel Singh University of Hyderabad, School of hysics,

More information

arxiv:quant-ph/ v3 17 Nov 2003

arxiv:quant-ph/ v3 17 Nov 2003 Stationary Pulses of Light in an Atomic Medium M. Bajcsy 1,2, A. S. Zibrov 1,3,4 and M. D. Lukin 1 1 Physics Department, Harvard University, Cambridge, MA 02138, USA 2 Division of Engineering and Applied

More information

Stopped Light With Storage Times Greater than 1 second using Electromagnetically Induced Transparency in a Solid

Stopped Light With Storage Times Greater than 1 second using Electromagnetically Induced Transparency in a Solid Stopped Light With Storage Times Greater than 1 second using Electromagnetically Induced Transparency in a Solid J.J Londell, E. Fravel, M.J. Sellars and N.B. Manson, Phys. Rev. Lett. 95 063601 (2005)

More information

Electromagnetically Induced Transparency

Electromagnetically Induced Transparency COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY Secial Issue () 131-145 (010) Electromagnetically Induced Transarency K. Kowalski 1, V. Cao Long, K. Dinh Xuan 3, M. Głódź 1, B. Nguyen Huy 3, J. Szonert

More information

Phase velocity and group velocity (c) Zhengqing Yun,

Phase velocity and group velocity (c) Zhengqing Yun, Phase velocity and grou velocity (c) Zhengqing Yun, 2011-2012 Objective: Observe the difference between hase and grou velocity; understand that the grou velocity can be less than, equal to, and greater

More information

Light transmission through and its complete stoppage in an ultra slow wave optical medium

Light transmission through and its complete stoppage in an ultra slow wave optical medium Light transmission through and its complete stoppage in an ultra slow wave optical medium V. Ranjith 1 and N. Kumar 2* 1 Centre for Quantum Information and Quantum Computation, Department of Physics, Indian

More information

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 4143/5195 Electrical Machinery Fall 2009 University of North Carolina-Charlotte Deartment of Electrical and Comuter Engineering ECG 4143/5195 Electrical Machinery Fall 9 Problem Set 5 Part Due: Friday October 3 Problem 3: Modeling the exerimental

More information

1/25/2018 LINEAR INDEPENDENCE LINEAR INDEPENDENCE LINEAR INDEPENDENCE LINEAR INDEPENDENCE

1/25/2018 LINEAR INDEPENDENCE LINEAR INDEPENDENCE LINEAR INDEPENDENCE LINEAR INDEPENDENCE /25/28 Definition: An indexed set of vectors {v,, v } in R n is said to be linearly indeendent if the vector equation x v x v... x v 2 2 has only the trivial solution. The set {v,, v } is said to be linearly

More information

All-fiber Optical Parametric Oscillator

All-fiber Optical Parametric Oscillator All-fiber Otical Parametric Oscillator Chengao Wang Otical Science and Engineering, Deartment of Physics & Astronomy, University of New Mexico Albuquerque, NM 87131-0001, USA Abstract All-fiber otical

More information

Pulse Propagation in Optical Fibers using the Moment Method

Pulse Propagation in Optical Fibers using the Moment Method Pulse Proagation in Otical Fibers using the Moment Method Bruno Miguel Viçoso Gonçalves das Mercês, Instituto Suerior Técnico Abstract The scoe of this aer is to use the semianalytic technique of the Moment

More information

The individual electric and magnetic waves are in phase. The fields peak at the same position at the same time.

The individual electric and magnetic waves are in phase. The fields peak at the same position at the same time. 1 Part 3: Otics 3.1: Electromagnetic Waves An electromagnetic wave (light wave) consists of oscillating electric and magnetic fields. The directions of the electric and magnetic fields are erendicular.

More information

NUMERICAL AND THEORETICAL INVESTIGATIONS ON DETONATION- INERT CONFINEMENT INTERACTIONS

NUMERICAL AND THEORETICAL INVESTIGATIONS ON DETONATION- INERT CONFINEMENT INTERACTIONS NUMERICAL AND THEORETICAL INVESTIGATIONS ON DETONATION- INERT CONFINEMENT INTERACTIONS Tariq D. Aslam and John B. Bdzil Los Alamos National Laboratory Los Alamos, NM 87545 hone: 1-55-667-1367, fax: 1-55-667-6372

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

Bistable behaviors of weak probe light via coherent and incoherent fields. H. Jafarzadeh, E. Ahmadi Sangachin and Seyyed Hossein Asadpour

Bistable behaviors of weak probe light via coherent and incoherent fields. H. Jafarzadeh, E. Ahmadi Sangachin and Seyyed Hossein Asadpour Page 1 of Bistable behaviors of weak robe light via coherent and incoherent fields H. Jafarzadeh, E. Ahmadi Sangachin and Seyyed Hossein Asadour Sama Technical and Vocational Training College, Islamic

More information

Enhancement of Light Extraction Efficiency in Organic Light Emitting Device with Multi-Stacked Cathode and High Refractive Index Anode

Enhancement of Light Extraction Efficiency in Organic Light Emitting Device with Multi-Stacked Cathode and High Refractive Index Anode Enhancement of Light Extraction Efficiency in Organic Light Emitting Device with Multi-Stacked Cathode and High Refractive Index Anode Kanazawa Institute of Technology, Jaan Akiyoshi Mikami and Takao Goto

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/33/634/1167/dc1 Suorting Online Material for Polariton Suerfluids Reveal Quantum Hydrodynamic Solitons A. Amo,* S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet, I. Carusotto,

More information

Linear beam dynamics and radiation damping

Linear beam dynamics and radiation damping Fourth nternational Accelerator School for Linear Colliders Beijing, Setember 9 Course A4: Daming Ring Design and Phsics ssues Lecture Review of Linear Beam Dnamics and Radiation Daming And Wolski niversit

More information

Review of Classical Analog of Electromagnetically Induced Transparency

Review of Classical Analog of Electromagnetically Induced Transparency Review of Classical Analog of Electromagnetically Induced Transparency Eli Cabelly June 2, 20 Abstract Alzar, Martinez, and Nussenzveig have proposed an experiment to demonstrate electromagnetically induced

More information

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University Quantum Memory with Atomic Ensembles Yong-Fan Chen Physics Department, Cheng Kung University Outline Laser cooling & trapping Electromagnetically Induced Transparency (EIT) Slow light & Stopped light Manipulating

More information

CSE 599d - Quantum Computing When Quantum Computers Fall Apart

CSE 599d - Quantum Computing When Quantum Computers Fall Apart CSE 599d - Quantum Comuting When Quantum Comuters Fall Aart Dave Bacon Deartment of Comuter Science & Engineering, University of Washington In this lecture we are going to begin discussing what haens to

More information

Transforming the Idler to Seed Raman Amplification

Transforming the Idler to Seed Raman Amplification Transforming the to Seed Raman Amlification S. BUCHT, D. HABERBERGER, J. BROMAGE, and D. H. FROULA University of Rochester, Laboratory for Laser Energetics Motivation Motivation Raman amlification transfers

More information

Spin Diffusion and Relaxation in a Nonuniform Magnetic Field.

Spin Diffusion and Relaxation in a Nonuniform Magnetic Field. Sin Diffusion and Relaxation in a Nonuniform Magnetic Field. G.P. Berman, B. M. Chernobrod, V.N. Gorshkov, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 V.I. Tsifrinovich

More information

Explanation of superluminal phenomena based on wave-particle duality and proposed optical experiments

Explanation of superluminal phenomena based on wave-particle duality and proposed optical experiments Exlanation of suerluminal henomena based on wave-article duality and roosed otical exeriments Hai-Long Zhao * Jiuquan satellite launch center, Jiuquan, 73750, China Abstract: We suggest an exlanation for

More information

E p,rms = 240 V E rms = 120 V N p N s C. f = 60 Hz R = 3.8 L

E p,rms = 240 V E rms = 120 V N p N s C. f = 60 Hz R = 3.8 L Discussion Question 1A P1, Week 1 Power in AC Circuits An electronic device, consisting of a simle C circuit, is designed to be connected to an American-standard ower outlet delivering an EMF of 1 V at

More information

Few photon switching with slow light in hollow fiber

Few photon switching with slow light in hollow fiber Few photon switching with slow light in hollow fiber The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher

More information

pp physics, RWTH, WS 2003/04, T.Hebbeker

pp physics, RWTH, WS 2003/04, T.Hebbeker 1. PP TH 03/04 Accelerators and Detectors 1 hysics, RWTH, WS 2003/04, T.Hebbeker 2003-12-03 1. Accelerators and Detectors In the following, we concentrate on the three machines SPS, Tevatron and LHC with

More information

Notes on Optical Pumping Procedure & Theory

Notes on Optical Pumping Procedure & Theory Notes on Otical Puming Procedure & Theory Pre-lab 1. Why is the exeriment called otical uming? What is umed? 2. What is the exerimental signature of having cancelled all magnetic fields in the samle cell?

More information

Chapter2 Fundamentals of VCSEL and Febry-Perot Resonator

Chapter2 Fundamentals of VCSEL and Febry-Perot Resonator Chater Fundamentals of VCSEL and Febry-Perot Resonator. Introduction to VCSELs [5-7] What is VCSEL? It is a contracted name of vertical cavity surface emitting laser and it is a kind of semiconductor laser.

More information

Slow and Fast Light in Room-Temperature Solids: Fundamental and Applications. Robert W. Boyd

Slow and Fast Light in Room-Temperature Solids: Fundamental and Applications. Robert W. Boyd Slow and Fast Light in Room-Temperature Solids: Fundamental and Applications Robert W. Boyd The Institute of Optics and Department of Physics and Astronomy University of Rochester, Rochester, NY 14627

More information

NONRELATIVISTIC STRONG-FIELD APPROXIMATION (SFA)

NONRELATIVISTIC STRONG-FIELD APPROXIMATION (SFA) NONRELATIVISTIC STRONG-FIELD APPROXIMATION (SFA) Note: SFA will automatically be taken to mean Coulomb gauge (relativistic or non-diole) or VG (nonrelativistic, diole-aroximation). If LG is intended (rarely),

More information

arxiv:quant-ph/ v1 24 Jun 2005

arxiv:quant-ph/ v1 24 Jun 2005 Electromagnetically induced transparency for Λ - like systems with a structured continuum A. Raczyński, M. Rzepecka, and J. Zaremba Instytut Fizyki, Uniwersytet Miko laja Kopernika, ulica Grudzi adzka

More information

VIC Effect and Phase-Dependent Optical Properties of Five-Level K-Type Atoms Interacting with Coherent Laser Fields

VIC Effect and Phase-Dependent Optical Properties of Five-Level K-Type Atoms Interacting with Coherent Laser Fields Commun. Theor. Phys. (Beijing China) 50 (2008) pp. 741 748 c Chinese Physical Society Vol. 50 No. 3 September 15 2008 VIC Effect and Phase-Dependent Optical Properties of Five-Level K-Type Atoms Interacting

More information

Distribution of populations in excited states of electrodeless discharge lamp of Rb atoms

Distribution of populations in excited states of electrodeless discharge lamp of Rb atoms Article Atomic & Molecular Physics June 2013 Vol.58 No.16: 18761881 doi: 10.1007/s11434-013-5789-z Distribution of oulations in excited states of electrodeless discharge lam of Rb atoms TAO ZhiMing 1,2,

More information

Introduction. Introduction to Elementary Particle Physics. Diego Bettoni Anno Accademico

Introduction. Introduction to Elementary Particle Physics. Diego Bettoni Anno Accademico Introduction Introduction to Elementary Particle Physics Diego Bettoni Anno Accademico 010-011 Course Outline 1. Introduction.. Discreet symmetries: P, C, T. 3. Isosin, strangeness, G-arity. 4. Quark Model

More information

Quantum control of light using electromagnetically induced transparency

Quantum control of light using electromagnetically induced transparency INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS J. Phys. B: At. Mol. Opt. Phys. 38 (2005) S589 S604 doi:10.1088/0953-4075/38/9/010 Quantum control of light using

More information

Factors Effect on the Saturation Parameter S and there Influences on the Gain Behavior of Ytterbium Doped Fiber Amplifier

Factors Effect on the Saturation Parameter S and there Influences on the Gain Behavior of Ytterbium Doped Fiber Amplifier Australian Journal of Basic and Alied Sciences, 5(12): 2010-2020, 2011 ISSN 1991-8178 Factors Effect on the Saturation Parameter S and there Influences on the Gain Behavior of Ytterbium Doed Fiber Amlifier

More information

In Situ Imaging of Cold Atomic Gases

In Situ Imaging of Cold Atomic Gases In Situ Imaging of Cold Atomic Gases J. D. Crossno Abstract: In general, the complex atomic susceptibility, that dictates both the amplitude and phase modulation imparted by an atom on a probing monochromatic

More information

Realization of Bose-Einstein Condensation in dilute gases

Realization of Bose-Einstein Condensation in dilute gases Realization of Bose-Einstein Condensation in dilute gases Guang Bian May 3, 8 Abstract: This essay describes theoretical aspects of Bose-Einstein Condensation and the first experimental realization of

More information

Analysis: The speed of the proton is much less than light speed, so we can use the

Analysis: The speed of the proton is much less than light speed, so we can use the Section 1.3: Wave Proerties of Classical Particles Tutorial 1 Practice, age 634 1. Given: 1.8! 10 "5 kg # m/s; 6.63! 10 "34 J #s Analysis: Use te de Broglie relation, λ. Solution:! 6.63 " 10#34 kg $ m

More information

Superluminal signal conversion in stimulated Brillouin scattering via an optical fiber ring resonator

Superluminal signal conversion in stimulated Brillouin scattering via an optical fiber ring resonator Suerluminal signal conversion in stimulated rillouin scattering via an otical fiber ring resonator Liang Zhang, Li Zhan *, Jinmei Liu, Gaomeng Wang, Fangying Tao, Taohu Xu,Qishun Shen Deartment of Physics,

More information

A Review of Slow Light Physics and Its Applications

A Review of Slow Light Physics and Its Applications A Review of Slow Light Physics and Its Applications Stéphane Virally École Polytechnique de Montréal, 2500 chemin de Polytechnique, Montréal, QC H3T 1J4, Canada stephane.virally@polymtl.ca Abstract: An

More information

Analysis of execution time for parallel algorithm to dertmine if it is worth the effort to code and debug in parallel

Analysis of execution time for parallel algorithm to dertmine if it is worth the effort to code and debug in parallel Performance Analysis Introduction Analysis of execution time for arallel algorithm to dertmine if it is worth the effort to code and debug in arallel Understanding barriers to high erformance and redict

More information

Topological-phase effects and path-dependent interference in microwave structures with magnetic-dipolar-mode ferrite particles

Topological-phase effects and path-dependent interference in microwave structures with magnetic-dipolar-mode ferrite particles Toological-hase effects and ath-deendent interference in microwave structures with magnetic-diolar-mode ferrite articles Abstract M. Berezin, E.O. Kamenetskii, and R. Shavit Microwave Magnetic Laboratory

More information

Slow and stored light using Rydberg atoms

Slow and stored light using Rydberg atoms Slow and stored light using Rydberg atoms Julius Ruseckas Institute of Theoretical Physics and Astronomy, Vilnius University, Lithuania April 28, 2016 Julius Ruseckas (Lithuania) Rydberg slow light April

More information

Cavity decay rate in presence of a Slow-Light medium

Cavity decay rate in presence of a Slow-Light medium Cavity decay rate in presence of a Slow-Light medium Laboratoire Aimé Cotton, Orsay, France Thomas Lauprêtre Fabienne Goldfarb Fabien Bretenaker School of Physical Sciences, Jawaharlal Nehru University,

More information

Physics 2D Lecture Slides Lecture 17: Feb 10 th

Physics 2D Lecture Slides Lecture 17: Feb 10 th Physics 2D Lecture Slides Lecture 17: Feb 10 th Vivek Sharma UCSD Physics Just What is Waving in Matter Waves? For waves in an ocean, it s the water that waves For sound waves, it s the molecules in medium

More information

Nonlinear Optics and Quantum Entanglement of Ultra-Slow. Single Photons. Abstract

Nonlinear Optics and Quantum Entanglement of Ultra-Slow. Single Photons. Abstract Nonlinear Optics and Quantum Entanglement of Ultra-Slow Single Photons M. D. Lukin 1 and A. Imamoğlu 2 arxiv:quant-ph/9910094v1 22 Oct 1999 1 ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge,

More information

Optical properties of semiconductors. Dr. Katarzyna Skorupska

Optical properties of semiconductors. Dr. Katarzyna Skorupska Otical roerties of semiconductors Dr. Katarzyna Skoruska band structure of crystalline solids by solution of Schroedinger equation (one e - aroximation) Solution leads to energy bands searated by an energy

More information

Interference effects on the probe absorption in a driven three-level atomic system. by a coherent pumping field

Interference effects on the probe absorption in a driven three-level atomic system. by a coherent pumping field Interference effects on the probe absorption in a driven three-level atomic system by a coherent pumping field V. Stancalie, O. Budriga, A. Mihailescu, V. Pais National Institute for Laser, Plasma and

More information

Physics 2D Lecture Slides Lecture 17: Feb 8th 2005

Physics 2D Lecture Slides Lecture 17: Feb 8th 2005 Physics 2D Lecture Slides Lecture 17: Feb 8th 2005 Vivek Sharma UCSD Physics A PhD Thesis Fit For a Prince Matter Wave! Pilot wave of λ = h/ = h / (γmv) frequency f = E/h Consequence: If matter has wave

More information

Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK

Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK Table of contents 1. Motivation 2. Quantum memory 3. Implementations in general 4. Implementation based on EIT in detail QUBIT STORAGE IN ATOMIC ENSEMBLES

More information

Storing and processing optical information with ultraslow light in Bose-Einstein condensates

Storing and processing optical information with ultraslow light in Bose-Einstein condensates PHYSICAL REVIEW A 70, 053831 (2004) Storing and processing optical information with ultraslow light in Bose-Einstein condensates Zachary Dutton 1,2 and Lene Vestergaard Hau 2 1 National Institute of Standards

More information

Chapter 8_L20. Relaxation oscillation

Chapter 8_L20. Relaxation oscillation Chater 8_L Relaxation oscillation Carrier number (1 7 ) Photon number (1 4 ) Relaxation oscillation 3 Relaxation oscillation: when the laser undergoes an external erturbation, the laser s couled carrier

More information

LETTERS. Electromagnetically induced transparency with tunable single-photon pulses

LETTERS. Electromagnetically induced transparency with tunable single-photon pulses Vol 438 8 December 2005 doi:10.1038/nature04327 Electromagnetically induced transparency with tunable single-photon pulses M. D. Eisaman 1, A. André 1, F. Massou 1, M. Fleischhauer 1,2,3, A. S. Zibrov

More information

VI Relaxation. 1. Measuring T 1 and T 2. The amount of decay depends on the time TI we d wait. We can solve the Bloch equations:

VI Relaxation. 1. Measuring T 1 and T 2. The amount of decay depends on the time TI we d wait. We can solve the Bloch equations: VI Relaxation Lecture notes by Assaf al 1. Measuring 1 and 2 1.1 1 - Inversion Recovery o measure 1 of water, consider the following exeriment: I Acquire A B C D Let s go through what haens to the magnetiation

More information

Stability analysis of second order pulsed Raman laser in dispersion managed systems

Stability analysis of second order pulsed Raman laser in dispersion managed systems Stability analysis of second order ulsed Raman laser in disersion managed systems Salih K. Kalyoncu, Shiming Gao, En-Kuang Tien, Yuewang Huang, Dogukan Yildirim, Enver Adas, Stefano Wabnitz and Ozdal Boyraz,

More information

Highlights from the ATLAS experiment

Highlights from the ATLAS experiment Nuclear Physics A Nuclear Physics A (28) 7 www.elsevier.com/locate/rocedia XXVIIth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 28) Highlights from the ALAS exeriment

More information

A Stern-Gerlach experiment for slow light

A Stern-Gerlach experiment for slow light 1 A Stern-Gerlach experiment for slow light Leon Karpa and Martin Weitz* Physikalisches Institut der Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany * Present address: Center of

More information

Influence of Pulse width and Rabi frequency on the Population dynamics

Influence of Pulse width and Rabi frequency on the Population dynamics Influence of Pulse width and Rabi frequency on the Poulation dynamics of three-level system in two-hoton absortion rocess Nam-Chol Kim,,* Myong-Chol Ko, Song-Jin Im, Zhong-Hua Hao Deartment of Physics,

More information

An Experiment to Determine Whether Electromagnetic Waves have Mass by Mark A. Newstead and Stephen C. Newstead

An Experiment to Determine Whether Electromagnetic Waves have Mass by Mark A. Newstead and Stephen C. Newstead An Experiment to Determine Whether Electromagnetic Waves have Mass by Mark A. Newstead and Stephen C. Newstead email: mark.newstead@alumni.lboro.ac.uk Submitted: 6 June 2011 In previous papers we have

More information

TEVATRON LUMINOSITY UPGRADE PROJECT *

TEVATRON LUMINOSITY UPGRADE PROJECT * TEVATRON LUMINOSITY UPGRADE PROJECT John P. Marriner, Fermilab, Batavia, IL, USA Abstract Fermilab has embarked on a luminosity ugrade for the Tevatron. The major comonents of this ugrade are the Main

More information

Chapter 2 Introductory Concepts of Wave Propagation Analysis in Structures

Chapter 2 Introductory Concepts of Wave Propagation Analysis in Structures Chater 2 Introductory Concets of Wave Proagation Analysis in Structures Wave roagation is a transient dynamic henomenon resulting from short duration loading. Such transient loadings have high frequency

More information

LUMINOSITY DETERMINATION AT THE TEVATRON*

LUMINOSITY DETERMINATION AT THE TEVATRON* LUMINOSITY DETERMINATION AT THE TEVATRON* V. Paadimitriou #, Fermilab, Batavia, IL 60510, U.S.A. Abstract In this aer we discuss the luminosity determination at the Tevatron. We discuss luminosity measurements

More information

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process

More information

Impact of energy-transfer-upconversion on the performance of hybrid Er:YAG lasers

Impact of energy-transfer-upconversion on the performance of hybrid Er:YAG lasers Imact of energy-transfer-uconversion on the erformance of hybrid Er:YAG lasers Ji Won Kim, J. K. Sahu and W. A. Clarkson Otoelectronics Research Centre, University of Southamton, Southamton, SO17 1BJ,

More information

The role of current loop in harmonic generation from magnetic metamaterials in two polarizations

The role of current loop in harmonic generation from magnetic metamaterials in two polarizations The role of current loo in harmonic generation from magnetic metamaterials in two olarizations Iman Sajedian 1,2, Inki Kim 2, Abdolnasser Zakery 1 and Junsuk Rho 2,3* 1 Deartment of Physics, College of

More information

arxiv:quant-ph/ v1 2 Oct 2003

arxiv:quant-ph/ v1 2 Oct 2003 Slow Light in Doppler Broadened Two level Systems G. S. Agarwal and Tarak Nath Dey Physical Research Laboratory, Navrangpura, Ahmedabad-38 9, India (October 31, 218) We show that the propagation of light

More information

NEUTRON STARS. Maximum mass of a neutron star:

NEUTRON STARS. Maximum mass of a neutron star: NEUTRON STARS 193: Baade and Zwicky roosed that suernovae reresented the transition of normal stars to neutron stars 1939: Oenheimer and Volkoff ublished the first theoretical model 1967: discovery of

More information

The Quark-Parton Model

The Quark-Parton Model The Quark-Parton Model Before uarks and gluons were generally acceted Feynman roosed that the roton was made u of oint-like constituents artons Both Bjorken Scaling and the Callan-Gross relationshi can

More information

arxiv: v1 [nucl-ex] 28 Sep 2009

arxiv: v1 [nucl-ex] 28 Sep 2009 Raidity losses in heavy-ion collisions from AGS to RHIC energies arxiv:99.546v1 [nucl-ex] 28 Se 29 1. Introduction F. C. Zhou 1,2, Z. B. Yin 1,2 and D. C. Zhou 1,2 1 Institute of Particle Physics, Huazhong

More information

Dispersion relation of surface plasmon wave propagating along a curved metal-dielectric interface

Dispersion relation of surface plasmon wave propagating along a curved metal-dielectric interface Disersion relation of surface lasmon wave roagating along a curved metal-dielectric interface Jiunn-Woei Liaw * and Po-Tsang Wu Deartment of Mechanical Engineering, Chang Gung University 59 Wen-Hwa 1 st

More information

The UCLA/NICADD Plasma Density Transition Trapping Experiment

The UCLA/NICADD Plasma Density Transition Trapping Experiment The UCLA/NICADD Plasma Density Transition Traing Exeriment M.C. Thomson, J.B. Rosenzweig, G. Travish UCLA Deartment of Physics and Astronomy N. Barov Northern Illinois University Deartment of Physics H.

More information

Polarization of light: Malus law, the Fresnel equations, and optical activity.

Polarization of light: Malus law, the Fresnel equations, and optical activity. Polarization of light: Malus law, the Fresnel equations, and otical activity. PHYS 3330: Exeriments in Otics Deartment of Physics and Astronomy, University of Georgia, Athens, Georgia 30602 (Dated: Revised

More information

Bose-Einstein condensates in optical lattices

Bose-Einstein condensates in optical lattices Bose-Einstein condensates in optical lattices Creating number squeezed states of atoms Matthew Davis University of Queensland p.1 Overview What is a BEC? What is an optical lattice? What happens to a BEC

More information

Uniformly best wavenumber approximations by spatial central difference operators: An initial investigation

Uniformly best wavenumber approximations by spatial central difference operators: An initial investigation Uniformly best wavenumber aroximations by satial central difference oerators: An initial investigation Vitor Linders and Jan Nordström Abstract A characterisation theorem for best uniform wavenumber aroximations

More information

Yu. Senichev, on behalf of the JEDI Collaboration*

Yu. Senichev, on behalf of the JEDI Collaboration* Mitglied der Helmholtz-emeinschaft STORA RIN DM SIMULATION: MTHODS AND RSULTS Yu. Senichev, on behalf of the JDI Collaboration* 3. August 0 lectric Diole Moment and Standard Model In frame of SM among

More information

Stored light and EIT at high optical depths

Stored light and EIT at high optical depths Stored light and EIT at high optical depths M. Klein a,b, Y. Xiao a, M. Hohensee a,b, D. F. Phillips a, and R. L. Walsworth a,b a Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, 02138 USA b

More information

Section 4: Electromagnetic Waves 2

Section 4: Electromagnetic Waves 2 Frequency deendence and dielectric constant Section 4: Electromagnetic Waves We now consider frequency deendence of electromagnetic waves roagating in a dielectric medium. As efore we suose that the medium

More information

Control of Group Velocity via Spontaneous Generated Coherence and Kerr Nonlinearity

Control of Group Velocity via Spontaneous Generated Coherence and Kerr Nonlinearity Commun. Theor. Phys. 62 (2014) 410 416 Vol. 62, No. 3, September 1, 2014 Control of Group Velocity via Spontaneous Generated Coherence and Kerr Nonlinearity Hazrat Ali, 1 Iftikhar Ahmad, 1 and Ziauddin

More information

ε(ω,k) =1 ω = ω'+kv (5) ω'= e2 n 2 < 0, where f is the particle distribution function and v p f v p = 0 then f v = 0. For a real f (v) v ω (kv T

ε(ω,k) =1 ω = ω'+kv (5) ω'= e2 n 2 < 0, where f is the particle distribution function and v p f v p = 0 then f v = 0. For a real f (v) v ω (kv T High High Power Power Laser Laser Programme Programme Theory Theory and Comutation and Asects of electron acoustic wave hysics in laser backscatter N J Sircombe, T D Arber Deartment of Physics, University

More information

dn i where we have used the Gibbs equation for the Gibbs energy and the definition of chemical potential

dn i where we have used the Gibbs equation for the Gibbs energy and the definition of chemical potential Chem 467 Sulement to Lectures 33 Phase Equilibrium Chemical Potential Revisited We introduced the chemical otential as the conjugate variable to amount. Briefly reviewing, the total Gibbs energy of a system

More information

GROUP VELOCITY OF LIGHT IN LADDER-TYPE SPHERICAL QUANTUM DOT WITH HIDROGENIC IMPURITY UDC : Vladan Pavlović, Ljiljana Stevanović

GROUP VELOCITY OF LIGHT IN LADDER-TYPE SPHERICAL QUANTUM DOT WITH HIDROGENIC IMPURITY UDC : Vladan Pavlović, Ljiljana Stevanović FACTA UNIVERSITATIS Series: Physics, Chemistry and Technology Vol 14, N o 1, 016, 1-7 DOI: 1098/FUPCT1601001P GROUP VELOCITY OF LIGHT IN LADDER-TYPE SPHERICAL QUANTUM DOT WITH HIDROGENIC IMPURITY UDC 53514:5391

More information

Study of terahertz radiation from InAs and InSb

Study of terahertz radiation from InAs and InSb JOURNAL OF APPLIED PHYSICS VOLUME 91, NUMBER 9 1 MAY 2002 Study of terahertz radiation from InAs and InSb Ping Gu, a) Masahiko Tani, Shunsuke Kono, b) and Kiyomi Sakai Kansai Advanced Research Center,

More information

Spectroscopic investigation of Tm 3+ containing Lithium borate glasses

Spectroscopic investigation of Tm 3+ containing Lithium borate glasses Sectroscoic investigation of Tm + containing Lithium borate glasses D.D. amteke and H. C. Swart* Deartment of Physics, University of the Free State, P.O. Box 9, Bloemfontein 900, South Africa Email: SwartHC@ufs.ac.za,

More information

EIT and Slow Light in Nonlinear Magneto Optic Rotation

EIT and Slow Light in Nonlinear Magneto Optic Rotation EIT and Slow Light in Nonlinear Magneto Optic Rotation George R. Welch Marlan O. Scully Irina Novikova Eugeniy Mikhailov Andrey Matsko Yuri Rostovtsev Alexey Belyanin Edward Fry Phil Hemmer Olga Kocharovskaya

More information

Atomic Coherent Trapping and Properties of Trapped Atom

Atomic Coherent Trapping and Properties of Trapped Atom Commun. Theor. Phys. (Beijing, China 46 (006 pp. 556 560 c International Academic Publishers Vol. 46, No. 3, September 15, 006 Atomic Coherent Trapping and Properties of Trapped Atom YANG Guo-Jian, XIA

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

Experimental constraints of using slow-light in sodium vapor for light-drag enhanced relative rotation sensing

Experimental constraints of using slow-light in sodium vapor for light-drag enhanced relative rotation sensing Optics Communications 66 (6) 64 68 www.elsevier.com/locate/optcom Experimental constraints of using slow-light in sodium vapor for light-drag enhanced relative rotation sensing Renu Tripathi *, G.S. Pati,

More information

From a quantum-electrodynamical light matter description to novel spectroscopies

From a quantum-electrodynamical light matter description to novel spectroscopies From a quantum-electrodynamical light matter descrition to novel sectroscoies Michael Ruggenthaler *, Nicolas Tancogne-Dejean *, Johannes Flick,3 *, Heiko Ael * and Angel Rubio,2 * Abstract Insights from

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS6012W1 SEMESTER 1 EXAMINATION 2012/13 Coherent Light, Coherent Matter Duration: 120 MINS Answer all questions in Section A and only two questions in Section B. Section A carries

More information

Chapter 9 Practical cycles

Chapter 9 Practical cycles Prof.. undararajan Chater 9 Practical cycles 9. Introduction In Chaters 7 and 8, it was shown that a reversible engine based on the Carnot cycle (two reversible isothermal heat transfers and two reversible

More information

Fast Light, Slow Light

Fast Light, Slow Light Light pulses can be made to propagate with group velocities exceeding the speed of light in a vacuum or, at the opposite extreme, to come to a complete stop. Fast Light, Slow Light Raymond Y. Chiao and

More information

Effective terahertz signal detection via electromagnetically induced transparency in graphene

Effective terahertz signal detection via electromagnetically induced transparency in graphene Research Article Vol. 33, No. / February 06 / Journal of the Otical Society of America B 79 Effective terahertz signal detection via electromagnetically induced transarency in grahene SHAOPENG LIU, WEN-XING

More information

Theory of the ultra-intense short-pulse laser interaction with underdense

Theory of the ultra-intense short-pulse laser interaction with underdense Theory of the ultra-intense short-ulse laser interaction with underdense lasma J. Yazdananah 1*, E. Yazdani 2, A. Chakhmachi 1 and E. Khalilzadeh 1, 3 1 The Plasma Physics and Fusion Research School, Tehran,

More information

1. A few weeks ago you recorded one of the two NMR spectra below. Explain briefly the necessary procedure to record such beautiful spectra!

1. A few weeks ago you recorded one of the two NMR spectra below. Explain briefly the necessary procedure to record such beautiful spectra! llowed aids: en/encil, eraser, ruler, calculator You may answer in English or Swedish. few weeks ago you recorded one of the two NMR sectra below. Exlain briefly the necessary rocedure to record such beautiful

More information

Accelerator School Transverse Beam Dynamics-2. V. S. Pandit

Accelerator School Transverse Beam Dynamics-2. V. S. Pandit Accelerator School 8 Transverse Beam Dnamics- V. S. Pandit Equation of Motion Reference orbit is a single laner curve. Diole is used for bending and quadruole for focusing We use coordinates (r, θ, ) Diole

More information