EIT and Slow Light in Nonlinear Magneto Optic Rotation

Size: px
Start display at page:

Download "EIT and Slow Light in Nonlinear Magneto Optic Rotation"

Transcription

1 EIT and Slow Light in Nonlinear Magneto Optic Rotation George R. Welch Marlan O. Scully Irina Novikova Eugeniy Mikhailov Andrey Matsko Yuri Rostovtsev Alexey Belyanin Edward Fry Phil Hemmer Olga Kocharovskaya Vitaly Kocharovsky Alexey Sokolov Suhail Zubairy Office of Naval Research Texas A&M University Institute for Quantum Studies Texas Advanced Research Program Outline: Atomic Coherence Three-level coherence Modified susceptibility Electromagnetically Induced Transparency Index of refraction: Enhanced Index, Slow light Applications! Ultra-sensitive magnetometry Non-linear magneto-optic rotation Sensitivity Limitations (ac Stark, radiation trapping) Vacuum Squeezing Slow Light Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 1

2 Statistical Mixture of States: Only two relevant energy levels a b c d ψ = a or ψ = b or! Ordinary Absorption, Refraction, and Amplification Coherent Superposition of States: Three or more levels! a b c New effects d ψ = α c + β d Susceptibility: Two Atomic Energy Levels a b Vg = c/60 in sodium Tom Mossberg, 1977 unpublished absorption index of refraction n=1 Anomolous dispersion dn 0 dω Normal Normal dispersion dn 0 dω < g > g v > c v < c Strong Strong Absorption v g =?? Superluminal speeds (e.g., tunnelling) Chiao et al. (Berkeley) (ω-ω 0 )/γ Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 2

3 Atomic Coherence Effects Three (or more) Atomic Energy Levels a Natural decay γ The combined action of the drive and probe lasers produces a quantum superposition of the two lower states: c Coupling Laser Drive Laser Coherence Decay γ bc b Probe Laser: frequency ω ψ = α b + β c Then, the probe field interacts with this superposition state. Three Level System a Ω c γ bc γ Ω p b For: Low density (single atom response) Monochromatic probe Weak probe Ω > Ωp Calculate susceptibility of homogeneously broadened 3-level system. See for example, Scully and Zubairy, Quantum Optics, Cambridge University Press, where Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 3

4 Three Atomic Energy Levels Electromagnetically Induced Transparency c a b Transmission through 10,000 absorption lengths, Harris et al., absorption index of refraction n=1 Non- Non- Anomolous dispersion dn dω > 0 v g << c Ultra slow light Transparency Vg = 1 m/s (c/300,000,000) Ketterly et al., (ω-ω 0 )/γ Effect of Coherence on Interaction Two Levels: a Three Levels: a b c b Index of refraction: Steep normal dispersion Absorption: Induced transparency Ultra-Slow Light Enhanced Index of Refraction Lasing Without Inversion Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 4

5 Slow Light?!? What gives? Refraction v red < c dispersion v blue < v red v = c/n Air Water Quartz Diamond Some semiconductors Phase and Group Velocities Superposition of travelling waves v p Phase velocity v p v p v g Group velocity wave groups Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 5

6 Superposition of Travelling Waves Phase and Group velocity Optical Group Velocity in a Medium Dispersion Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 6

7 Spatial Dispersion: The effect of moving atoms. Intensity Energy propagates at the group velocity (usually.) Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 7

8 Equal Phase velocities: No dispersion Short wavelength: Long wavelength: Equal Phase velocities: No dispersion Short wavelength: Long wavelength: Group Velocity = Phase Velocity Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 8

9 Unequal Phase velocities: N ormal dispersion Short wavelength: Long wavelength: Unequal Phase velocities: N ormal dispersion Short wavelength: Long wavelength: Group Velocity < Phase Velocity Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 9

10 Unequal Phase velocities: Anomolous dispersion Short wavelength: Long wavelength: Group Velocity > Phase Velocity Where can we find very steep dispersion? Answer: Atoms in coherent quantum mechanical superposition states! Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 10

11 EIT Slow light history: c/13, Xiao et al., PRL 74, 666 (1995). c/165, Kasapi, Jain, Yin, and Harris, PRL 74, 2447, (1995). c/3000, Schmidt, Wynands, Hussein, Meschede PRA 53, R27, (1996). (Inferred from dn/dω) c/10 5 Lukin, Fleischhauer, Zibrov, Robinson, Velichansky, Hollberg, Scully, PRL 79, 2959 (1997). (Inferred from probe phase shift.) c/2x10 7 Hau, Harris, Dutton, and Behroozi, Nature 397, 594 (1999). (BEC) c/3x10 6 TAMU, PRL 82, 5229 (1999). (Hot vapor) c/4x10 7 Budker, Kimball, Rochester, and Yashchuk, PRL 83, 1757 (1999). (NMOR) c/6x10 6 Turukhin, Musser, Sudarshanam, Shahriar, and Hemmer, PRL 88, (2002). (Solid) Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 11

12 Science Fiction: Light of Other Days, Bob Shaw ( ), in Analog Science Fiction, John W. Campbell, Jr., Ed. August, (Hugo and Nebula award winner.) The most important effect, in the eyes of the average individual, was that light took a long time to pass through a sheet of slow glass. A new piece was always jet black because nothing had yet come through, but one could stand the glass beside, say, a woodland lake until the scene emerged, perhaps a year later. If the glass was then removed and installed in a dismal city flat, the flat would for that year appear to overlook the woodland lake. During the year it wouldn' t be merely a very realistic but still picture the water would ripple in sunlight, silent animals would come to drink, birds would cross the sky, night would follow day, season would follow season. Until one day, a year later, the beauty held in the subatomic pipelines would be exhausted and the familiar gray cityscape would reappear.... Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 12

13 New Applications - TAMU IQS Ultra-Sensitive Optical Magnetometry (Novikova/Welch) Quantum Information Storage (Lukin et al., Hau et al., Zibrov et al.) Resonant Four-Wave Mixing (Mikhailov/Welch) New IR Detectors (Scully/Boyd) New FIR (1-100µ) Lasers (Kocharovsky/Belyanin, Capasso) Sub-femtosecond Sub-cycle Laser Pulses (Sokolov, Harris) Quantum Nucleonics / g-ray Lasers (Kocharovskaya) Quantum Computing (Hemmer/Scully/Zubairy) Anthrax Spore Detection (Scully) Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 13

14 Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 14

15 Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 15

16 Compensate Power Broadening by Increasing Density transmission 100% ω trans frequency γ a transmission 100% frequency x1 x2 x5 x10 x25 0% Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 16

17 Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 17

18 Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 18

19 Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 19

20 Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 20

21 Measurements S 1, arb.units Tran sm ission, arb.u nits S 2, arb.units M a gne tic field, m G Recorded signals Magn etic field, m G R ota tion angle φ, ra d Rotation angle M agn etic field, mg Transmission S 1 +S M a gne tic field, m G 1 S1 S φ = arcsin 2 S1 + S 2 2 Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 21

22 Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 22

23 High Optical Density: Large rotation angle Photodetector signals Magnetic field, mg Scaling to high density and laser power gives multiple oscillations as polarization rotation passes 2π Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 23

24 Corresponding Verde constant: V~ min oersted-1 cm-1 Magnetic TGG crystal: V ~0.4 min oersted-1 cm-1 Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 24

25 Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 25

26 Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 26

27 Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 27

28 Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 28

29 Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 29

30 Radiation trapping: model a Iout κl γ = 1 R R ( ) ( γ + ) 2 0 R I Ω 0 Ω + δ γ 0 b + Ω b in dφ db B 0 = = 2µ B I ln out ( γ ) 0 + R Iin Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 30

31 Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 31

32 Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 32

33 Radiation trapping R o tation rate dφ/d B, rad/g Transmission I out /I in Theoretical Prediction dφ db B 0 2µ = γ B 0 I ln I out in Something is causing the deterioration of ground-state coherence with atomic density. We believe it is the reabsorption of spontaneously emitted photons (radiation trapping). Matsko, Novikova, Scully, Welch, PRL, 87, (2001) Matsko, Novikova, Scully, Welch, JMO, 49, 367 (2002). Effective repumping rate R/ γ Experimental confirmation Atomic density N, cm -3 beam diameter 2mm beam diameter 5mm Radiation trapping becomes important on the scale of the: Cell (diameter 25mm) - N~ cm -3 Laser beam (diameter 2mm) - N~ cm -3 Laser beam (diameter 5mm) - N~ cm -3 Effective repumping rate R/γ Scale for onset of radiation trapping: 3 2 γ Nλ d r 8π W Atomic density N, cm -3 D > 1 Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 33

34 Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 34

35 Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 35

36 Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 36

37 Application to Magnetometry Status: Width: Γ=100 mg Rotation: dφ/db = 100 rad/g Power: P = 3mW Sensitivity: B min = f min /(dφ/db) Shot-noise limit: dφ min = (hω/pt) 1/2 B min <~ G/Hz Outlook: Higher Power: P = 100 mw Higher Density N = cm -3 Buffer Gas, Squeezed Vacuum B min <~ G/Hz Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 37

38 Conclusion: Slow Light for Fun and Profit? Dr. George Welch, Texas A&M (KITP Quantum Optics Miniprogram 7/26/02) 38

arxiv:quant-ph/ v1 2 Oct 2003

arxiv:quant-ph/ v1 2 Oct 2003 Slow Light in Doppler Broadened Two level Systems G. S. Agarwal and Tarak Nath Dey Physical Research Laboratory, Navrangpura, Ahmedabad-38 9, India (October 31, 218) We show that the propagation of light

More information

NONLINEAR MAGNETO-OPTIC EFFECTS. IN OPTICALLY DENSE Rb VAPOR. A Dissertation IRINA BORISOVNA NOVIKOVA

NONLINEAR MAGNETO-OPTIC EFFECTS. IN OPTICALLY DENSE Rb VAPOR. A Dissertation IRINA BORISOVNA NOVIKOVA NONLINEAR MAGNETO-OPTIC EFFECTS IN OPTICALLY DENSE Rb VAPOR A Dissertation by IRINA BORISOVNA NOVIKOVA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the

More information

Generation of squeezed vacuum with hot and ultra-cold Rb atoms

Generation of squeezed vacuum with hot and ultra-cold Rb atoms Generation of squeezed vacuum with hot and ultra-cold Rb atoms Eugeniy E. Mikhailov, Travis Horrom, Irina Novikova Salim Balik 2, Arturo Lezama 3, Mark Havey 2 The College of William & Mary, USA 2 Old

More information

Nonlinear magneto-optical rotation in optically thick media

Nonlinear magneto-optical rotation in optically thick media Nonlinear magneto-optical rotation in optically thick media S. M. Rochester 1 1,, and D. Budker 1 Department of Physics, University of California at Berkeley, Berkeley, California 97-7 Nuclear Science

More information

Quantum Information Storage with Slow and Stopped Light

Quantum Information Storage with Slow and Stopped Light Quantum Information Storage with Slow and Stopped Light Joseph A. Yasi Department of Physics, University of Illinois at Urbana-Champaign (Dated: December 14, 2006) Abstract This essay describes the phenomena

More information

Stopped Light With Storage Times Greater than 1 second using Electromagnetically Induced Transparency in a Solid

Stopped Light With Storage Times Greater than 1 second using Electromagnetically Induced Transparency in a Solid Stopped Light With Storage Times Greater than 1 second using Electromagnetically Induced Transparency in a Solid J.J Londell, E. Fravel, M.J. Sellars and N.B. Manson, Phys. Rev. Lett. 95 063601 (2005)

More information

Quantum enhanced magnetometer and squeezed state of light tunable filter

Quantum enhanced magnetometer and squeezed state of light tunable filter Quantum enhanced magnetometer and squeezed state of light tunable filter Eugeniy E. Mikhailov The College of William & Mary October 5, 22 Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 22 / 42 Transition

More information

Stored light and EIT at high optical depths

Stored light and EIT at high optical depths Stored light and EIT at high optical depths M. Klein a,b, Y. Xiao a, M. Hohensee a,b, D. F. Phillips a, and R. L. Walsworth a,b a Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, 02138 USA b

More information

Slow and Fast Light in Room-Temperature Solids: Fundamental and Applications. Robert W. Boyd

Slow and Fast Light in Room-Temperature Solids: Fundamental and Applications. Robert W. Boyd Slow and Fast Light in Room-Temperature Solids: Fundamental and Applications Robert W. Boyd The Institute of Optics and Department of Physics and Astronomy University of Rochester, Rochester, NY 14627

More information

Limits on the Time Delay Induced by Slow-Light Propagation

Limits on the Time Delay Induced by Slow-Light Propagation Limits on the Time Delay Induced by Slow-Light Propagation Robert W. Boyd Institute of Optics, University of Rochester Daniel J. Gauthier Department of Physics, Duke University Alexander L. Gaeta Applied

More information

Optimizing stored light efficiency in vapor cells

Optimizing stored light efficiency in vapor cells Invited Paper Optimizing stored light efficiency in vapor cells Irina Novikova a, Mason Klein a,b, David F. Phillips a, Ronald L. Walsworth a,b a Harvard-Smithsonian Center for Astrophysics, 6 Garden St.,

More information

Experimental constraints of using slow-light in sodium vapor for light-drag enhanced relative rotation sensing

Experimental constraints of using slow-light in sodium vapor for light-drag enhanced relative rotation sensing Optics Communications 66 (6) 64 68 www.elsevier.com/locate/optcom Experimental constraints of using slow-light in sodium vapor for light-drag enhanced relative rotation sensing Renu Tripathi *, G.S. Pati,

More information

Enhancing sensitivity of gravitational wave antennas, such as LIGO, via light-atom interaction

Enhancing sensitivity of gravitational wave antennas, such as LIGO, via light-atom interaction Enhancing sensitivity of gravitational wave antennas, such as LIGO, via light-atom interaction Eugeniy E. Mikhailov The College of William & Mary, USA New Laser Scientists, 4 October 04 Eugeniy E. Mikhailov

More information

Sensitive detection of magnetic fields including their orientation with a magnetometer based on atomic phase coherence

Sensitive detection of magnetic fields including their orientation with a magnetometer based on atomic phase coherence PHYSICAL REVIEW A VOLUME 58, NUMBER 3 SEPTEMBER 1998 Sensitive detection of magnetic fields including their orientation with a magnetometer based on atomic phase coherence Hwang Lee, 1,2 Michael Fleischhauer,

More information

A Review of Slow Light Physics and Its Applications

A Review of Slow Light Physics and Its Applications A Review of Slow Light Physics and Its Applications Stéphane Virally École Polytechnique de Montréal, 2500 chemin de Polytechnique, Montréal, QC H3T 1J4, Canada stephane.virally@polymtl.ca Abstract: An

More information

arxiv:quant-ph/ v3 17 Nov 2003

arxiv:quant-ph/ v3 17 Nov 2003 Stationary Pulses of Light in an Atomic Medium M. Bajcsy 1,2, A. S. Zibrov 1,3,4 and M. D. Lukin 1 1 Physics Department, Harvard University, Cambridge, MA 02138, USA 2 Division of Engineering and Applied

More information

Atomic Coherent Trapping and Properties of Trapped Atom

Atomic Coherent Trapping and Properties of Trapped Atom Commun. Theor. Phys. (Beijing, China 46 (006 pp. 556 560 c International Academic Publishers Vol. 46, No. 3, September 15, 006 Atomic Coherent Trapping and Properties of Trapped Atom YANG Guo-Jian, XIA

More information

Light at a Standstill Tim Kuis June 13, 2008

Light at a Standstill Tim Kuis June 13, 2008 Light at a Standstill Tim Kuis June 13, 008 1. Introduction There is something curious about the seed of light. It is the highest obtainable seed. Nothing can travel faster. But how slow can light go?

More information

Squeezed states of light - generation and applications

Squeezed states of light - generation and applications Squeezed states of light - generation and applications Eugeniy E. Mikhailov The College of William & Mary Fudan, December 24, 2013 Eugeniy E. Mikhailov (W&M) Squeezed light Fudan, December 24, 2013 1 /

More information

Squeezing manipulation with atoms

Squeezing manipulation with atoms Squeezing manipulation with atoms Eugeniy E. Mikhailov The College of William & Mary March 21, 2012 Eugeniy E. Mikhailov (W&M) Squeezing manipulation LSC-Virgo (March 21, 2012) 1 / 17 About the college

More information

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University Quantum Memory with Atomic Ensembles Yong-Fan Chen Physics Department, Cheng Kung University Outline Laser cooling & trapping Electromagnetically Induced Transparency (EIT) Slow light & Stopped light Manipulating

More information

Robert W. Boyd. Institute of Optics and Department of Physics and Astronomy University of Rochester

Robert W. Boyd. Institute of Optics and Department of Physics and Astronomy University of Rochester Slow Light, Fast Light, and their Applications Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester with Yuping Chen, George Gehring, Giovanni Piredda, Aaron

More information

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

Performance Limits of Delay Lines Based on Slow Light. Robert W. Boyd Performance Limits of Delay Lines Based on "Slow" Light Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester Representing the DARPA Slow-Light-in-Fibers Team:

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

A Primer to Slow Light

A Primer to Slow Light A Primer to Slow Light Ulf Leonhardt School of Physics and Astronomy University of St Andrews North Haugh, St Andrews, KY16 9SS, Scotland arxiv:gr-qc/0108085v 9 Jan 00 February 7, 008 Abstract Laboratory-based

More information

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Hailin Wang Oregon Center for Optics, University of Oregon, USA Students: Shannon O Leary Susanta Sarkar Yumin Shen Phedon

More information

A Stern-Gerlach experiment for slow light

A Stern-Gerlach experiment for slow light 1 A Stern-Gerlach experiment for slow light Leon Karpa and Martin Weitz* Physikalisches Institut der Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany * Present address: Center of

More information

arxiv:quant-ph/ v1 24 Jun 2005

arxiv:quant-ph/ v1 24 Jun 2005 Electromagnetically induced transparency for Λ - like systems with a structured continuum A. Raczyński, M. Rzepecka, and J. Zaremba Instytut Fizyki, Uniwersytet Miko laja Kopernika, ulica Grudzi adzka

More information

ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN RUBIDIUM 85. Amrozia Shaheen

ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN RUBIDIUM 85. Amrozia Shaheen ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN RUBIDIUM 85 Amrozia Shaheen Electromagnetically induced transparency The concept of EIT was first given by Harris et al in 1990. When a strong coupling laser

More information

Quantum optics and squeezed states of light

Quantum optics and squeezed states of light Quantum optics and squeezed states of light Eugeniy E. Mikhailov The College of William & Mary June 15, 2012 Eugeniy E. Mikhailov (W&M) Quantum optics June 15, 2012 1 / 44 From ray optics to semiclassical

More information

Slow, Fast, and Backwards Light Propagation in Erbium-Doped Optical Fibers. Zhimin Shi

Slow, Fast, and Backwards Light Propagation in Erbium-Doped Optical Fibers. Zhimin Shi Slow, Fast, and Backwards Light Propagation in Erbium-Doped Optical Fibers Zhimin Shi Institute of Optics and Department of Physics and Astronomy University of Rochester www.optics.rochester.edu/~boyd

More information

QUESTION BANK IN PHYSICS

QUESTION BANK IN PHYSICS QUESTION BANK IN PHYSICS LASERS. Name some properties, which make laser light different from ordinary light. () {JUN 5. The output power of a given laser is mw and the emitted wavelength is 630nm. Calculate

More information

Fast Light, Slow Light

Fast Light, Slow Light Light pulses can be made to propagate with group velocities exceeding the speed of light in a vacuum or, at the opposite extreme, to come to a complete stop. Fast Light, Slow Light Raymond Y. Chiao and

More information

Control of Group Velocity via Spontaneous Generated Coherence and Kerr Nonlinearity

Control of Group Velocity via Spontaneous Generated Coherence and Kerr Nonlinearity Commun. Theor. Phys. 62 (2014) 410 416 Vol. 62, No. 3, September 1, 2014 Control of Group Velocity via Spontaneous Generated Coherence and Kerr Nonlinearity Hazrat Ali, 1 Iftikhar Ahmad, 1 and Ziauddin

More information

pulses. Sec. III contains the simulated results of the interaction process and their analysis, followed by conclusions in Sec. IV.

pulses. Sec. III contains the simulated results of the interaction process and their analysis, followed by conclusions in Sec. IV. High and uniform coherence creation in Doppler broadened double Ʌ- like atomic system by a train of femtosecond optical pulses Amarendra K. Sarma* and Pawan Kumar Department of Physics, Indian Institute

More information

Cavity electromagnetically induced transparency via spontaneously generated coherence

Cavity electromagnetically induced transparency via spontaneously generated coherence JOURNAL OF MODERN OPTICS, 2017 http://dx.doi.org/10.1080/09500340.2017.1315463 Cavity electromagnetically induced transparency via spontaneously generated coherence Muhammad Tariq a, Ziauddin d,e, Tahira

More information

Pulse retrieval and soliton formation in a nonstandard scheme for dynamic electromagnetically induced transparency

Pulse retrieval and soliton formation in a nonstandard scheme for dynamic electromagnetically induced transparency Pulse retrieval and soliton formation in a nonstandard scheme for dynamic electromagnetically induced transparency Amy Peng, Mattias Johnsson, and Joseph J. Hope Centre for Quantum Atom Optics, Department

More information

Slow and Fast Light. September 24, 2001

Slow and Fast Light. September 24, 2001 Slow and Fast Light Robert W. Boyd The Institute of Optics University of Rochester Rochester, New York 14627 USA Daniel J. Gauthier Department of Physics Duke University Durham, North Carolina 27708 USA

More information

Optically polarized atoms. Marcis Auzinsh, University of Latvia Dmitry Budker, UC Berkeley and LBNL Simon M. Rochester, UC Berkeley

Optically polarized atoms. Marcis Auzinsh, University of Latvia Dmitry Budker, UC Berkeley and LBNL Simon M. Rochester, UC Berkeley Optically polarized atoms Marcis Auzinsh, University of atvia Dmitry Budker, UC Berkeley and BN Simon M. Rochester, UC Berkeley 1 Chapter 6: Coherence in atomic systems Exciting a 0ö1 transition with z

More information

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University Quantum optics Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik M. Suhail Zubairy Quaid-i-Azam University 1 CAMBRIDGE UNIVERSITY PRESS Preface xix 1 Quantum theory of radiation

More information

VIC Effect and Phase-Dependent Optical Properties of Five-Level K-Type Atoms Interacting with Coherent Laser Fields

VIC Effect and Phase-Dependent Optical Properties of Five-Level K-Type Atoms Interacting with Coherent Laser Fields Commun. Theor. Phys. (Beijing China) 50 (2008) pp. 741 748 c Chinese Physical Society Vol. 50 No. 3 September 15 2008 VIC Effect and Phase-Dependent Optical Properties of Five-Level K-Type Atoms Interacting

More information

Slow, Fast, and Backwards Light: Fundamentals and Applications Robert W. Boyd

Slow, Fast, and Backwards Light: Fundamentals and Applications Robert W. Boyd Slow, Fast, and Backwards Light: Fundamentals and Applications Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester www.optics.rochester.edu/~boyd with George

More information

Nonlinear Optics and Quantum Entanglement of Ultra-Slow. Single Photons. Abstract

Nonlinear Optics and Quantum Entanglement of Ultra-Slow. Single Photons. Abstract Nonlinear Optics and Quantum Entanglement of Ultra-Slow Single Photons M. D. Lukin 1 and A. Imamoğlu 2 arxiv:quant-ph/9910094v1 22 Oct 1999 1 ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge,

More information

Elements of Quantum Optics

Elements of Quantum Optics Pierre Meystre Murray Sargent III Elements of Quantum Optics Fourth Edition With 124 Figures fya Springer Contents 1 Classical Electromagnetic Fields 1 1.1 Maxwell's Equations in a Vacuum 2 1.2 Maxwell's

More information

Slowing Down the Speed of Light Applications of "Slow" and "Fast" Light

Slowing Down the Speed of Light Applications of Slow and Fast Light Slowing Down the Speed of Light Applications of "Slow" and "Fast" Light Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester with Mathew Bigelow, Nick Lepeshkin,

More information

An optical rotation sensor based on dispersive slow-light medium

An optical rotation sensor based on dispersive slow-light medium An optical rotation sensor based on dispersive slow-light medium Wang Nan( ) a)b), Zhang Yun-Dong( ) a), and Yuan Ping( ) a) a) Institute of Opto-electronics, Harbin Institute of Technology, Harbin 150080,

More information

SUB-NATURAL-WIDTH N-RESONANCES OBSERVED IN LARGE FREQUENCY INTERVAL

SUB-NATURAL-WIDTH N-RESONANCES OBSERVED IN LARGE FREQUENCY INTERVAL SUB-NATURAL-WIDTH N-RESONANCES OBSERVED IN LARGE FREQUENCY INTERVAL A. KRASTEVA 1, S. GATEVA 1, A. SARGSYAN 2, D. SARKISYAN 2 AND S. CARTALEVA 1 1 Institute of Electronics, Bulgarian Academy of Sciences,

More information

Experimental Demonstration of Spinor Slow Light

Experimental Demonstration of Spinor Slow Light Experimental Demonstration of Spinor Slow Light Ite A. Yu Department of Physics Frontier Research Center on Fundamental & Applied Sciences of Matters National Tsing Hua University Taiwan Motivation Quantum

More information

Zeno logic gates using micro-cavities

Zeno logic gates using micro-cavities Zeno logic gates using micro-cavities J.D. Franson, B.C. Jacobs, and T.B. Pittman Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 The linear optics approach to quantum computing

More information

[TO APPEAR IN LASER PHYSICS] Quantum interference and its potential applications in a spectral hole-burning solid

[TO APPEAR IN LASER PHYSICS] Quantum interference and its potential applications in a spectral hole-burning solid [TO APPEAR IN LASER PHYSICS] Quantum interference and its potential applications in a spectral hole-burning solid Byoung S. Ham, 1, Philip R. Hemmer, 2 Myung K. Kim, 3 and Selim M. Shahriar 1 1 Research

More information

Perturbing an electromagnetically induced transparency in a system using a low-frequency driving field. I. Three-level system

Perturbing an electromagnetically induced transparency in a system using a low-frequency driving field. I. Three-level system Perturbing an electromagnetically induced transparency in a system using a low-frequency driving field. I. Three-level system E. A. Wilson, N. B. Manson, and C. Wei Laser Physics Center, Research School

More information

Cooperative atom-light interaction in a blockaded Rydberg ensemble

Cooperative atom-light interaction in a blockaded Rydberg ensemble Cooperative atom-light interaction in a blockaded Rydberg ensemble α 1 Jonathan Pritchard University of Durham, UK Overview 1. Cooperative optical non-linearity due to dipole-dipole interactions 2. Observation

More information

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process

More information

Collimated blue light generated by four-wave mixing in Rb vapour

Collimated blue light generated by four-wave mixing in Rb vapour Collimated blue light generated by four-wave mixing in Rb vapour Alexander M. Akulshin, Russell J. McLean, Andrei I. Sidorov, and Peter Hannaford Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne

More information

Optics, Light and Lasers

Optics, Light and Lasers Dieter Meschede Optics, Light and Lasers The Practical Approach to Modern Aspects of Photonics and Laser Physics Second, Revised and Enlarged Edition BICENTENNIAL.... n 4 '':- t' 1 8 0 7 $W1LEY 2007 tri

More information

Optical Spectroscopy of Advanced Materials

Optical Spectroscopy of Advanced Materials Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University

More information

Nonlinear Electro- and Magneto-Optic Effects related to Bennett Structures

Nonlinear Electro- and Magneto-Optic Effects related to Bennett Structures Nonlinear Electro- and Magneto-Optic Effects related to Bennett Structures D. Budker, 1, 2, D. F. Kimball, 1 S. M. Rochester, 1 and V. V. Yashchuk 1 1 Department of Physics, University of California at

More information

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION Instructor: Kazumi Tolich Lecture 11 2 25.5 Electromagnetic waves Induced fields Properties of electromagnetic waves Polarization Energy of electromagnetic

More information

MODERN OPTICS. P47 Optics: Unit 9

MODERN OPTICS. P47 Optics: Unit 9 MODERN OPTICS P47 Optics: Unit 9 Course Outline Unit 1: Electromagnetic Waves Unit 2: Interaction with Matter Unit 3: Geometric Optics Unit 4: Superposition of Waves Unit 5: Polarization Unit 6: Interference

More information

The speed of light in a vacuum

The speed of light in a vacuum : From Basics to Future Prospects How can the speed of light be reduced a millionfold, and why does this matter? The answers to these questions are intriguing and important. by Daniel J. Gauthier, Duke

More information

EIT and diffusion of atomic coherence

EIT and diffusion of atomic coherence Journal of Modern Optics Vol. 52, No. 16, 10 November 2005, 2381 2390 EIT and diffusion of atomic coherence I. NOVIKOVA*y, Y. XIAOy, D. F. PHILLIPSy and R. L. WALSWORTHyz yharvard-smithsonian Center for

More information

All-Optical Delay with Large Dynamic Range Using Atomic Dispersion

All-Optical Delay with Large Dynamic Range Using Atomic Dispersion All-Optical Delay with Large Dynamic Range Using Atomic Dispersion M. R. Vanner, R. J. McLean, P. Hannaford and A. M. Akulshin Centre for Atom Optics and Ultrafast Spectroscopy February 2008 Motivation

More information

Vacuum squeezing via polarization self-rotation and excess noise in hot Rb vapors

Vacuum squeezing via polarization self-rotation and excess noise in hot Rb vapors Journal of Modern Optics Vol. 56, Nos. 18 19, 20 October 10 November 2009, 1985 1992 Vacuum squeezing via polarization self-rotation and excess noise in hot Rb vapors Eugeniy E. Mikhailov a, Arturo Lezama

More information

Lasers & Holography. Ulrich Heintz Brown University. 4/5/2016 Ulrich Heintz - PHYS 1560 Lecture 10 1

Lasers & Holography. Ulrich Heintz Brown University. 4/5/2016 Ulrich Heintz - PHYS 1560 Lecture 10 1 Lasers & Holography Ulrich Heintz Brown University 4/5/2016 Ulrich Heintz - PHYS 1560 Lecture 10 1 Lecture schedule Date Topic Thu, Jan 28 Introductory meeting Tue, Feb 2 Safety training Thu, Feb 4 Lab

More information

Quantum optics and metamaterials. Janne Ruostekoski Mathematics & Centre for Photonic Metamaterials University of Southampton

Quantum optics and metamaterials. Janne Ruostekoski Mathematics & Centre for Photonic Metamaterials University of Southampton Quantum optics and metamaterials Janne Ruostekoski Mathematics & Centre for Photonic Metamaterials University of Southampton Motivation Quantum optics a well-developed field for studying interaction of

More information

Gain without inversion in a V-type system with low coherence decay rate for the upper levels. arxiv:physics/ v1 [physics.atom-ph] 15 May 2004

Gain without inversion in a V-type system with low coherence decay rate for the upper levels. arxiv:physics/ v1 [physics.atom-ph] 15 May 2004 Gain without inversion in a V-type system with low coherence decay rate for the upper levels. arxiv:physics/0405079v1 [physics.atom-ph] 15 May 004 Keywords: V-type three level system, Electromagnetically

More information

arxiv: v1 [physics.optics] 31 May 2011

arxiv: v1 [physics.optics] 31 May 2011 Dynamics of slow light and light storage in a Doppler-broadened electromagnetically induced transparency medium: A numerical approach arxiv:1105.6261v1 [physics.optics 31 May 2011 Shih-Wei Su, 1 Yi-Hsin

More information

Review of Classical Analog of Electromagnetically Induced Transparency

Review of Classical Analog of Electromagnetically Induced Transparency Review of Classical Analog of Electromagnetically Induced Transparency Eli Cabelly June 2, 20 Abstract Alzar, Martinez, and Nussenzveig have proposed an experiment to demonstrate electromagnetically induced

More information

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION Instructor: Kazumi Tolich Lecture 11 2 25.5 Electromagnetic waves Induced fields Properties of electromagnetic waves Polarization Energy of electromagnetic

More information

Optomechanics and spin dynamics of cold atoms in a cavity

Optomechanics and spin dynamics of cold atoms in a cavity Optomechanics and spin dynamics of cold atoms in a cavity Thierry Botter, Nathaniel Brahms, Daniel Brooks, Tom Purdy Dan Stamper-Kurn UC Berkeley Lawrence Berkeley National Laboratory Ultracold atomic

More information

COHERENT CONTROL OF OPTICAL PROCESSES IN A RESONANT MEDIUM. A Thesis CHRISTOPHER MICHAEL O BRIEN

COHERENT CONTROL OF OPTICAL PROCESSES IN A RESONANT MEDIUM. A Thesis CHRISTOPHER MICHAEL O BRIEN COHERENT CONTROL OF OPTICAL PROCESSES IN A RESONANT MEDIUM A Thesis by CHRISTOPHER MICHAEL O BRIEN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements

More information

4. The interaction of light with matter

4. The interaction of light with matter 4. The interaction of light with matter The propagation of light through chemical materials is described by a wave equation similar to the one that describes light travel in a vacuum (free space). Again,

More information

Electromagnetically induced transparency in paraffin-coated vapor cells

Electromagnetically induced transparency in paraffin-coated vapor cells PHYSICAL REVIEW A 83, 13826 (211) Electromagnetically induced transparency in paraffin-coated vapor cells M. Klein, 1,2 M. Hohensee, 1,2,* D. F. Phillips, 1 and R. L. Walsworth 1,2 1 Harvard-Smithsonian

More information

Cavity decay rate in presence of a Slow-Light medium

Cavity decay rate in presence of a Slow-Light medium Cavity decay rate in presence of a Slow-Light medium Laboratoire Aimé Cotton, Orsay, France Thomas Lauprêtre Fabienne Goldfarb Fabien Bretenaker School of Physical Sciences, Jawaharlal Nehru University,

More information

Superluminal Light Pulses, Subluminal Information Transmission

Superluminal Light Pulses, Subluminal Information Transmission 1 Superluminal Light Pulses, Subluminal Information Transmission Dan Gauthier and Michael Stenner* Duke University, Department of Physics, Fitzpatrick Center for Photonics and Communication Systems Mark

More information

Contents Classical and Quantum Interference and Coherence Quantum Interference in Atomic Systems: Mathematical Formalism

Contents Classical and Quantum Interference and Coherence Quantum Interference in Atomic Systems: Mathematical Formalism 1 Classical and Quantum Interference and Coherence... 1 1.1 ClassicalInterferenceandOpticalInterferometers... 2 1.1.1 Young sdoubleslitinterferometer... 2 1.1.2 First-OrderCoherence... 4 1.1.3 WelcherWegProblem...

More information

Slow- and fast-light: fundamental limitations

Slow- and fast-light: fundamental limitations Journal of Modern Optics Vol. 54, Nos. 16 17, 10 20 November 2007, 2403 2411 Slow- and fast-light: fundamental limitations ROBERT W. BOYD*y and PAUL NARUMz ythe Institute of Optics, University of Rochester,

More information

Electromagnetic spectra

Electromagnetic spectra Properties of Light Waves, particles and EM spectrum Interaction with matter Absorption Reflection, refraction and scattering Polarization and diffraction Reading foci: pp 175-185, 191-199 not responsible

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 32 Electromagnetic Waves Spring 2016 Semester Matthew Jones Electromagnetism Geometric optics overlooks the wave nature of light. Light inconsistent with longitudinal

More information

LASERS. Amplifiers: Broad-band communications (avoid down-conversion)

LASERS. Amplifiers: Broad-band communications (avoid down-conversion) L- LASERS Representative applications: Amplifiers: Broad-band communications (avoid down-conversion) Oscillators: Blasting: Energy States: Hydrogen atom Frequency/distance reference, local oscillators,

More information

Ultra-Slow Light Propagation in Room Temperature Solids. Robert W. Boyd

Ultra-Slow Light Propagation in Room Temperature Solids. Robert W. Boyd Ultra-Slow Light Propagation in Room Temperature Solids Robert W. Boyd The Institute of Optics and Department of Physics and Astronomy University of Rochester, Rochester, NY USA http://www.optics.rochester.edu

More information

Propagation of quantum optical fields under the conditions of multi-photon resonances in a coherent atomic vapor

Propagation of quantum optical fields under the conditions of multi-photon resonances in a coherent atomic vapor Propagation of quantum optical fields under the conditions of multi-photon resonances in a coherent atomic vapor Gleb Romanov, Travis Horrom, Irina Novikova a, and Eugeniy E. Mikhailov College of William

More information

Inhibition of Two-Photon Absorption in a Four-Level Atomic System with Closed-Loop Configuration

Inhibition of Two-Photon Absorption in a Four-Level Atomic System with Closed-Loop Configuration Commun. Theor. Phys. Beijing, China) 47 007) pp. 916 90 c International Academic Publishers Vol. 47, No. 5, May 15, 007 Inhibition of Two-Photon Absorption in a Four-Level Atomic System with Closed-Loop

More information

Ultra-Slow (and Superluminal) Light Propagation in Room Temperature Solids. Robert W. Boyd

Ultra-Slow (and Superluminal) Light Propagation in Room Temperature Solids. Robert W. Boyd Ultra-Slow (and Superluminal) Light Propagation in Room Temperature Solids Robert W. Boyd The Institute of Optics and Department of Physics and Astronomy University of Rochester, Rochester, NY 14627 http://www.optics.rochester.edu

More information

Unit-2 LASER. Syllabus: Properties of lasers, types of lasers, derivation of Einstein A & B Coefficients, Working He-Ne and Ruby lasers.

Unit-2 LASER. Syllabus: Properties of lasers, types of lasers, derivation of Einstein A & B Coefficients, Working He-Ne and Ruby lasers. Unit-2 LASER Syllabus: Properties of lasers, types of lasers, derivation of Einstein A & B Coefficients, Working He-Ne and Ruby lasers. Page 1 LASER: The word LASER is acronym for light amplification by

More information

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008 Precision Interferometry with a Bose-Einstein Condensate Cass Sackett Research Talk 17 October 2008 Outline Atom interferometry Bose condensates Our interferometer One application What is atom interferometry?

More information

In Situ Imaging of Cold Atomic Gases

In Situ Imaging of Cold Atomic Gases In Situ Imaging of Cold Atomic Gases J. D. Crossno Abstract: In general, the complex atomic susceptibility, that dictates both the amplitude and phase modulation imparted by an atom on a probing monochromatic

More information

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 John D. Williams, Ph.D. Department of Electrical and Computer Engineering 406 Optics Building - UAHuntsville,

More information

Repeated interaction model for diffusion-induced Ramsey narrowing

Repeated interaction model for diffusion-induced Ramsey narrowing Repeated interaction model for diffusion-induced Ramsey narrowing Yanhong Xiao 1, Irina Novikova 2, David F. Phillips 1, Ronald L. Walsworth 1,3 1 Harvard-Smithsonian Center for Astrophysics, Cambridge,

More information

Module 4 : Third order nonlinear optical processes. Lecture 28 : Inelastic Scattering Processes. Objectives

Module 4 : Third order nonlinear optical processes. Lecture 28 : Inelastic Scattering Processes. Objectives Module 4 : Third order nonlinear optical processes Lecture 28 : Inelastic Scattering Processes Objectives In this lecture you will learn the following Light scattering- elastic and inelastic-processes,

More information

Light. Mike Maloney Physics, SHS

Light. Mike Maloney Physics, SHS Light Mike Maloney Physics, SHS 1 Light What is LIGHT? WHERE DOES IT COME FROM? 2003 Mike Maloney 2 What is Light? Light is a wave, or rather acts like a wave. How do we know since we cannot see it? We

More information

Slow Light in Crystals

Slow Light in Crystals With Department of Physics & Astronomy Faculty of Science Utrecht University Photon Physics Course 2007 Outline Introduction 1 Introduction Slow Light Electromagnetically Induced Transparency 2 CPO Phenomenon

More information

EE-LE E OPTI T C A L S Y TE

EE-LE E OPTI T C A L S Y TE 1> p p γ 1 γ > 3 c 3> p p +> > 1> THREE-LEVEL OPTICAL SYSTEMS . THREE-LEVEL OPTICAL SYSTEMS () OUTLINE.1 BASIC THEORY.1 STIRAP: stimulated raman adiabatic passage. EIT: electromagnetically induced transparency.3

More information

Counterintuitive Versus Regular Inversionless Gain in a Coherently Prepared Ladder Scheme 1

Counterintuitive Versus Regular Inversionless Gain in a Coherently Prepared Ladder Scheme 1 ISSN 54-66X, Laser Physics,, Vol., No. 7, pp. 5. Pleiades Publishing, Ltd.,. Original Text Astro, Ltd.,. RUBRIC Counterintuitive Versus Regular Inversionless Gain in a Coherently Prepared Ladder Scheme

More information

Absorption-Amplification Response with or Without Spontaneously Generated Coherence in a Coherent Four-Level Atomic Medium

Absorption-Amplification Response with or Without Spontaneously Generated Coherence in a Coherent Four-Level Atomic Medium Commun. Theor. Phys. (Beijing, China) 42 (2004) pp. 425 430 c International Academic Publishers Vol. 42, No. 3, September 15, 2004 Absorption-Amplification Response with or Without Spontaneously Generated

More information

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter 1 Announcements Add to your notes of Chapter 1 Analytical sensitivity γ=m/s s Homework Problems 1-9, 1-10 Challenge

More information

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter Announcements Add to your notes of Chapter 1 Analytical sensitivity γ=m/s s Homework Problems 1-9, 1-10 Challenge

More information

Light transmission through and its complete stoppage in an ultra slow wave optical medium

Light transmission through and its complete stoppage in an ultra slow wave optical medium Light transmission through and its complete stoppage in an ultra slow wave optical medium V. Ranjith 1 and N. Kumar 2* 1 Centre for Quantum Information and Quantum Computation, Department of Physics, Indian

More information

Slow Light and Superluminal Propagation M. A. Bouchene

Slow Light and Superluminal Propagation M. A. Bouchene Slow Light and Superluminal Propagation M. A. Bouchene Laboratoire «Collisions, Agrégats, Réactivité», Université Paul Sabatier, Toulouse, France Interest in Slow and Fast light Fundamental aspect in optical

More information

Physics Letters A. Effect of spontaneously generated coherence on Kerr nonlinearity in a four-level atomic system

Physics Letters A. Effect of spontaneously generated coherence on Kerr nonlinearity in a four-level atomic system Physics Letters A 372 (2008) 6456 6460 Contents lists available at ScienceDirect Physics Letters A www.elsevier.com/locate/pla Effect of spontaneously generated coherence on Kerr nonlinearity in a four-level

More information