The Priestley-Chao Estimator - Bias, Variance and Mean-Square Error

Size: px
Start display at page:

Download "The Priestley-Chao Estimator - Bias, Variance and Mean-Square Error"

Transcription

1 The Priestley-Chao Estimator - Bias, Variance and Mean-Square Error Bias, variance and mse properties In the previous section we saw that the eact mean and variance of the Pristley-Chao estimator ˆm() when estimating the regression function for an (0, 1), the interval over which m is defined, are given by the epressions: bias[ ˆm()] = 1 nh n ( i K i=1 h ) m( i ) m() V [ ˆm()] = σ2 n 2 h 2 n ( ) i 2 K i=1 h Then mse[ ˆm()] = [bias[ ˆm()]] 2 + V [ ˆm()]. To see these in practice we can calculate the functions bias( ˆm()), V [ ˆm()] and mse[ ˆm()] for (0, 1) for the simulated regression data and plot the results for the four different values of the smoothing parameter h that we previously used. The results are shown in figures 1-3. Eact bias of Priestley Chao estimates using the simulated data bias Figure 1: Eact bias of Pristley-Chao estimates of the simulated regression data. h = red line; h = blue line; h = green line; h = orange line. A biweight (quartic) kernel was used in each case. The plot of the eact biases shows that, overall, the bias curves become flatter as the smoothing parameter h gets smaller. The bias is largest in 1

2 intervals corresponding to the main peak and trough of the true curve. For the main peak the bias is negative whereas for the main trough the bias is positive. Eact variance of Priestley Chao estimates using the simulated data variance Figure 2: Eact variance of Pristley-Chao estimates of the simulated regression data. h = red line; h = blue line; h = green line; h = orange line. A biweight (quartic) kernel was used in each case. The eact variances of the regression estimates are all constant in the middle of the range of -values and then fall away as gets closer to zero and to one. The variances are ordered in terms of smoothing parameter value with the lowest variance corresponding to h = 0.4 and the highest to h = The variance function for h = 0.03 falls away quickest at the etreme -values and that for h = 0.4 the slowest. 2

3 Eact mse of Priestley Chao estimates using the simulated data mse Figure 3: Eact mean squared error of Pristley-Chao estimates of the simulated regression data. h = red line; h = blue line; h = green line; h = orange line. A biweight (quartic) kernel was used in each case. The eact mse s for the four smoothing parameters considered are ordered by size of h here. The lowest mse function is when h = 0.03 and the highest when h = 0.4. The differences between them are most marked in the main peak and trough. Based on performance in terms of mse, the estimate using h = 0.03 can be regarded as being the best of the four here. Later in the last section we saw that, asymtotically, the bias and variance of ˆm() are given by: bias[ ˆm()] h2 2 m(2) ()σ 2 K, n 0, h V [ ˆm()] δσ2 h 1 1 K(u) 2 du as n The mean squared error (mse) of ˆm at the point is mse[ ˆm()] = [bias[ ˆm()]] 2 + V [ ˆm()] h4 4 m(2) () 2 σk 4 + δσ2 K(u) 2 du h 3

4 These functions are plotted in figures 4-6, again using the four different levels of smoothing. Asymptotic bias of Priestley Chao estimates using the simulated data abias Figure 4: Asymptotic bias of Pristley-Chao estimates of the simulated regression data. h = red line; h = blue line; h = green line; h = orange line. A biweight (quartic) kernel was used in each case. The asymptotic bias depends on the second derivative of the regression function m which, for the running simulated data eample, is given by m (2) () = 216sin(2π 3 )cos(2π 3 ) 2 π sin(2π 3 ) 3 π sin(2π 3 ) 2 cos(2π 3 )π The asymptotic bias functions in figure 4 are again ordered by the size of the smoothing parameter used. That for h = 0.03 is the lowest whilst that for h = 0.4 shows the largest peaks and troughs. For any h, the intervals when the bias has largest magnitude correspond to the main peak and trough of the true regression curve. The asymptotic bias curves are generally not as detailed as the true bias curves in this eample. 4

5 Asymptotic variance of Priestley Chao estimates using the simulated data avar Figure 5: Asymptotic variance of Pristley-Chao estimates of the simulated regression data. h = red line; h = blue line; h = green line; h = orange line. A biweight (quartic) kernel was used in each case. The asymptotic variances here are each constant functions of. That for h = 0.03 is the highest while that for h = 0.4 is the lowest. 5

6 Asymptotic mse of Priestley Chao estimates using the simulated data amse Figure 6: Asymptotic mean squared error of Pristley-Chao estimates of the simulated regression data. h = red line; h = blue line; h = green line; h = orange line. A biweight (quartic) kernel was used in each case. Again, the asymptotic mse s are ordered by the values of the four smoothing parameters used with that for h = 0.03 being the lowest while that for h = 0.4 is the highest. Out of the four values of h considered here, the asymptotic results again indicate that using h = 0.03 leads to the best estimate in terms of asymptotic mse. To see how close the asymptotic approimations are to the true performance measures the eact and asymptotic values were plotted on the same diagrams, just for the case when h = The asymptotics assume that as n h 0 so that the best approimations in our case should be when h = The results are shown in figures 7-9. That for the bias shows very good agreement in the interval (0, 0.65) but less good in (0.65, 1) where the changes in curvature of the true regression curve are greatest. The eact and asymptotic variances show etremely good agreement. Comparing the eact and asymptotic mse s, we can see that the asymptotic curve here has a less detailed shape and overestimates the true values when the curvature in m is greatest. It would be of interest to repeat this eercise with a much larger sample size n to see whether then the eact and asymptotic results are more similar overall. 6

7 Eact and Asymptotic Bias for a P C Estimator of the Simulated Data (Quartic kernel, h=0.03) bias Figure 7: Eact and asymptotic bias of Pristley-Chao estimates of the simulated regression data. Eact bias - solid line; asymptotic bias - dashed line. A biweight (quartic) kernel with h = 0.03 was used in each case. Eact and Asymptotic Variance for a P C Estimator of the Simulated Data (Quartic kernel, h=0.03) variance Figure 8: Eact and asymptotic variance of Pristley-Chao estimates of the simulated regression data. Eact variance - solid line; asymptotic variance - dashed line. A biweight (quartic) kernel with h = 0.03 was used in each case. 7

8 Eact and Asymptotic MSE for a P C Estimator of the Simulated Data (Quartic kernel, h=0.03) mse Figure 9: Eact and asymptotic mean squared error of Pristley-Chao estimates of the simulated regression data. Eact mse - solid line; asymptotic mse - dashed line. A biweight (quartic) kernel with h = 0.03 was used in each case. 8

The Priestley-Chao Estimator

The Priestley-Chao Estimator Te Priestley-Cao Estimator In tis section we will consider te Pristley-Cao estimator of te unknown regression function. It is assumed tat we ave a sample of observations (Y i, x i ), i = 1,..., n wic are

More information

CHAPTER 3a. INTRODUCTION TO NUMERICAL METHODS

CHAPTER 3a. INTRODUCTION TO NUMERICAL METHODS CHAPTER 3a. INTRODUCTION TO NUMERICAL METHODS A. J. Clark School of Engineering Department of Civil and Environmental Engineering by Dr. Ibrahim A. Assakkaf Spring 1 ENCE 3 - Computation in Civil Engineering

More information

Econ 582 Nonparametric Regression

Econ 582 Nonparametric Regression Econ 582 Nonparametric Regression Eric Zivot May 28, 2013 Nonparametric Regression Sofarwehaveonlyconsideredlinearregressionmodels = x 0 β + [ x ]=0 [ x = x] =x 0 β = [ x = x] [ x = x] x = β The assume

More information

Section 3.3 Limits Involving Infinity - Asymptotes

Section 3.3 Limits Involving Infinity - Asymptotes 76 Section. Limits Involving Infinity - Asymptotes We begin our discussion with analyzing its as increases or decreases without bound. We will then eplore functions that have its at infinity. Let s consider

More information

Time Series and Forecasting Lecture 4 NonLinear Time Series

Time Series and Forecasting Lecture 4 NonLinear Time Series Time Series and Forecasting Lecture 4 NonLinear Time Series Bruce E. Hansen Summer School in Economics and Econometrics University of Crete July 23-27, 2012 Bruce Hansen (University of Wisconsin) Foundations

More information

Lecture 4.2 Finite Difference Approximation

Lecture 4.2 Finite Difference Approximation Lecture 4. Finite Difference Approimation 1 Discretization As stated in Lecture 1.0, there are three steps in numerically solving the differential equations. They are: 1. Discretization of the domain by

More information

Polynomial Functions of Higher Degree

Polynomial Functions of Higher Degree SAMPLE CHAPTER. NOT FOR DISTRIBUTION. 4 Polynomial Functions of Higher Degree Polynomial functions of degree greater than 2 can be used to model data such as the annual temperature fluctuations in Daytona

More information

Regent College Maths Department. Core Mathematics 4 Trapezium Rule. C4 Integration Page 1

Regent College Maths Department. Core Mathematics 4 Trapezium Rule. C4 Integration Page 1 Regent College Maths Department Core Mathematics Trapezium Rule C Integration Page Integration It might appear to be a bit obvious but you must remember all of your C work on differentiation if you are

More information

( ) ( ) ( ) 2 6A: Special Trig Limits! Math 400

( ) ( ) ( ) 2 6A: Special Trig Limits! Math 400 2 6A: Special Trig Limits Math 400 This section focuses entirely on the its of 2 specific trigonometric functions. The use of Theorem and the indeterminate cases of Theorem are all considered. a The it

More information

Sections 5.1: Areas and Distances

Sections 5.1: Areas and Distances Sections.: Areas and Distances In this section we shall consider problems closely related to the problems we considered at the beginning of the semester (the tangent and velocity problems). Specifically,

More information

Nonparametric Regression. Changliang Zou

Nonparametric Regression. Changliang Zou Nonparametric Regression Institute of Statistics, Nankai University Email: nk.chlzou@gmail.com Smoothing parameter selection An overall measure of how well m h (x) performs in estimating m(x) over x (0,

More information

every hour 8760 A every minute 525,000 A continuously n A

every hour 8760 A every minute 525,000 A continuously n A In the previous lesson we introduced Eponential Functions and their graphs, and covered an application of Eponential Functions (Compound Interest). We saw that when interest is compounded n times per year

More information

1 5 π 2. 5 π 3. 5 π π x. 5 π 4. Figure 1: We need calculus to find the area of the shaded region.

1 5 π 2. 5 π 3. 5 π π x. 5 π 4. Figure 1: We need calculus to find the area of the shaded region. . Area In order to quantify the size of a 2-dimensional object, we use area. Since we measure area in square units, we can think of the area of an object as the number of such squares it fills up. Using

More information

8-1 Exploring Exponential Models

8-1 Exploring Exponential Models 8- Eploring Eponential Models Eponential Function A function with the general form, where is a real number, a 0, b > 0 and b. Eample: y = 4() Growth Factor When b >, b is the growth factor Eample: y =

More information

Example 1: What do you know about the graph of the function

Example 1: What do you know about the graph of the function Section 1.5 Analyzing of Functions In this section, we ll look briefly at four types of functions: polynomial functions, rational functions, eponential functions and logarithmic functions. Eample 1: What

More information

12.1 The Extrema of a Function

12.1 The Extrema of a Function . The Etrema of a Function Question : What is the difference between a relative etremum and an absolute etremum? Question : What is a critical point of a function? Question : How do you find the relative

More information

13. x 2 = x 2 = x 2 = x 2 = x 3 = x 3 = x 4 = x 4 = x 5 = x 5 =

13. x 2 = x 2 = x 2 = x 2 = x 3 = x 3 = x 4 = x 4 = x 5 = x 5 = Section 8. Eponents and Roots 76 8. Eercises In Eercises -, compute the eact value... 4. (/) 4. (/). 6 6. 4 7. (/) 8. (/) 9. 7 0. (/) 4. (/6). In Eercises -4, perform each of the following tasks for the

More information

Local linear multiple regression with variable. bandwidth in the presence of heteroscedasticity

Local linear multiple regression with variable. bandwidth in the presence of heteroscedasticity Local linear multiple regression with variable bandwidth in the presence of heteroscedasticity Azhong Ye 1 Rob J Hyndman 2 Zinai Li 3 23 January 2006 Abstract: We present local linear estimator with variable

More information

A11.1 Areas under curves

A11.1 Areas under curves Applications 11.1 Areas under curves A11.1 Areas under curves Before ou start You should be able to: calculate the value of given the value of in algebraic equations of curves calculate the area of a trapezium.

More information

ECON 721: Lecture Notes on Nonparametric Density and Regression Estimation. Petra E. Todd

ECON 721: Lecture Notes on Nonparametric Density and Regression Estimation. Petra E. Todd ECON 721: Lecture Notes on Nonparametric Density and Regression Estimation Petra E. Todd Fall, 2014 2 Contents 1 Review of Stochastic Order Symbols 1 2 Nonparametric Density Estimation 3 2.1 Histogram

More information

MATH 108 REVIEW TOPIC 6 Radicals

MATH 108 REVIEW TOPIC 6 Radicals Math 08 T6-Radicals Page MATH 08 REVIEW TOPIC 6 Radicals I. Computations with Radicals II. III. IV. Radicals Containing Variables Rationalizing Radicals and Rational Eponents V. Logarithms Answers to Eercises

More information

Nonparametric Regression Härdle, Müller, Sperlich, Werwarz, 1995, Nonparametric and Semiparametric Models, An Introduction

Nonparametric Regression Härdle, Müller, Sperlich, Werwarz, 1995, Nonparametric and Semiparametric Models, An Introduction Härdle, Müller, Sperlich, Werwarz, 1995, Nonparametric and Semiparametric Models, An Introduction Tine Buch-Kromann Univariate Kernel Regression The relationship between two variables, X and Y where m(

More information

Introduction. Linear Regression. coefficient estimates for the wage equation: E(Y X) = X 1 β X d β d = X β

Introduction. Linear Regression. coefficient estimates for the wage equation: E(Y X) = X 1 β X d β d = X β Introduction - Introduction -2 Introduction Linear Regression E(Y X) = X β +...+X d β d = X β Example: Wage equation Y = log wages, X = schooling (measured in years), labor market experience (measured

More information

3.1 Measures of Central Tendency: Mode, Median and Mean. Average a single number that is used to describe the entire sample or population

3.1 Measures of Central Tendency: Mode, Median and Mean. Average a single number that is used to describe the entire sample or population . Measures of Central Tendency: Mode, Median and Mean Average a single number that is used to describe the entire sample or population. Mode a. Easiest to compute, but not too stable i. Changing just one

More information

MATH 1325 Business Calculus Guided Notes

MATH 1325 Business Calculus Guided Notes MATH 135 Business Calculus Guided Notes LSC North Harris By Isabella Fisher Section.1 Functions and Theirs Graphs A is a rule that assigns to each element in one and only one element in. Set A Set B Set

More information

Taylor Series and Series Convergence (Online)

Taylor Series and Series Convergence (Online) 7in 0in Felder c02_online.te V3 - February 9, 205 9:5 A.M. Page CHAPTER 2 Taylor Series and Series Convergence (Online) 2.8 Asymptotic Epansions In introductory calculus classes the statement this series

More information

NADARAYA WATSON ESTIMATE JAN 10, 2006: version 2. Y ik ( x i

NADARAYA WATSON ESTIMATE JAN 10, 2006: version 2. Y ik ( x i NADARAYA WATSON ESTIMATE JAN 0, 2006: version 2 DATA: (x i, Y i, i =,..., n. ESTIMATE E(Y x = m(x by n i= ˆm (x = Y ik ( x i x n i= K ( x i x EXAMPLES OF K: K(u = I{ u c} (uniform or box kernel K(u = u

More information

Quantitative Economics for the Evaluation of the European Policy. Dipartimento di Economia e Management

Quantitative Economics for the Evaluation of the European Policy. Dipartimento di Economia e Management Quantitative Economics for the Evaluation of the European Policy Dipartimento di Economia e Management Irene Brunetti 1 Davide Fiaschi 2 Angela Parenti 3 9 ottobre 2015 1 ireneb@ec.unipi.it. 2 davide.fiaschi@unipi.it.

More information

Suggested Problems for Math 122

Suggested Problems for Math 122 Suggested Problems for Math 22 Note: This file will grow as the semester evolves and more sections are added. CCA = Contemporary College Algebra, SIA = Shaum s Intermediate Algebra SIA(.) Rational Epressions

More information

AGEC 661 Note Eleven Ximing Wu. Exponential regression model: m (x, θ) = exp (xθ) for y 0

AGEC 661 Note Eleven Ximing Wu. Exponential regression model: m (x, θ) = exp (xθ) for y 0 AGEC 661 ote Eleven Ximing Wu M-estimator So far we ve focused on linear models, where the estimators have a closed form solution. If the population model is nonlinear, the estimators often do not have

More information

MORE CURVE SKETCHING

MORE CURVE SKETCHING Mathematics Revision Guides More Curve Sketching Page of 3 MK HOME TUITION Mathematics Revision Guides Level: AS / A Level MEI OCR MEI: C4 MORE CURVE SKETCHING Version : 5 Date: 05--007 Mathematics Revision

More information

Nonparametric Density Estimation

Nonparametric Density Estimation Nonparametric Density Estimation Econ 690 Purdue University Justin L. Tobias (Purdue) Nonparametric Density Estimation 1 / 29 Density Estimation Suppose that you had some data, say on wages, and you wanted

More information

10.7 Polynomial and Rational Inequalities

10.7 Polynomial and Rational Inequalities 10.7 Polynomial and Rational Inequalities In this section we want to turn our attention to solving polynomial and rational inequalities. That is, we want to solve inequalities like 5 4 0. In order to do

More information

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes Paper Reference(s) 6665/01 Edecel GCE Core Mathematics C Silver Level S Time: 1 hour 0 minutes Materials required for eamination papers Mathematical Formulae (Green) Items included with question Nil Candidates

More information

Lesson 5.6 Exercises, pages

Lesson 5.6 Exercises, pages Lesson 5.6 Eercises, pages 05 0 A. Approimate the value of each logarithm, to the nearest thousanth. a) log 9 b) log 00 Use the change of base formula to change the base of the logarithms to base 0. log

More information

SOLVING QUADRATICS. Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources

SOLVING QUADRATICS. Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources SOLVING QUADRATICS Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources SOLVING QUADRATICS General Form: y a b c Where a, b and c are constants To solve a quadratic equation, the equation

More information

Logarithmic Functions. 4. f(f -1 (x)) = x and f -1 (f(x)) = x. 5. The graph of f -1 is the reflection of the graph of f about the line y = x.

Logarithmic Functions. 4. f(f -1 (x)) = x and f -1 (f(x)) = x. 5. The graph of f -1 is the reflection of the graph of f about the line y = x. SECTION. Logarithmic Functions 83 SECTION. Logarithmic Functions Objectives Change from logarithmic to eponential form. Change from eponential to logarithmic form. 3 Evaluate logarithms. 4 Use basic logarithmic

More information

To find the absolute extrema on a continuous function f defined over a closed interval,

To find the absolute extrema on a continuous function f defined over a closed interval, Question 4: How do you find the absolute etrema of a function? The absolute etrema of a function is the highest or lowest point over which a function is defined. In general, a function may or may not have

More information

Test for Discontinuities in Nonparametric Regression

Test for Discontinuities in Nonparametric Regression Communications of the Korean Statistical Society Vol. 15, No. 5, 2008, pp. 709 717 Test for Discontinuities in Nonparametric Regression Dongryeon Park 1) Abstract The difference of two one-sided kernel

More information

Differential calculus. Background mathematics review

Differential calculus. Background mathematics review Differential calculus Background mathematics review David Miller Differential calculus First derivative Background mathematics review David Miller First derivative For some function y The (first) derivative

More information

CHAPTER 3 : QUADRARIC FUNCTIONS MODULE CONCEPT MAP Eercise 1 3. Recognizing the quadratic functions Graphs of quadratic functions 4 Eercis

CHAPTER 3 : QUADRARIC FUNCTIONS MODULE CONCEPT MAP Eercise 1 3. Recognizing the quadratic functions Graphs of quadratic functions 4 Eercis ADDITIONAL MATHEMATICS MODULE 5 QUADRATIC FUNCTIONS CHAPTER 3 : QUADRARIC FUNCTIONS MODULE 5 3.1 CONCEPT MAP Eercise 1 3. Recognizing the quadratic functions 3 3.3 Graphs of quadratic functions 4 Eercise

More information

Local Adaptive Smoothing in Kernel Regression Estimation

Local Adaptive Smoothing in Kernel Regression Estimation Clemson University TigerPrints All Theses Theses 8-009 Local Adaptive Smoothing in Kernel Regression Estimation Qi Zheng Clemson University, qiz@clemson.edu Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

More information

QUADRATIC FUNCTIONS. ( x 7)(5x 6) = 2. Exercises: 1 3x 5 Sum: 8. We ll expand it by using the distributive property; 9. Let s use the FOIL method;

QUADRATIC FUNCTIONS. ( x 7)(5x 6) = 2. Exercises: 1 3x 5 Sum: 8. We ll expand it by using the distributive property; 9. Let s use the FOIL method; QUADRATIC FUNCTIONS A. Eercises: 1.. 3. + = + = + + = +. ( 1)(3 5) (3 5) 1(3 5) 6 10 3 5 6 13 5 = = + = +. ( 7)(5 6) (5 6) 7(5 6) 5 6 35 4 5 41 4 3 5 6 10 1 3 5 Sum: 6 + 10+ 3 5 ( + 1)(3 5) = 6 + 13 5

More information

Chapter 5: Systems of Equations and Inequalities. Section 5.4. Check Point Exercises

Chapter 5: Systems of Equations and Inequalities. Section 5.4. Check Point Exercises Chapter : Systems of Equations and Inequalities Section. Check Point Eercises. = y y = Solve the first equation for y. y = + Substitute the epression + for y in the second equation and solve for. ( + )

More information

12 - Nonparametric Density Estimation

12 - Nonparametric Density Estimation ST 697 Fall 2017 1/49 12 - Nonparametric Density Estimation ST 697 Fall 2017 University of Alabama Density Review ST 697 Fall 2017 2/49 Continuous Random Variables ST 697 Fall 2017 3/49 1.0 0.8 F(x) 0.6

More information

Recurring Decimals. Mathswatch. Clip ) a) Convert the recurring decimal 036. to a fraction in its simplest form.

Recurring Decimals. Mathswatch. Clip ) a) Convert the recurring decimal 036. to a fraction in its simplest form. Clip Recurring Decimals ) a) Convert the recurring decimal 06. to a fraction in its simplest form. 8 b) Prove that the recurring decimal 07. = ) a) Change 4 9 to a decimal. 9 b) Prove that the recurring

More information

Soft and hard models. Jiří Militky Computer assisted statistical modeling in the

Soft and hard models. Jiří Militky Computer assisted statistical modeling in the Soft and hard models Jiří Militky Computer assisted statistical s modeling in the applied research Monsters Giants Moore s law: processing capacity doubles every 18 months : CPU, cache, memory It s more

More information

Nonparametric Methods

Nonparametric Methods Nonparametric Methods Michael R. Roberts Department of Finance The Wharton School University of Pennsylvania July 28, 2009 Michael R. Roberts Nonparametric Methods 1/42 Overview Great for data analysis

More information

Regression: Predicting and Relating Quantitative Features

Regression: Predicting and Relating Quantitative Features Chapter 1 Regression: Predicting and Relating Quantitative Features 1.1 Statistics, Data Analysis, Regression Statistics is the branch of mathematical engineering which designs and analyses methods for

More information

Simple and Efficient Improvements of Multivariate Local Linear Regression

Simple and Efficient Improvements of Multivariate Local Linear Regression Journal of Multivariate Analysis Simple and Efficient Improvements of Multivariate Local Linear Regression Ming-Yen Cheng 1 and Liang Peng Abstract This paper studies improvements of multivariate local

More information

CHAPTER 5 Probabilistic Features of the Distributions of Certain Sample Statistics

CHAPTER 5 Probabilistic Features of the Distributions of Certain Sample Statistics CHAPTER 5 Probabilistic Features of the Distributions of Certain Sample Statistics Key Words Sampling Distributions Distribution of the Sample Mean Distribution of the difference between Two Sample Means

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.8 Newton s Method In this section, we will learn: How to solve high degree equations using Newton s method. INTRODUCTION Suppose that

More information

3.1 Power Functions & Polynomial Functions

3.1 Power Functions & Polynomial Functions 3.1 Power Functions & Polynomial Functions A power function is a function that can be represented in the form f() = p, where the base is a variable and the eponent, p, is a number. The Effect of the Power

More information

Histogram Härdle, Müller, Sperlich, Werwatz, 1995, Nonparametric and Semiparametric Models, An Introduction

Histogram Härdle, Müller, Sperlich, Werwatz, 1995, Nonparametric and Semiparametric Models, An Introduction Härdle, Müller, Sperlich, Werwatz, 1995, Nonparametric and Semiparametric Models, An Introduction Tine Buch-Kromann Construction X 1,..., X n iid r.v. with (unknown) density, f. Aim: Estimate the density

More information

L20: MLPs, RBFs and SPR Bayes discriminants and MLPs The role of MLP hidden units Bayes discriminants and RBFs Comparison between MLPs and RBFs

L20: MLPs, RBFs and SPR Bayes discriminants and MLPs The role of MLP hidden units Bayes discriminants and RBFs Comparison between MLPs and RBFs L0: MLPs, RBFs and SPR Bayes discriminants and MLPs The role of MLP hidden units Bayes discriminants and RBFs Comparison between MLPs and RBFs CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna CSE@TAMU

More information

Beautiful homework # 4 ENGR 323 CESSNA Page 1/5

Beautiful homework # 4 ENGR 323 CESSNA Page 1/5 Beautiful homework # 4 ENGR 33 CESSNA Page 1/5 Problem 3-14 An operator records the time to complete a mechanical assembly to the nearest second with the following results. seconds 30 31 3 33 34 35 36

More information

Chapter 9 Regression. 9.1 Simple linear regression Linear models Least squares Predictions and residuals.

Chapter 9 Regression. 9.1 Simple linear regression Linear models Least squares Predictions and residuals. 9.1 Simple linear regression 9.1.1 Linear models Response and eplanatory variables Chapter 9 Regression With bivariate data, it is often useful to predict the value of one variable (the response variable,

More information

= 1 2 x (x 1) + 1 {x} (1 {x}). [t] dt = 1 x (x 1) + O (1), [t] dt = 1 2 x2 + O (x), (where the error is not now zero when x is an integer.

= 1 2 x (x 1) + 1 {x} (1 {x}). [t] dt = 1 x (x 1) + O (1), [t] dt = 1 2 x2 + O (x), (where the error is not now zero when x is an integer. Problem Sheet,. i) Draw the graphs for [] and {}. ii) Show that for α R, α+ α [t] dt = α and α+ α {t} dt =. Hint Split these integrals at the integer which must lie in any interval of length, such as [α,

More information

Local Polynomial Order in Regression Discontinuity Designs 1

Local Polynomial Order in Regression Discontinuity Designs 1 Local Polynomial Order in Regression Discontinuity Designs 1 Zhuan Pei 2 Cornell University and IZA David Card 4 UC Berkeley, NBER and IZA David S. Lee 3 Princeton University and NBER Andrea Weber 5 Central

More information

Estimation of Parameters and Variance

Estimation of Parameters and Variance Estimation of Parameters and Variance Dr. A.C. Kulshreshtha U.N. Statistical Institute for Asia and the Pacific (SIAP) Second RAP Regional Workshop on Building Training Resources for Improving Agricultural

More information

DESIGN-ADAPTIVE MINIMAX LOCAL LINEAR REGRESSION FOR LONGITUDINAL/CLUSTERED DATA

DESIGN-ADAPTIVE MINIMAX LOCAL LINEAR REGRESSION FOR LONGITUDINAL/CLUSTERED DATA Statistica Sinica 18(2008), 515-534 DESIGN-ADAPTIVE MINIMAX LOCAL LINEAR REGRESSION FOR LONGITUDINAL/CLUSTERED DATA Kani Chen 1, Jianqing Fan 2 and Zhezhen Jin 3 1 Hong Kong University of Science and Technology,

More information

Confidence intervals for kernel density estimation

Confidence intervals for kernel density estimation Stata User Group - 9th UK meeting - 19/20 May 2003 Confidence intervals for kernel density estimation Carlo Fiorio c.fiorio@lse.ac.uk London School of Economics and STICERD Stata User Group - 9th UK meeting

More information

NOTES 5: APPLICATIONS OF DIFFERENTIATION

NOTES 5: APPLICATIONS OF DIFFERENTIATION NOTES 5: APPLICATIONS OF DIFFERENTIATION Name: Date: Period: Mrs. Nguyen s Initial: LESSON 5.1 EXTREMA ON AN INTERVAL Definition of Etrema Let f be defined on an interval I containing c. 1. f () c is the

More information

An alternative local polynomial estimator for the error-in-variables problem

An alternative local polynomial estimator for the error-in-variables problem To appear in the Journal of Nonparametric Statistics Vol. 00, No. 00, Month 20XX, 1 23 An alternative local polynomial estimator for the error-in-variables problem Xianzheng Huang a and Haiming Zhou b

More information

Optimal bandwidth selection for the fuzzy regression discontinuity estimator

Optimal bandwidth selection for the fuzzy regression discontinuity estimator Optimal bandwidth selection for the fuzzy regression discontinuity estimator Yoichi Arai Hidehiko Ichimura The Institute for Fiscal Studies Department of Economics, UCL cemmap working paper CWP49/5 Optimal

More information

Homework set 5 - Solutions

Homework set 5 - Solutions Homework set 5 - Solutions Math 3 Renato Feres 1. Illustrating the central limit theorem. Let X be a random variable having the uniform distribution over the interval [1,]. Denote by X 1, X, X 3,... a

More information

3.1 Extreme Values of a Function

3.1 Extreme Values of a Function .1 Etreme Values of a Function Section.1 Notes Page 1 One application of te derivative is finding minimum and maimum values off a grap. In precalculus we were only able to do tis wit quadratics by find

More information

EXACT EQUATIONS AND INTEGRATING FACTORS

EXACT EQUATIONS AND INTEGRATING FACTORS MAP- EXACT EQUATIONS AND INTEGRATING FACTORS First-order Differential Equations for Which We Can Find Eact Solutions Stu the patterns carefully. The first step of any solution is correct identification

More information

INSTRUCTOR S SOLUTIONS MANUAL SECTION 17.1 (PAGE 902)

INSTRUCTOR S SOLUTIONS MANUAL SECTION 17.1 (PAGE 902) INSTRUCTOR S SOLUTIONS MANUAL SECTION 7 PAGE 90 CHAPTER 7 ORDINARY DIFFEREN- TIAL EQUATIONS Section 7 Classifing Differential Equations page 90 = 5: st order, linear, homogeneous d d + = : nd order, linear,

More information

Chapter 4 Applications of Derivatives. Section 4.1 Extreme Values of Functions (pp ) Section Quick Review 4.1

Chapter 4 Applications of Derivatives. Section 4.1 Extreme Values of Functions (pp ) Section Quick Review 4.1 Section. 6 8. Continued (e) vt () t > 0 t > 6 t > 8. (a) d d e u e u du where u d (b) d d d d e + e e e e e e + e e + e (c) y(). (d) m e e y (). 7 y. 7( ) +. y 7. + 0. 68 0. 8 m. 7 y0. 8( ) +. y 0. 8+.

More information

6 = 1 2. The right endpoints of the subintervals are then 2 5, 3, 7 2, 4, 2 9, 5, while the left endpoints are 2, 5 2, 3, 7 2, 4, 9 2.

6 = 1 2. The right endpoints of the subintervals are then 2 5, 3, 7 2, 4, 2 9, 5, while the left endpoints are 2, 5 2, 3, 7 2, 4, 9 2. 5 THE ITEGRAL 5. Approimating and Computing Area Preliminar Questions. What are the right and left endpoints if [, 5] is divided into si subintervals? If the interval [, 5] is divided into si subintervals,

More information

Partial differentiation. Background mathematics review

Partial differentiation. Background mathematics review Partial differentiation Background mathematics review David Miller Partial differentiation Partial derivatives Background mathematics review David Miller Partial derivative Suppose we have a function f(,)

More information

8.1 Exponents and Roots

8.1 Exponents and Roots Section 8. Eponents and Roots 75 8. Eponents and Roots Before defining the net famil of functions, the eponential functions, we will need to discuss eponent notation in detail. As we shall see, eponents

More information

8.4 Integration of Rational Functions by Partial Fractions Lets use the following example as motivation: Ex: Consider I = x+5

8.4 Integration of Rational Functions by Partial Fractions Lets use the following example as motivation: Ex: Consider I = x+5 Math 2-08 Rahman Week6 8.4 Integration of Rational Functions by Partial Fractions Lets use the following eample as motivation: E: Consider I = +5 2 + 2 d. Solution: Notice we can easily factor the denominator

More information

INTRODUCTION TO RATIONAL EXPRESSIONS EXAMPLE:

INTRODUCTION TO RATIONAL EXPRESSIONS EXAMPLE: INTRODUCTION TO RATIONAL EXPRESSIONS EXAMPLE: You decide to open a small business making gluten-free cakes. Your start-up costs were $, 000. In addition, it costs $ 0 to produce each cake. What is the

More information

Computer Problems for Taylor Series and Series Convergence

Computer Problems for Taylor Series and Series Convergence Computer Problems for Taylor Series and Series Convergence The two problems below are a set; the first should be done without a computer and the second is a computer-based follow up. 1. The drawing below

More information

Local linear multivariate. regression with variable. bandwidth in the presence of. heteroscedasticity

Local linear multivariate. regression with variable. bandwidth in the presence of. heteroscedasticity Model ISSN 1440-771X Department of Econometrics and Business Statistics http://www.buseco.monash.edu.au/depts/ebs/pubs/wpapers/ Local linear multivariate regression with variable bandwidth in the presence

More information

Nonparametric Inference via Bootstrapping the Debiased Estimator

Nonparametric Inference via Bootstrapping the Debiased Estimator Nonparametric Inference via Bootstrapping the Debiased Estimator Yen-Chi Chen Department of Statistics, University of Washington ICSA-Canada Chapter Symposium 2017 1 / 21 Problem Setup Let X 1,, X n be

More information

Local Polynomial Regression

Local Polynomial Regression VI Local Polynomial Regression (1) Global polynomial regression We observe random pairs (X 1, Y 1 ),, (X n, Y n ) where (X 1, Y 1 ),, (X n, Y n ) iid (X, Y ). We want to estimate m(x) = E(Y X = x) based

More information

2.13 Linearization and Differentials

2.13 Linearization and Differentials Linearization and Differentials Section Notes Page Sometimes we can approimate more complicated functions with simpler ones These would give us enough accuracy for certain situations and are easier to

More information

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one.

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one. Section 5.4 - Inverse Trigonometry In this section, we will define inverse since, cosine and tangent functions. RECALL Facts about inverse functions: A function f ) is one-to-one if no two different inputs

More information

Exact Differential Equations. The general solution of the equation is f x, y C. If f has continuous second partials, then M y 2 f

Exact Differential Equations. The general solution of the equation is f x, y C. If f has continuous second partials, then M y 2 f APPENDIX C Additional Topics in Differential Equations APPENDIX C. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Chapter 6, ou studied applications

More information

Spatial smoothing using Gaussian processes

Spatial smoothing using Gaussian processes Spatial smoothing using Gaussian processes Chris Paciorek paciorek@hsph.harvard.edu August 5, 2004 1 OUTLINE Spatial smoothing and Gaussian processes Covariance modelling Nonstationary covariance modelling

More information

A dash of derivatives

A dash of derivatives Università Ca Foscari di Venezia - Dipartimento di Economia - A.A.2016-2017 Mathematics (Curriculum Economics, Markets and Finance) A dash of derivatives Luciano Battaia October 6, 2016 1 Tangents to curves

More information

The choice of weights in kernel regression estimation

The choice of weights in kernel regression estimation Biometrika (1990), 77, 2, pp. 377-81 Printed in Great Britain The choice of weights in kernel regression estimation BY THEO GASSER Zentralinstitut fur Seelische Gesundheit, J5, P.O.B. 5970, 6800 Mannheim

More information

Solutions to Math 41 Final Exam December 9, 2013

Solutions to Math 41 Final Exam December 9, 2013 Solutions to Math 4 Final Eam December 9,. points In each part below, use the method of your choice, but show the steps in your computations. a Find f if: f = arctane csc 5 + log 5 points Using the Chain

More information

Additive Isotonic Regression

Additive Isotonic Regression Additive Isotonic Regression Enno Mammen and Kyusang Yu 11. July 2006 INTRODUCTION: We have i.i.d. random vectors (Y 1, X 1 ),..., (Y n, X n ) with X i = (X1 i,..., X d i ) and we consider the additive

More information

Exam 2 Review F15 O Brien. Exam 2 Review:

Exam 2 Review F15 O Brien. Exam 2 Review: Eam Review:.. Directions: Completely rework Eam and then work the following problems with your book notes and homework closed. You may have your graphing calculator and some blank paper. The idea is to

More information

Finite difference Hermite WENO schemes for the Hamilton-Jacobi equations 1

Finite difference Hermite WENO schemes for the Hamilton-Jacobi equations 1 Finite difference Hermite WENO schemes for the Hamilton-Jacobi equations Feng Zheng, Chi-Wang Shu 3 and Jianian Qiu 4 Abstract In this paper, a new type of finite difference Hermite weighted essentially

More information

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2)

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2) . f() = 4 cosec 4 +, where is in radians. (a) Show that there is a root α of f () = 0 in the interval [.,.3]. Show that the equation f() = 0 can be written in the form = + sin 4 Use the iterative formula

More information

Particular Solutions

Particular Solutions Particular Solutions Our eamples so far in this section have involved some constant of integration, K. We now move on to see particular solutions, where we know some boundar conditions and we substitute

More information

Slopes and Rates of Change

Slopes and Rates of Change Slopes and Rates of Change If a particle is moving in a straight line at a constant velocity, then the graph of the function of distance versus time is as follows s s = f(t) t s s t t = average velocity

More information

Chapter XX: 1: Functions. XXXXXXXXXXXXXXX <CT>Chapter 1: Data representation</ct> 1.1 Mappings

Chapter XX: 1: Functions. XXXXXXXXXXXXXXX <CT>Chapter 1: Data representation</ct> 1.1 Mappings 978--08-8-8 Cambridge IGCSE and O Level Additional Mathematics Practice Book Ecerpt Chapter XX: : Functions XXXXXXXXXXXXXXX Chapter : Data representation This section will show you how to: understand

More information

Introduction to Calculus

Introduction to Calculus 8 Introduction to Calculus TERMINOLOGY Composite function: A function of a function. One function, f (), is a composite of one function to another function, for eample g() Continuity: Describing a line

More information

1A (13) 1. Find an equation for the tangent line to the graph of y = 3 3y +3at the point ( ; 1). The first thing to do is to check that the values =, y =1satisfy the given equation. They do. Differentiating

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Announcements Machine Learning Lecture 3 Eam dates We re in the process of fiing the first eam date Probability Density Estimation II 9.0.207 Eercises The first eercise sheet is available on L2P now First

More information

Section 4.3: Quadratic Formula

Section 4.3: Quadratic Formula Objective: Solve quadratic equations using the quadratic formula. In this section we will develop a formula to solve any quadratic equation ab c 0 where a b and c are real numbers and a 0. Solve for this

More information

Section 3.3 Graphs of Polynomial Functions

Section 3.3 Graphs of Polynomial Functions 3.3 Graphs of Polynomial Functions 179 Section 3.3 Graphs of Polynomial Functions In the previous section we eplored the short run behavior of quadratics, a special case of polynomials. In this section

More information

Ready To Go On? Skills Intervention 6-1 Polynomials

Ready To Go On? Skills Intervention 6-1 Polynomials 6A Read To Go On? Skills Intervention 6- Polnomials Find these vocabular words in Lesson 6- and the Multilingual Glossar. Vocabular monomial polnomial degree of a monomial degree of a polnomial leading

More information

NONPARAMETRIC DENSITY ESTIMATION WITH RESPECT TO THE LINEX LOSS FUNCTION

NONPARAMETRIC DENSITY ESTIMATION WITH RESPECT TO THE LINEX LOSS FUNCTION NONPARAMETRIC DENSITY ESTIMATION WITH RESPECT TO THE LINEX LOSS FUNCTION R. HASHEMI, S. REZAEI AND L. AMIRI Department of Statistics, Faculty of Science, Razi University, 67149, Kermanshah, Iran. ABSTRACT

More information