Econ 582 Nonparametric Regression

Size: px
Start display at page:

Download "Econ 582 Nonparametric Regression"

Transcription

1 Econ 582 Nonparametric Regression Eric Zivot May 28, 2013

2 Nonparametric Regression Sofarwehaveonlyconsideredlinearregressionmodels = x 0 β + [ x ]=0 [ x = x] =x 0 β = [ x = x] [ x = x] x = β The assume that [ x = x] =x 0 β is a linear function of is often done for convenience. In general, when the components of are continuously distributed then can take on any nonlinear shape. [ x = x] = (x)

3 Two cases to consider If [ x = x] = (x) = (x θ) for θ R then we have a parametric nonlinear regression model = (x θ)+ and the parameters θ and be estimated using nonlinear regression techniques If [ x = x] = (x) cannot be modeled parametrically or the parametric form (x θ) is unknown then we have a non-parametric regression = (x)+ and we can estimate the function (x) at each point x using nonparametric regression techniques.

4 Binned Estimation of (x) Consider a nonparametric regression with a single covariate = ( )+ Fix the point = and consider estimating ( ) using a local average of values associated values near such that ˆ ( ) = P =1 1( ) P =1 1( ) 1( ) = 1 if ;0 otherwise ( ) = 1( ) P =1 1( ) Note, P =1 ( )=1 = X =1 ( )

5 Example: Nonparametric regression (Hansen) Thetruemodelis = ( )+ =1 100 ( ) = 10 log( ) (4 1) (0 16) ( ( ) 16) Forbinnedestimationlet = and =0 5

6 Remarks: Binned estimator is a step-function (discontinuous estimate of ( )) Forcoarsegridof the steps (squares in figure) are large For a fine grid of the steps (solid line in figure) are smaller The bandwidth determines the smoothness of the estimate: Small gives small bins and less smoothness

7 Figure 1: Binned estimator at = with =1 2 and NW estimator with Epanechnikov kernel

8 Kernel Regression Binned estimator is discontinuous because ( ) is constructed from indicator functions which are discontinuous If ( ) is constructed from a continuous function then ˆ ( ) will also be continuous. Kernel estimators of ( ) are continuous estimators based on continuous kernel weight functions

9 Example: Kernel weight function based on uniform distribution Define the weights 1( ) in terms of the uniform density on [ 1 1] 0 ( ) = 1 1( 1) = rectangular kernel 2 Then and µµ 1( ) =1 ˆ ( ) = 1 P ³ =1 0 P ³ =1 0 µ =2 0

10 Definition: A second-order kernel function ( ) satisfies 0 ( ) ( ) = ( ) R ( ) =1 2 = R 2 ( )

11 Kernel Estimator Given a kernel weight function ( ) akernelestimatorof ( ) has the form where ˆ ( ) = = ( )= P =1 ³ P =1 ³ X =1 ( ) ³ P =1 ³ Note: The kernel estimator is also known as the Nadaraya-Watson estimator, the kernel regression estimator or the local constant estimator.

12 Role of Bandwidth Parameter Bandwidth determines smoothness of estimator: large gives smoother ˆ ( ); smaller gives rougher (more erratic) ˆ ( ) 0 ˆ ( ) ˆ ( )

13 Commonly used Kernels 1. Epanechnikov kernel 1 ( ) = 3 4 (1 2 )1 ( 1) 2. Gaussian kernel 4 ( ) = 1 Ã! exp Two important properties of kernels 2 Z = = 2 ( ) Z ( )2

14 Properties of Commonly Used Kernels Kernel Equation 2 Uniform 0 ( ) = 1 21( 1) 1/2 1/3 Epanechnikov 1 ( ) = 3 4 (1 2 )1 ( 1) 3/5 1/5 Biweight 2 ( ) = (1 2 ) 2 1( 1) 5/7 1/7 Triweight 3 ( ) = (1 2 µ ) 3 1( 1) 350/429 1/9 Gaussian 4 ( ) = 1 exp 1/(2 )

15 Local Linear Estimator The Nadaraya-Watson (NW) kernel estimator is often called a local constant estimator as it locally (about x) approximates ( ) as a constant function. In fact, the NW estimator solves the minimization problem ˆ ( ) =argmin X =1 µ ( ) 2 This is a weighted regression of on an intercept only.

16 A local linear approximation solves the minimization problem nˆ ( ) ˆ ( ) o =argmin X =1 µ ( ( )) 2 The local linear estimator of ( ) is the estimated intercept ˆ ( ) =ˆ ( ) The local linear estimator of the regression derivative ( ) is the estimated slope coefficient d ( ) =ˆ ( )

17 Matrix notation Define z = à 1! µ = Then the LL estimator is the weighted LS estimator à ˆ ( ) ˆ ( )! = X =1 ( )z ( )z ( ) 0 = (Z 0 KZ) 1 Z 0 Ky 1 X =1 ( )z ( ) where K ( ) = 1 ( )... ( )

18 Remarks ( ) ˆ + ˆ because ( ) 1 NW does better than LL when ( ) is close to a flat line LL does better than NW when ( ) is meaningfully nonconstant LL does better than NW for values near the boundary of support of

19 Figure 2: Local linear estimator.

20 Nonparametric Residuals and Regression Fit Define the nonparametric residual as ˆ = ˆ ( ) Problem: ˆ is not a good error measure for small because ˆ ( ) as 0 and so ˆ 0 as 0 Need a residual that does not suffer from this overfitting problem

21 Leave-one-out (Jacknife) Residuals (NW Estimator) Idea: For the NW estimator, we can prevent ˆ ( ) as 0 by leaving out and from the non-parametric fit ˆ ( ) = P 6= ³ P 6= ³ The leave-one-out (Jacknife) NW predictor and residual for observation are = ˆ ( ) =

22 Leave-one-out (Jacknife) Residuals (LL Estimator) The Jacknife LL estimator has the form Ã! = X 6= z z 0 1 z = µ = and the LL residual is à 1 X 6=! = z

23 Cross Validation and Bandwidth Selection = ( )+ ( )= 2 for all ˆ ( ) = nonparametric estimate of ( ) Problem: How to choose? large smoother estimator (smaller variance of ˆ ( )) but higher bias at each small noiser estimator (higher variance of ˆ ( )) but lower bias at each (recall, ˆ ( ) as 0) Key point: Desirable to choose to minimize the bias-variance tradeoff

24 MSE, IMSE and MSFE The mean-squared error (MSE) at is defined as ( ) = h (ˆ ( ) ( )) 2i = (ˆ ( ) ( )) 2 + (ˆ ( )) and is a function of both and The integrated MSE a weighted average MSE over all is ( ) = ( ) = pdf of and is only a function of Z ( ) ( ) = [ ( )] Goal: Find to minimize ( )

25 Problem: ( ) depends on ( ) which is unknown Result: ( ) can be estimated using the sample mean-squared forecast error (MSFE) Let ( ) be out-of-sample observations independent of the sample. The prediction of +1 given +1 is The MSFE is defined as ˆ +1 =ˆ ( +1 ) ( ) = h ( +1 ˆ +1 ) 2i = h ( +1 ˆ ( +1 )) 2i

26 Using the trivial identity +1 ˆ ( +1 ) = +1 ( +1 )+ ( +1 ) ˆ ( +1 ) = +1 + ( +1 ) ˆ ( +1 ) It can be shown that ( ) = h ( +1 + ( +1 ) ˆ ( +1 )) 2i = 2 + Z ( ) ( ) = 2 + ( ) Hence, minimizing ( ) is equivalent to minimizing ( )

27 Estimating ( ) Using the Jacknife nonparametric residuals ( ) = ( ) an estimate of ( ) is \ ( ) = 1 X =1 ( ) 2 Treated as a function of \ ( ) is called the cross-validation criterion ( ) = 1 X =1 ( ) 2

28 Optimal Bandwidth Estimation The bandwidth that minimizes an estimate of the IMSE solves ˆ = arg min 0 ( ) Notes: Typically, the univariate minimization is done by evaluating ( ) over a grid [ 1 2 ] and choosing ˆ as the value that gives the smallest ( ) over the grid. Plots of ( ) against provide a visual guide to choosing

29 Asymptotic Distribution Theory Theorem. Let ˆ ( ) denote either the NW or LL estimator of ( ). If is interior to the support of and ( ) 0 then as and 0 such that where (ˆ ( ) ( ) 2 2 ( )) ˆ ( ) Ã Ã ( )+ 2 2 ( ) 2 ( ) ( ) 2 ( ) = [ 2 = ] 2 = Z 2 ( ) = Z 0 2 ( ) ( )! ( )2!

30 Figure 3: Cross-validation criteria, NW and LL estimators.

31 Figure 4: NW and LL estimates using data-dependent CV bandwidths.

32 TheasymptoticbiastermsfortheNWandLLestimatorsare ( ) = ( )+ ( ) 1 0 ( ) 0 ( ) ( ) = 1 2 ( ) 00 ( )

33 Remarks: Asymptotic variances of NW and LL estimators are the same but biases differ ˆ ( ) converges at rate instead of the usual CLT rate of Because 0 as diverges slower than Hence, nonparametric estimators converge more slowly to their asymptotic distributions than parametric estimators ˆ ( ) hasanasymptoticbiasterm 2 2 ( ) which depends on 2 0 ( ) 00 ( ) and ( ) and 0 ( )

34 Asymptotic bias decreases in andasymptoticvarianceincreasesin ( ) depends on both 0 ( ) and 0 ( ) whereas ( ) only depends on 00 ( ) ( ) = ( ) =0if ( ) is constant (i.e., 0 ( ) = 00 ( ) =0) ( ) is typically lower than ( )

35 Estimating Asymptotic Standard Errors The asymptotic distribution theory gives the result (ˆ ( )) = 2 ( ) ( ) The known quantities are and The unknown quantities are 2 ( ) = [ 2 = ] and ( ) An estimate of (ˆ ( )) uses estimates for 2 ( ) and ( ) \ (ˆ ( )) = ˆ 2 ( ) ˆ ( ) [ (ˆ ( )) = Question: How to estimate 2 ( ) and ( )? v u t ˆ 2 ( ) ˆ ( )

36 Nonparametric Estimation of 2 ( ) = [ 2 = ] and ( ) A nonparametric estimate of 2 ( ) has the form where is the Jackknife residual. 2 ( ) =P =1 ( ) 2 P =1 ( ) A nonparametric estimate of ( ) has the form ˆ ( ) = 1 X =1 µ

37 Extension to Multiple Regression = [ x = x]+ [ x = x] = (x)+ x = ( 1 ) 0 For any vector x and observation define the kernel weights and bandwidth vector Ã! Ã! Ã! 1 (x) = h = ( 1 ) 0 2

38 Nonparametric Estimators Multivariate NW estimator: ˆ (x) = P =1 (x) P =1 (x) Multivariate LL estimator: Ã ˆ (x) ˆ (x) z =! = Ã 1 x x X =1! (x)z (x)z (x) 0 = (Z 0 KZ) 1 Z 0 Ky 1 X =1 (x)z (x)

39 Remarks Finding the cross-validation bandwidth vector ĥ =argmin (h) h is a cumbersome numerical problem if is large Asymptotic distribution theory is similar to univariate case with one important difference: convergence rate to asymptotic normal distribution depends on the dimension of x The higher is thesloweristheconvergence rate. This is called the curse of dimensionality and is a major problem in nonparametric regression.

Time Series and Forecasting Lecture 4 NonLinear Time Series

Time Series and Forecasting Lecture 4 NonLinear Time Series Time Series and Forecasting Lecture 4 NonLinear Time Series Bruce E. Hansen Summer School in Economics and Econometrics University of Crete July 23-27, 2012 Bruce Hansen (University of Wisconsin) Foundations

More information

Nonparametric Methods

Nonparametric Methods Nonparametric Methods Michael R. Roberts Department of Finance The Wharton School University of Pennsylvania July 28, 2009 Michael R. Roberts Nonparametric Methods 1/42 Overview Great for data analysis

More information

Modelling Non-linear and Non-stationary Time Series

Modelling Non-linear and Non-stationary Time Series Modelling Non-linear and Non-stationary Time Series Chapter 2: Non-parametric methods Henrik Madsen Advanced Time Series Analysis September 206 Henrik Madsen (02427 Adv. TS Analysis) Lecture Notes September

More information

Density estimation Nonparametric conditional mean estimation Semiparametric conditional mean estimation. Nonparametrics. Gabriel Montes-Rojas

Density estimation Nonparametric conditional mean estimation Semiparametric conditional mean estimation. Nonparametrics. Gabriel Montes-Rojas 0 0 5 Motivation: Regression discontinuity (Angrist&Pischke) Outcome.5 1 1.5 A. Linear E[Y 0i X i] 0.2.4.6.8 1 X Outcome.5 1 1.5 B. Nonlinear E[Y 0i X i] i 0.2.4.6.8 1 X utcome.5 1 1.5 C. Nonlinearity

More information

Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones

Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones http://www.mpia.de/homes/calj/mlpr_mpia2008.html 1 1 Last week... supervised and unsupervised methods need adaptive

More information

Nonparametric Density Estimation

Nonparametric Density Estimation Nonparametric Density Estimation Econ 690 Purdue University Justin L. Tobias (Purdue) Nonparametric Density Estimation 1 / 29 Density Estimation Suppose that you had some data, say on wages, and you wanted

More information

41903: Introduction to Nonparametrics

41903: Introduction to Nonparametrics 41903: Notes 5 Introduction Nonparametrics fundamentally about fitting flexible models: want model that is flexible enough to accommodate important patterns but not so flexible it overspecializes to specific

More information

Single Index Quantile Regression for Heteroscedastic Data

Single Index Quantile Regression for Heteroscedastic Data Single Index Quantile Regression for Heteroscedastic Data E. Christou M. G. Akritas Department of Statistics The Pennsylvania State University JSM, 2015 E. Christou, M. G. Akritas (PSU) SIQR JSM, 2015

More information

Local Polynomial Modelling and Its Applications

Local Polynomial Modelling and Its Applications Local Polynomial Modelling and Its Applications J. Fan Department of Statistics University of North Carolina Chapel Hill, USA and I. Gijbels Institute of Statistics Catholic University oflouvain Louvain-la-Neuve,

More information

Introduction to Regression

Introduction to Regression Introduction to Regression p. 1/97 Introduction to Regression Chad Schafer cschafer@stat.cmu.edu Carnegie Mellon University Introduction to Regression p. 1/97 Acknowledgement Larry Wasserman, All of Nonparametric

More information

Statistics for Python

Statistics for Python Statistics for Python An extension module for the Python scripting language Michiel de Hoon, Columbia University 2 September 2010 Statistics for Python, an extension module for the Python scripting language.

More information

Preface. 1 Nonparametric Density Estimation and Testing. 1.1 Introduction. 1.2 Univariate Density Estimation

Preface. 1 Nonparametric Density Estimation and Testing. 1.1 Introduction. 1.2 Univariate Density Estimation Preface Nonparametric econometrics has become one of the most important sub-fields in modern econometrics. The primary goal of this lecture note is to introduce various nonparametric and semiparametric

More information

Introduction to Maximum Likelihood Estimation

Introduction to Maximum Likelihood Estimation Introduction to Maximum Likelihood Estimation Eric Zivot July 26, 2012 The Likelihood Function Let 1 be an iid sample with pdf ( ; ) where is a ( 1) vector of parameters that characterize ( ; ) Example:

More information

Introduction to Regression

Introduction to Regression Introduction to Regression Chad M. Schafer May 20, 2015 Outline General Concepts of Regression, Bias-Variance Tradeoff Linear Regression Nonparametric Procedures Cross Validation Local Polynomial Regression

More information

Nonparametric Regression. Badr Missaoui

Nonparametric Regression. Badr Missaoui Badr Missaoui Outline Kernel and local polynomial regression. Penalized regression. We are given n pairs of observations (X 1, Y 1 ),...,(X n, Y n ) where Y i = r(x i ) + ε i, i = 1,..., n and r(x) = E(Y

More information

Local Polynomial Regression

Local Polynomial Regression VI Local Polynomial Regression (1) Global polynomial regression We observe random pairs (X 1, Y 1 ),, (X n, Y n ) where (X 1, Y 1 ),, (X n, Y n ) iid (X, Y ). We want to estimate m(x) = E(Y X = x) based

More information

Introduction to Regression

Introduction to Regression Introduction to Regression Chad M. Schafer cschafer@stat.cmu.edu Carnegie Mellon University Introduction to Regression p. 1/100 Outline General Concepts of Regression, Bias-Variance Tradeoff Linear Regression

More information

Density Estimation (II)

Density Estimation (II) Density Estimation (II) Yesterday Overview & Issues Histogram Kernel estimators Ideogram Today Further development of optimization Estimating variance and bias Adaptive kernels Multivariate kernel estimation

More information

Week 5 Quantitative Analysis of Financial Markets Modeling and Forecasting Trend

Week 5 Quantitative Analysis of Financial Markets Modeling and Forecasting Trend Week 5 Quantitative Analysis of Financial Markets Modeling and Forecasting Trend Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 :

More information

Single Index Quantile Regression for Heteroscedastic Data

Single Index Quantile Regression for Heteroscedastic Data Single Index Quantile Regression for Heteroscedastic Data E. Christou M. G. Akritas Department of Statistics The Pennsylvania State University SMAC, November 6, 2015 E. Christou, M. G. Akritas (PSU) SIQR

More information

Introduction. Linear Regression. coefficient estimates for the wage equation: E(Y X) = X 1 β X d β d = X β

Introduction. Linear Regression. coefficient estimates for the wage equation: E(Y X) = X 1 β X d β d = X β Introduction - Introduction -2 Introduction Linear Regression E(Y X) = X β +...+X d β d = X β Example: Wage equation Y = log wages, X = schooling (measured in years), labor market experience (measured

More information

Estimation of cumulative distribution function with spline functions

Estimation of cumulative distribution function with spline functions INTERNATIONAL JOURNAL OF ECONOMICS AND STATISTICS Volume 5, 017 Estimation of cumulative distribution function with functions Akhlitdin Nizamitdinov, Aladdin Shamilov Abstract The estimation of the cumulative

More information

12 - Nonparametric Density Estimation

12 - Nonparametric Density Estimation ST 697 Fall 2017 1/49 12 - Nonparametric Density Estimation ST 697 Fall 2017 University of Alabama Density Review ST 697 Fall 2017 2/49 Continuous Random Variables ST 697 Fall 2017 3/49 1.0 0.8 F(x) 0.6

More information

Introduction to Regression

Introduction to Regression Introduction to Regression David E Jones (slides mostly by Chad M Schafer) June 1, 2016 1 / 102 Outline General Concepts of Regression, Bias-Variance Tradeoff Linear Regression Nonparametric Procedures

More information

Local regression I. Patrick Breheny. November 1. Kernel weighted averages Local linear regression

Local regression I. Patrick Breheny. November 1. Kernel weighted averages Local linear regression Local regression I Patrick Breheny November 1 Patrick Breheny STA 621: Nonparametric Statistics 1/27 Simple local models Kernel weighted averages The Nadaraya-Watson estimator Expected loss and prediction

More information

Nonparametric Econometrics

Nonparametric Econometrics Applied Microeconometrics with Stata Nonparametric Econometrics Spring Term 2011 1 / 37 Contents Introduction The histogram estimator The kernel density estimator Nonparametric regression estimators Semi-

More information

Penalized Splines, Mixed Models, and Recent Large-Sample Results

Penalized Splines, Mixed Models, and Recent Large-Sample Results Penalized Splines, Mixed Models, and Recent Large-Sample Results David Ruppert Operations Research & Information Engineering, Cornell University Feb 4, 2011 Collaborators Matt Wand, University of Wollongong

More information

9. Model Selection. statistical models. overview of model selection. information criteria. goodness-of-fit measures

9. Model Selection. statistical models. overview of model selection. information criteria. goodness-of-fit measures FE661 - Statistical Methods for Financial Engineering 9. Model Selection Jitkomut Songsiri statistical models overview of model selection information criteria goodness-of-fit measures 9-1 Statistical models

More information

Package NonpModelCheck

Package NonpModelCheck Type Package Package NonpModelCheck April 27, 2017 Title Model Checking and Variable Selection in Nonparametric Regression Version 3.0 Date 2017-04-27 Author Adriano Zanin Zambom Maintainer Adriano Zanin

More information

Alternatives to Basis Expansions. Kernels in Density Estimation. Kernels and Bandwidth. Idea Behind Kernel Methods

Alternatives to Basis Expansions. Kernels in Density Estimation. Kernels and Bandwidth. Idea Behind Kernel Methods Alternatives to Basis Expansions Basis expansions require either choice of a discrete set of basis or choice of smoothing penalty and smoothing parameter Both of which impose prior beliefs on data. Alternatives

More information

ECON 721: Lecture Notes on Nonparametric Density and Regression Estimation. Petra E. Todd

ECON 721: Lecture Notes on Nonparametric Density and Regression Estimation. Petra E. Todd ECON 721: Lecture Notes on Nonparametric Density and Regression Estimation Petra E. Todd Fall, 2014 2 Contents 1 Review of Stochastic Order Symbols 1 2 Nonparametric Density Estimation 3 2.1 Histogram

More information

Single Equation Linear GMM with Serially Correlated Moment Conditions

Single Equation Linear GMM with Serially Correlated Moment Conditions Single Equation Linear GMM with Serially Correlated Moment Conditions Eric Zivot November 2, 2011 Univariate Time Series Let {y t } be an ergodic-stationary time series with E[y t ]=μ and var(y t )

More information

Additive Isotonic Regression

Additive Isotonic Regression Additive Isotonic Regression Enno Mammen and Kyusang Yu 11. July 2006 INTRODUCTION: We have i.i.d. random vectors (Y 1, X 1 ),..., (Y n, X n ) with X i = (X1 i,..., X d i ) and we consider the additive

More information

Single Equation Linear GMM with Serially Correlated Moment Conditions

Single Equation Linear GMM with Serially Correlated Moment Conditions Single Equation Linear GMM with Serially Correlated Moment Conditions Eric Zivot October 28, 2009 Univariate Time Series Let {y t } be an ergodic-stationary time series with E[y t ]=μ and var(y t )

More information

Michael Lechner Causal Analysis RDD 2014 page 1. Lecture 7. The Regression Discontinuity Design. RDD fuzzy and sharp

Michael Lechner Causal Analysis RDD 2014 page 1. Lecture 7. The Regression Discontinuity Design. RDD fuzzy and sharp page 1 Lecture 7 The Regression Discontinuity Design fuzzy and sharp page 2 Regression Discontinuity Design () Introduction (1) The design is a quasi-experimental design with the defining characteristic

More information

Extending clustered point process-based rainfall models to a non-stationary climate

Extending clustered point process-based rainfall models to a non-stationary climate Extending clustered point process-based rainfall models to a non-stationary climate Jo Kaczmarska 1, 2 Valerie Isham 2 Paul Northrop 2 1 Risk Management Solutions 2 Department of Statistical Science, University

More information

AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS UNIVERSITET. Questions AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS UNIVERSITET

AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS UNIVERSITET. Questions AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS UNIVERSITET The Problem Identification of Linear and onlinear Dynamical Systems Theme : Curve Fitting Division of Automatic Control Linköping University Sweden Data from Gripen Questions How do the control surface

More information

Stat 5100 Handout #26: Variations on OLS Linear Regression (Ch. 11, 13)

Stat 5100 Handout #26: Variations on OLS Linear Regression (Ch. 11, 13) Stat 5100 Handout #26: Variations on OLS Linear Regression (Ch. 11, 13) 1. Weighted Least Squares (textbook 11.1) Recall regression model Y = β 0 + β 1 X 1 +... + β p 1 X p 1 + ε in matrix form: (Ch. 5,

More information

Motivational Example

Motivational Example Motivational Example Data: Observational longitudinal study of obesity from birth to adulthood. Overall Goal: Build age-, gender-, height-specific growth charts (under 3 year) to diagnose growth abnomalities.

More information

Nonparametric Regression. Changliang Zou

Nonparametric Regression. Changliang Zou Nonparametric Regression Institute of Statistics, Nankai University Email: nk.chlzou@gmail.com Smoothing parameter selection An overall measure of how well m h (x) performs in estimating m(x) over x (0,

More information

Least Squares Model Averaging. Bruce E. Hansen University of Wisconsin. January 2006 Revised: August 2006

Least Squares Model Averaging. Bruce E. Hansen University of Wisconsin. January 2006 Revised: August 2006 Least Squares Model Averaging Bruce E. Hansen University of Wisconsin January 2006 Revised: August 2006 Introduction This paper developes a model averaging estimator for linear regression. Model averaging

More information

Introduction to Statistical modeling: handout for Math 489/583

Introduction to Statistical modeling: handout for Math 489/583 Introduction to Statistical modeling: handout for Math 489/583 Statistical modeling occurs when we are trying to model some data using statistical tools. From the start, we recognize that no model is perfect

More information

CSE446: non-parametric methods Spring 2017

CSE446: non-parametric methods Spring 2017 CSE446: non-parametric methods Spring 2017 Ali Farhadi Slides adapted from Carlos Guestrin and Luke Zettlemoyer Linear Regression: What can go wrong? What do we do if the bias is too strong? Might want

More information

Section 7: Local linear regression (loess) and regression discontinuity designs

Section 7: Local linear regression (loess) and regression discontinuity designs Section 7: Local linear regression (loess) and regression discontinuity designs Yotam Shem-Tov Fall 2015 Yotam Shem-Tov STAT 239/ PS 236A October 26, 2015 1 / 57 Motivation We will focus on local linear

More information

Nonparametric Regression

Nonparametric Regression Nonparametric Regression Econ 674 Purdue University April 8, 2009 Justin L. Tobias (Purdue) Nonparametric Regression April 8, 2009 1 / 31 Consider the univariate nonparametric regression model: where y

More information

Linear model selection and regularization

Linear model selection and regularization Linear model selection and regularization Problems with linear regression with least square 1. Prediction Accuracy: linear regression has low bias but suffer from high variance, especially when n p. It

More information

Maximum Likelihood Estimation. only training data is available to design a classifier

Maximum Likelihood Estimation. only training data is available to design a classifier Introduction to Pattern Recognition [ Part 5 ] Mahdi Vasighi Introduction Bayesian Decision Theory shows that we could design an optimal classifier if we knew: P( i ) : priors p(x i ) : class-conditional

More information

Nonparametric Regression Härdle, Müller, Sperlich, Werwarz, 1995, Nonparametric and Semiparametric Models, An Introduction

Nonparametric Regression Härdle, Müller, Sperlich, Werwarz, 1995, Nonparametric and Semiparametric Models, An Introduction Härdle, Müller, Sperlich, Werwarz, 1995, Nonparametric and Semiparametric Models, An Introduction Tine Buch-Kromann Univariate Kernel Regression The relationship between two variables, X and Y where m(

More information

AGEC 661 Note Eleven Ximing Wu. Exponential regression model: m (x, θ) = exp (xθ) for y 0

AGEC 661 Note Eleven Ximing Wu. Exponential regression model: m (x, θ) = exp (xθ) for y 0 AGEC 661 ote Eleven Ximing Wu M-estimator So far we ve focused on linear models, where the estimators have a closed form solution. If the population model is nonlinear, the estimators often do not have

More information

Chapter 9. Non-Parametric Density Function Estimation

Chapter 9. Non-Parametric Density Function Estimation 9-1 Density Estimation Version 1.2 Chapter 9 Non-Parametric Density Function Estimation 9.1. Introduction We have discussed several estimation techniques: method of moments, maximum likelihood, and least

More information

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Elizabeth C. Mannshardt-Shamseldin Advisor: Richard L. Smith Duke University Department

More information

Minimax Rate of Convergence for an Estimator of the Functional Component in a Semiparametric Multivariate Partially Linear Model.

Minimax Rate of Convergence for an Estimator of the Functional Component in a Semiparametric Multivariate Partially Linear Model. Minimax Rate of Convergence for an Estimator of the Functional Component in a Semiparametric Multivariate Partially Linear Model By Michael Levine Purdue University Technical Report #14-03 Department of

More information

Chap 1. Overview of Statistical Learning (HTF, , 2.9) Yongdai Kim Seoul National University

Chap 1. Overview of Statistical Learning (HTF, , 2.9) Yongdai Kim Seoul National University Chap 1. Overview of Statistical Learning (HTF, 2.1-2.6, 2.9) Yongdai Kim Seoul National University 0. Learning vs Statistical learning Learning procedure Construct a claim by observing data or using logics

More information

Classification via kernel regression based on univariate product density estimators

Classification via kernel regression based on univariate product density estimators Classification via kernel regression based on univariate product density estimators Bezza Hafidi 1, Abdelkarim Merbouha 2, and Abdallah Mkhadri 1 1 Department of Mathematics, Cadi Ayyad University, BP

More information

Lecture 3: Statistical Decision Theory (Part II)

Lecture 3: Statistical Decision Theory (Part II) Lecture 3: Statistical Decision Theory (Part II) Hao Helen Zhang Hao Helen Zhang Lecture 3: Statistical Decision Theory (Part II) 1 / 27 Outline of This Note Part I: Statistics Decision Theory (Classical

More information

Introduction to Nonparametric Regression

Introduction to Nonparametric Regression Introduction to Nonparametric Regression Nathaniel E. Helwig Assistant Professor of Psychology and Statistics University of Minnesota (Twin Cities) Updated 04-Jan-2017 Nathaniel E. Helwig (U of Minnesota)

More information

9/26/17. Ridge regression. What our model needs to do. Ridge Regression: L2 penalty. Ridge coefficients. Ridge coefficients

9/26/17. Ridge regression. What our model needs to do. Ridge Regression: L2 penalty. Ridge coefficients. Ridge coefficients What our model needs to do regression Usually, we are not just trying to explain observed data We want to uncover meaningful trends And predict future observations Our questions then are Is β" a good estimate

More information

Non-parametric Methods

Non-parametric Methods Non-parametric Methods Machine Learning Torsten Möller Möller/Mori 1 Reading Chapter 2 of Pattern Recognition and Machine Learning by Bishop (with an emphasis on section 2.5) Möller/Mori 2 Outline Last

More information

7 Semiparametric Estimation of Additive Models

7 Semiparametric Estimation of Additive Models 7 Semiparametric Estimation of Additive Models Additive models are very useful for approximating the high-dimensional regression mean functions. They and their extensions have become one of the most widely

More information

Chapter 9. Non-Parametric Density Function Estimation

Chapter 9. Non-Parametric Density Function Estimation 9-1 Density Estimation Version 1.1 Chapter 9 Non-Parametric Density Function Estimation 9.1. Introduction We have discussed several estimation techniques: method of moments, maximum likelihood, and least

More information

1 Empirical Likelihood

1 Empirical Likelihood Empirical Likelihood February 3, 2016 Debdeep Pati 1 Empirical Likelihood Empirical likelihood a nonparametric method without having to assume the form of the underlying distribution. It retains some of

More information

OFFICE OF NAVAL RESEARCH FINAL REPORT for TASK NO. NR PRINCIPAL INVESTIGATORS: Jeffrey D. Hart Thomas E. Wehrly

OFFICE OF NAVAL RESEARCH FINAL REPORT for TASK NO. NR PRINCIPAL INVESTIGATORS: Jeffrey D. Hart Thomas E. Wehrly AD-A240 830 S ~September 1 10, 1991 OFFICE OF NAVAL RESEARCH FINAL REPORT for 1 OCTOBER 1985 THROUGH 31 AUGUST 1991 CONTRACT N00014-85-K-0723 TASK NO. NR 042-551 Nonparametric Estimation of Functions Based

More information

Kernel density estimation

Kernel density estimation Kernel density estimation Patrick Breheny October 18 Patrick Breheny STA 621: Nonparametric Statistics 1/34 Introduction Kernel Density Estimation We ve looked at one method for estimating density: histograms

More information

Nonparametric Estimation of Luminosity Functions

Nonparametric Estimation of Luminosity Functions x x Nonparametric Estimation of Luminosity Functions Chad Schafer Department of Statistics, Carnegie Mellon University cschafer@stat.cmu.edu 1 Luminosity Functions The luminosity function gives the number

More information

Intensity Analysis of Spatial Point Patterns Geog 210C Introduction to Spatial Data Analysis

Intensity Analysis of Spatial Point Patterns Geog 210C Introduction to Spatial Data Analysis Intensity Analysis of Spatial Point Patterns Geog 210C Introduction to Spatial Data Analysis Chris Funk Lecture 4 Spatial Point Patterns Definition Set of point locations with recorded events" within study

More information

6.435, System Identification

6.435, System Identification System Identification 6.435 SET 3 Nonparametric Identification Munther A. Dahleh 1 Nonparametric Methods for System ID Time domain methods Impulse response Step response Correlation analysis / time Frequency

More information

3 Nonparametric Density Estimation

3 Nonparametric Density Estimation 3 Nonparametric Density Estimation Example: Income distribution Source: U.K. Family Expenditure Survey (FES) 1968-1995 Approximately 7000 British Households per year For each household many different variables

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

Economics 583: Econometric Theory I A Primer on Asymptotics

Economics 583: Econometric Theory I A Primer on Asymptotics Economics 583: Econometric Theory I A Primer on Asymptotics Eric Zivot January 14, 2013 The two main concepts in asymptotic theory that we will use are Consistency Asymptotic Normality Intuition consistency:

More information

COMPARISON OF GMM WITH SECOND-ORDER LEAST SQUARES ESTIMATION IN NONLINEAR MODELS. Abstract

COMPARISON OF GMM WITH SECOND-ORDER LEAST SQUARES ESTIMATION IN NONLINEAR MODELS. Abstract Far East J. Theo. Stat. 0() (006), 179-196 COMPARISON OF GMM WITH SECOND-ORDER LEAST SQUARES ESTIMATION IN NONLINEAR MODELS Department of Statistics University of Manitoba Winnipeg, Manitoba, Canada R3T

More information

A Note on Data-Adaptive Bandwidth Selection for Sequential Kernel Smoothers

A Note on Data-Adaptive Bandwidth Selection for Sequential Kernel Smoothers 6th St.Petersburg Workshop on Simulation (2009) 1-3 A Note on Data-Adaptive Bandwidth Selection for Sequential Kernel Smoothers Ansgar Steland 1 Abstract Sequential kernel smoothers form a class of procedures

More information

Model-free prediction intervals for regression and autoregression. Dimitris N. Politis University of California, San Diego

Model-free prediction intervals for regression and autoregression. Dimitris N. Politis University of California, San Diego Model-free prediction intervals for regression and autoregression Dimitris N. Politis University of California, San Diego To explain or to predict? Models are indispensable for exploring/utilizing relationships

More information

Lecture 02 Linear classification methods I

Lecture 02 Linear classification methods I Lecture 02 Linear classification methods I 22 January 2016 Taylor B. Arnold Yale Statistics STAT 365/665 1/32 Coursewebsite: A copy of the whole course syllabus, including a more detailed description of

More information

Forecasting Lecture 2: Forecast Combination, Multi-Step Forecasts

Forecasting Lecture 2: Forecast Combination, Multi-Step Forecasts Forecasting Lecture 2: Forecast Combination, Multi-Step Forecasts Bruce E. Hansen Central Bank of Chile October 29-31, 2013 Bruce Hansen (University of Wisconsin) Forecast Combination and Multi-Step Forecasts

More information

Spatial Regression. 6. Specification Spatial Heterogeneity. Luc Anselin.

Spatial Regression. 6. Specification Spatial Heterogeneity. Luc Anselin. Spatial Regression 6. Specification Spatial Heterogeneity Luc Anselin http://spatial.uchicago.edu 1 homogeneity and heterogeneity spatial regimes spatially varying coefficients spatial random effects 2

More information

High-dimensional regression with unknown variance

High-dimensional regression with unknown variance High-dimensional regression with unknown variance Christophe Giraud Ecole Polytechnique march 2012 Setting Gaussian regression with unknown variance: Y i = f i + ε i with ε i i.i.d. N (0, σ 2 ) f = (f

More information

Quantitative Economics for the Evaluation of the European Policy. Dipartimento di Economia e Management

Quantitative Economics for the Evaluation of the European Policy. Dipartimento di Economia e Management Quantitative Economics for the Evaluation of the European Policy Dipartimento di Economia e Management Irene Brunetti 1 Davide Fiaschi 2 Angela Parenti 3 9 ottobre 2015 1 ireneb@ec.unipi.it. 2 davide.fiaschi@unipi.it.

More information

LWP. Locally Weighted Polynomials toolbox for Matlab/Octave

LWP. Locally Weighted Polynomials toolbox for Matlab/Octave LWP Locally Weighted Polynomials toolbox for Matlab/Octave ver. 2.2 Gints Jekabsons http://www.cs.rtu.lv/jekabsons/ User's manual September, 2016 Copyright 2009-2016 Gints Jekabsons CONTENTS 1. INTRODUCTION...3

More information

ESTIMATING AVERAGE TREATMENT EFFECTS: REGRESSION DISCONTINUITY DESIGNS Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics

ESTIMATING AVERAGE TREATMENT EFFECTS: REGRESSION DISCONTINUITY DESIGNS Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics ESTIMATING AVERAGE TREATMENT EFFECTS: REGRESSION DISCONTINUITY DESIGNS Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics July 2009 1. Introduction 2. The Sharp RD Design 3.

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Resampling techniques for statistical modeling

Resampling techniques for statistical modeling Resampling techniques for statistical modeling Gianluca Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Resampling techniques p.1/33 Beyond the empirical error

More information

Statistics: Learning models from data

Statistics: Learning models from data DS-GA 1002 Lecture notes 5 October 19, 2015 Statistics: Learning models from data Learning models from data that are assumed to be generated probabilistically from a certain unknown distribution is a crucial

More information

Nonparametric Methods Lecture 5

Nonparametric Methods Lecture 5 Nonparametric Methods Lecture 5 Jason Corso SUNY at Buffalo 17 Feb. 29 J. Corso (SUNY at Buffalo) Nonparametric Methods Lecture 5 17 Feb. 29 1 / 49 Nonparametric Methods Lecture 5 Overview Previously,

More information

STAT 705 Nonlinear regression

STAT 705 Nonlinear regression STAT 705 Nonlinear regression Adapted from Timothy Hanson Department of Statistics, University of South Carolina Stat 705: Data Analysis II 1 / 1 Chapter 13 Parametric nonlinear regression Throughout most

More information

Titolo Smooth Backfitting with R

Titolo Smooth Backfitting with R Rapporto n. 176 Titolo Smooth Backfitting with R Autori Alberto Arcagni, Luca Bagnato ottobre 2009 Dipartimento di Metodi Quantitativi per le Scienze Economiche ed Aziendali Università degli Studi di Milano

More information

Covariance function estimation in Gaussian process regression

Covariance function estimation in Gaussian process regression Covariance function estimation in Gaussian process regression François Bachoc Department of Statistics and Operations Research, University of Vienna WU Research Seminar - May 2015 François Bachoc Gaussian

More information

Nonparametric Inference via Bootstrapping the Debiased Estimator

Nonparametric Inference via Bootstrapping the Debiased Estimator Nonparametric Inference via Bootstrapping the Debiased Estimator Yen-Chi Chen Department of Statistics, University of Washington ICSA-Canada Chapter Symposium 2017 1 / 21 Problem Setup Let X 1,, X n be

More information

13 Endogeneity and Nonparametric IV

13 Endogeneity and Nonparametric IV 13 Endogeneity and Nonparametric IV 13.1 Nonparametric Endogeneity A nonparametric IV equation is Y i = g (X i ) + e i (1) E (e i j i ) = 0 In this model, some elements of X i are potentially endogenous,

More information

A New Method for Varying Adaptive Bandwidth Selection

A New Method for Varying Adaptive Bandwidth Selection IEEE TRASACTIOS O SIGAL PROCESSIG, VOL. 47, O. 9, SEPTEMBER 1999 2567 TABLE I SQUARE ROOT MEA SQUARED ERRORS (SRMSE) OF ESTIMATIO USIG THE LPA AD VARIOUS WAVELET METHODS A ew Method for Varying Adaptive

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Announcements Machine Learning Lecture 3 Eam dates We re in the process of fiing the first eam date Probability Density Estimation II 9.0.207 Eercises The first eercise sheet is available on L2P now First

More information

Regression I: Mean Squared Error and Measuring Quality of Fit

Regression I: Mean Squared Error and Measuring Quality of Fit Regression I: Mean Squared Error and Measuring Quality of Fit -Applied Multivariate Analysis- Lecturer: Darren Homrighausen, PhD 1 The Setup Suppose there is a scientific problem we are interested in solving

More information

Nonparametric Cointegrating Regression with Endogeneity and Long Memory

Nonparametric Cointegrating Regression with Endogeneity and Long Memory Nonparametric Cointegrating Regression with Endogeneity and Long Memory Qiying Wang School of Mathematics and Statistics TheUniversityofSydney Peter C. B. Phillips Yale University, University of Auckland

More information

Lecture 24: Weighted and Generalized Least Squares

Lecture 24: Weighted and Generalized Least Squares Lecture 24: Weighted and Generalized Least Squares 1 Weighted Least Squares When we use ordinary least squares to estimate linear regression, we minimize the mean squared error: MSE(b) = 1 n (Y i X i β)

More information

WEIGHTED QUANTILE REGRESSION THEORY AND ITS APPLICATION. Abstract

WEIGHTED QUANTILE REGRESSION THEORY AND ITS APPLICATION. Abstract Journal of Data Science,17(1). P. 145-160,2019 DOI:10.6339/JDS.201901_17(1).0007 WEIGHTED QUANTILE REGRESSION THEORY AND ITS APPLICATION Wei Xiong *, Maozai Tian 2 1 School of Statistics, University of

More information

Machine Learning. Nonparametric Methods. Space of ML Problems. Todo. Histograms. Instance-Based Learning (aka non-parametric methods)

Machine Learning. Nonparametric Methods. Space of ML Problems. Todo. Histograms. Instance-Based Learning (aka non-parametric methods) Machine Learning InstanceBased Learning (aka nonparametric methods) Supervised Learning Unsupervised Learning Reinforcement Learning Parametric Non parametric CSE 446 Machine Learning Daniel Weld March

More information

Estimation of Parameters

Estimation of Parameters CHAPTER Probability, Statistics, and Reliability for Engineers and Scientists FUNDAMENTALS OF STATISTICAL ANALYSIS Second Edition A. J. Clark School of Engineering Department of Civil and Environmental

More information

F & B Approaches to a simple model

F & B Approaches to a simple model A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 215 http://www.astro.cornell.edu/~cordes/a6523 Lecture 11 Applications: Model comparison Challenges in large-scale surveys

More information

Optimal Kernel Shapes for Local Linear Regression

Optimal Kernel Shapes for Local Linear Regression Optimal Kernel Shapes for Local Linear Regression Dirk Ormoneit Trevor Hastie Department of Statistics Stanford University Stanford, CA 94305-4065 ormoneit@stat.stanjord.edu Abstract Local linear regression

More information

Nonparametric Principal Components Regression

Nonparametric Principal Components Regression Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS031) p.4574 Nonparametric Principal Components Regression Barrios, Erniel University of the Philippines Diliman,

More information

Curve Fitting Re-visited, Bishop1.2.5

Curve Fitting Re-visited, Bishop1.2.5 Curve Fitting Re-visited, Bishop1.2.5 Maximum Likelihood Bishop 1.2.5 Model Likelihood differentiation p(t x, w, β) = Maximum Likelihood N N ( t n y(x n, w), β 1). (1.61) n=1 As we did in the case of the

More information