Spatial Regression. 6. Specification Spatial Heterogeneity. Luc Anselin.

Size: px
Start display at page:

Download "Spatial Regression. 6. Specification Spatial Heterogeneity. Luc Anselin."

Transcription

1 Spatial Regression 6. Specification Spatial Heterogeneity Luc Anselin 1

2 homogeneity and heterogeneity spatial regimes spatially varying coefficients spatial random effects 2

3 Homogeneity and Heterogeneity 3

4 Global Perspective single equilibrium - stationarity functional form fixed coefficients fixed 4

5 Local Perspective multiple equilibria non-stationarity functional and/or parameter variability 5

6 Extreme Homogeneity model same everywhere parameters same everywhere yi = xiβ + εi β constant across i εi i.i.d. with Var[εi] = σ 2 for all i 6

7 Extreme Heterogeneity every observation is different yi = xiβi + εi a different parameters βi for each observation i εi i.n.i.d. with Var[εi] = σi 2 possible different functional forms for i 7

8 Incidental Parameter Problem number of unknown parameters increases with sample size no consistent estimation of individual parameters βi, σi 2 8

9 Solutions imposing structure discrete variation - finite subsets of the data continuous variation - parameter surface heterogeneity parameters fixed effects random effects spatial heterogeneity may be complicated by spatial autocorrelation 9

10 Spatial Regimes 10

11 Discrete Heterogeneity 11

12 Spatial Regimes systematic discrete spatial subsets of the data different coefficient values in each subset corrects for heterogeneity, but does not explain 12

13 Spatial Regime Specifications varying intercepts spatial ANOVA spatial fixed effects full spatial regimes 13

14 Varying Intercepts 14

15 ANOVA - Difference in Means approach is standard, regimes are spatial E[y1] = μ1 i R1 (R1 is region 1) E[y2] = μ2 i R2 (R2 is region 2) H0: μ1 = μ2 15

16 Dummy Variable Regression - Variant 1 no constant term indicator variable for each regime yi = β1d1i + β2d2i + εi d1(2)i = 1 i R1(2), 0 elsewhere H0: β1 = β2 16

17 Dummy Variable Regression - Variant 2 constant term for overall mean yi = α + βdi + εi di = 1 i R1, 0 elsewhere H0: β = 0, difference from reference mean α 17

18 Spatial Fixed Effects reference mean and difference by regime fixed effects multi-level specification 18

19 Spatial Fixed Effects and Spatial Autocorrelation (Anselin and Arribas-Bel 2013) common misconception that spatial fixed effects fix spatial autocorrelation only in special case of group weights each observation has all other observations as neighbors so-called Case weights (Case 1992) 19

20 Full Spatial Regimes 20

21 Spatial Regimes - Full Specification all coefficients (intercept, slope, variance) vary by regime equivalent to separate regression by regime Copyright 2013 by Luc Anselin, All Rights Reserved 21

22 Testing for Spatial Heterogeneity 22

23 Test on Spatial Homogeneity null hypothesis equal intercepts, equal slopes alternative hypothesis different intercepts different slopes both 23

24 Chow Test test on structural stability based on residual sum of squares in constrained (all coefficients equal - R) and unconstrained (coefficients different - U) regressions classic form C = e R e R e U e U k / e U e U N 2k F (k, N 2k) 24

25 General Test on Coefficient Stability as a set of linear constraints on the coefficients in a pooled regression can be readily extended to spatial models G = (J - 1)K V = variance J regimes K coefficients 25

26 Spatial Regimes with Spatial Dependence 26

27 Spatial Lag and Spatial Error Models allow varying coefficients by regime fixed spatial coefficient same spatial process throughout varying spatial coefficient different spatial process for each regime difficult assumption - needs to be based on a strong foundation 27

28 Spatial Regimes - Spatial Lag Model fixed spatial autoregressive coefficient varying spatial autoregressive coefficient Copyright 2013 by Luc Anselin, All Rights Reserved 28

29 Spatial Regimes - Spatial Error Model fixed spatial autoregressive coefficient varying spatial autoregressive coefficient Copyright 2013 by Luc Anselin, All Rights Reserved 29

30 Spatial Weights Specification necessary to construct spatially lagged variables neighbors spill over across regimes neighbors constrained to be within each regime weights truncated, possible isolates 30

31 Spatial Chow Test use general form of the test with V as coefficient variance matrix in pooled model 31

32 Spatially Varying Coefficients 32

33 Spatially Varying Coefficients systematic variation with covariates coefficient as a function of other variables (including as a trend surface) spatial expansion method local estimation over space coefficients obtained from a subset (kernel) of nearby data points geographically weighted regression (GWR) 33

34 Expansion Method 34

35 Casetti s Expansion Method special case of varying coefficients each coefficient is a function of other covariates creates interaction effects similar in form to multi-level models 35

36 Sequential Modeling Strategy initial model yi = α + xiβi + εi expansion equation βi = γ0 + zi1γ1 + zi2γ2 final model yi = α + xi (γ0 + zi1γ1 + zi2γ2) + εi yi = α + xiγ0 + (zi1xi)γ1 + (zi2xi)γ2 + εi 36

37 Implementation Issues multicollinearity t-test values unreliable various fixes principal components (orthogonal expansion) danger of overfitting 37

38 Random Expansion Model random error in expansion equation βi = γ0 + zi1γ1 + zi2γ2 + ψi error term in final model is heteroskedastic yi = α + xi (γ0 + zi1γ1 + zi2γ2 + ψi) + εi νi = xiψi + εi Var[νi] = xi 2 σ 2 ψ + σ 2 ε similar to random coefficient model and multilevel models 38

39 Geographically Weighted Regression 39

40 Geographically Weighted Regression local regression a different set of parameter values for each location parameter values obtained from a subset of observations using kernel regression 40

41 Local Regression non-parametric specification simple bivariate regression yi = m(xi) + ui functional form of m is unspecified m(xi) yields the conditional expectation of y x 41

42 Local Average what is the expected value of yi given x, E[yi x] special case: for a given x 0 with multiple yi example: two values for PATIO dummy, house price solution: take m(x0) as the average of yi for x0 =0 and x0 =1 42

43 local average predictor of PRICE for two values of PATIO 43

44 Locally Weighted Average expand the estimate of m(x 0) to include values of yi observed for values of x close to x0 compute a locally weighted average weights sum to one weights larger as x closer to x0 (for h ) m(x0) = i wi0,h yi 44

45 locally weighted average (lowess) of PRICE for LOTSZ 45

46 Kernel Regression special case of locally weighted average use kernel function as the weights m(x0) = i K [(xi - x0)/h ]yi K is kernel function h is bandwidth s.t. K = 0 for x i - x0 > h 46

47 Kernel Functions with Finite Bandwidth Epanechnikov K(z) = 1 - z 2 Bisquare K(z) = (1 - z 2 ) 2 with z = (x i - x0) / h 47

48 Gaussian Kernel asymptotic bandwidth specified in function of standard error or variance K(z) = exp(- z 2 /2) 48

49 GWR Estimation local estimation based on nearby locations not just yi but x-y pairs at nearby locations kernel regression yields a different coefficient for each location specify kernel function and bandwidth 49

50 GWR Kernel Regression location-specific kernel weights W(ui, vi) diagonal elements are weights b(u i,vi) = [X W(ui,vi)X] -1 X W(ui,vi)y fixed kernel vs adaptive kernel 50

51 fixed bandwidth kernel adaptive kernel Source: Fotheringham et al (2002) 51

52 GWR - Practical Issues choice of bandwidth use cross-validation parameter inference still several theoretical loose ends visualizing parameter heterogeneity 52

53 Spatial Random Effects 53

54 Random Coefficients 54

55 Random Coefficient Regression extreme heterogeneity, but variability in βi driven by a random process - no space βi = β + ψi with E[ψi]=0 and Var[ψi]=σ 2 heteroskedastic regression for mean effect yi = α + xiβ + νi, var[νi] =σ 2 ψxi 2 + σ 2 ε 55

56 Mixed Linear Models both fixed and random coefficients y = Xβ + Zψ + ε Z a design matrix, could be same as X ψ random coefficients with mean zero and variance Σ ψ ε random error vector with variance Σ ε 56

57 Spatial Random Coefficients introduce spatial dependence structure in random variation of coefficient βi - β = ρ Σj wij (βj - β) + ψi - SAR model βi = β + λ Σj wij ψj + ψi - SMA model complex covariance structures 57

58 Spatial Random Effects 58

59 Spatial Random Effects βi = β + ψi with spatial effects introduced through random effect ψi typically a CAR process Bayesian hierarchical model - BYM model βi = β + ψi + νi spatial dependence in ψi, heterogeneity in νi not identified in Gaussian (linear regression) model 59

60 Example - Poisson Regression spatial autocorrelation needs to be introduced indirectly auto-poisson model only allows negative spatial autocorrelation random effects model 60

61 Poisson Regression P[Y = y] = e- μ μ y / y! μ is the mean μ as a function of regressors to model heterogeneity μi = exp(xi β) no error term random effects μi = exp(xi β + ψi + νi) spatial effects through ψi, e.g, CAR model non-spatial heterogeneity through νi 61

Global Spatial Autocorrelation Clustering

Global Spatial Autocorrelation Clustering Global Spatial Autocorrelation Clustering Luc Anselin http://spatial.uchicago.edu join count statistics Moran s I Moran scatter plot non-parametric spatial autocorrelation Join Count Statistics Recap -

More information

Statistics: A review. Why statistics?

Statistics: A review. Why statistics? Statistics: A review Why statistics? What statistical concepts should we know? Why statistics? To summarize, to explore, to look for relations, to predict What kinds of data exist? Nominal, Ordinal, Interval

More information

Outline. Overview of Issues. Spatial Regression. Luc Anselin

Outline. Overview of Issues. Spatial Regression. Luc Anselin Spatial Regression Luc Anselin University of Illinois, Urbana-Champaign http://www.spacestat.com Outline Overview of Issues Spatial Regression Specifications Space-Time Models Spatial Latent Variable Models

More information

Spatial Regression. 11. Spatial Two Stage Least Squares. Luc Anselin. Copyright 2017 by Luc Anselin, All Rights Reserved

Spatial Regression. 11. Spatial Two Stage Least Squares. Luc Anselin.  Copyright 2017 by Luc Anselin, All Rights Reserved Spatial Regression 11. Spatial Two Stage Least Squares Luc Anselin http://spatial.uchicago.edu 1 endogeneity and instruments spatial 2SLS best and optimal estimators HAC standard errors 2 Endogeneity and

More information

Luc Anselin and Nancy Lozano-Gracia

Luc Anselin and Nancy Lozano-Gracia Errors in variables and spatial effects in hedonic house price models of ambient air quality Luc Anselin and Nancy Lozano-Gracia Presented by Julia Beckhusen and Kosuke Tamura February 29, 2008 AGEC 691T:

More information

Spatial Regression. 9. Specification Tests (1) Luc Anselin. Copyright 2017 by Luc Anselin, All Rights Reserved

Spatial Regression. 9. Specification Tests (1) Luc Anselin.   Copyright 2017 by Luc Anselin, All Rights Reserved Spatial Regression 9. Specification Tests (1) Luc Anselin http://spatial.uchicago.edu 1 basic concepts types of tests Moran s I classic ML-based tests LM tests 2 Basic Concepts 3 The Logic of Specification

More information

Spatial Regression. 13. Spatial Panels (1) Luc Anselin. Copyright 2017 by Luc Anselin, All Rights Reserved

Spatial Regression. 13. Spatial Panels (1) Luc Anselin.  Copyright 2017 by Luc Anselin, All Rights Reserved Spatial Regression 13. Spatial Panels (1) Luc Anselin http://spatial.uchicago.edu 1 basic concepts dynamic panels pooled spatial panels 2 Basic Concepts 3 Data Structures 4 Two-Dimensional Data cross-section/space

More information

FinQuiz Notes

FinQuiz Notes Reading 10 Multiple Regression and Issues in Regression Analysis 2. MULTIPLE LINEAR REGRESSION Multiple linear regression is a method used to model the linear relationship between a dependent variable

More information

Categorical Predictor Variables

Categorical Predictor Variables Categorical Predictor Variables We often wish to use categorical (or qualitative) variables as covariates in a regression model. For binary variables (taking on only 2 values, e.g. sex), it is relatively

More information

Spatial Regression. 1. Introduction and Review. Luc Anselin. Copyright 2017 by Luc Anselin, All Rights Reserved

Spatial Regression. 1. Introduction and Review. Luc Anselin.  Copyright 2017 by Luc Anselin, All Rights Reserved Spatial Regression 1. Introduction and Review Luc Anselin http://spatial.uchicago.edu matrix algebra basics spatial econometrics - definitions pitfalls of spatial analysis spatial autocorrelation spatial

More information

Christopher Dougherty London School of Economics and Political Science

Christopher Dougherty London School of Economics and Political Science Introduction to Econometrics FIFTH EDITION Christopher Dougherty London School of Economics and Political Science OXFORD UNIVERSITY PRESS Contents INTRODU CTION 1 Why study econometrics? 1 Aim of this

More information

SIMULATION AND APPLICATION OF THE SPATIAL AUTOREGRESSIVE GEOGRAPHICALLY WEIGHTED REGRESSION MODEL (SAR-GWR)

SIMULATION AND APPLICATION OF THE SPATIAL AUTOREGRESSIVE GEOGRAPHICALLY WEIGHTED REGRESSION MODEL (SAR-GWR) SIMULATION AND APPLICATION OF THE SPATIAL AUTOREGRESSIVE GEOGRAPHICALLY WEIGHTED REGRESSION MODEL (SAR-GWR) I. Gede Nyoman Mindra Jaya 1, Budi Nurani Ruchjana 2, Bertho Tantular 1, Zulhanif 1 and Yudhie

More information

Geographically weighted regression approach for origin-destination flows

Geographically weighted regression approach for origin-destination flows Geographically weighted regression approach for origin-destination flows Kazuki Tamesue 1 and Morito Tsutsumi 2 1 Graduate School of Information and Engineering, University of Tsukuba 1-1-1 Tennodai, Tsukuba,

More information

Experimental Design and Data Analysis for Biologists

Experimental Design and Data Analysis for Biologists Experimental Design and Data Analysis for Biologists Gerry P. Quinn Monash University Michael J. Keough University of Melbourne CAMBRIDGE UNIVERSITY PRESS Contents Preface page xv I I Introduction 1 1.1

More information

Spatial Autocorrelation

Spatial Autocorrelation Spatial Autocorrelation Luc Anselin http://spatial.uchicago.edu spatial randomness positive and negative spatial autocorrelation spatial autocorrelation statistics spatial weights Spatial Randomness The

More information

Recent Advances in the Field of Trade Theory and Policy Analysis Using Micro-Level Data

Recent Advances in the Field of Trade Theory and Policy Analysis Using Micro-Level Data Recent Advances in the Field of Trade Theory and Policy Analysis Using Micro-Level Data July 2012 Bangkok, Thailand Cosimo Beverelli (World Trade Organization) 1 Content a) Classical regression model b)

More information

Econometrics of Panel Data

Econometrics of Panel Data Econometrics of Panel Data Jakub Mućk Meeting # 9 Jakub Mućk Econometrics of Panel Data Meeting # 9 1 / 22 Outline 1 Time series analysis Stationarity Unit Root Tests for Nonstationarity 2 Panel Unit Root

More information

Quantitative Analysis of Financial Markets. Summary of Part II. Key Concepts & Formulas. Christopher Ting. November 11, 2017

Quantitative Analysis of Financial Markets. Summary of Part II. Key Concepts & Formulas. Christopher Ting. November 11, 2017 Summary of Part II Key Concepts & Formulas Christopher Ting November 11, 2017 christopherting@smu.edu.sg http://www.mysmu.edu/faculty/christophert/ Christopher Ting 1 of 16 Why Regression Analysis? Understand

More information

Econ 582 Nonparametric Regression

Econ 582 Nonparametric Regression Econ 582 Nonparametric Regression Eric Zivot May 28, 2013 Nonparametric Regression Sofarwehaveonlyconsideredlinearregressionmodels = x 0 β + [ x ]=0 [ x = x] =x 0 β = [ x = x] [ x = x] x = β The assume

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY PREFACE xiii 1 Difference Equations 1.1. First-Order Difference Equations 1 1.2. pth-order Difference Equations 7

More information

Geographically Weighted Regression as a Statistical Model

Geographically Weighted Regression as a Statistical Model Geographically Weighted Regression as a Statistical Model Chris Brunsdon Stewart Fotheringham Martin Charlton October 6, 2000 Spatial Analysis Research Group Department of Geography University of Newcastle-upon-Tyne

More information

Lecture 3: Multiple Regression

Lecture 3: Multiple Regression Lecture 3: Multiple Regression R.G. Pierse 1 The General Linear Model Suppose that we have k explanatory variables Y i = β 1 + β X i + β 3 X 3i + + β k X ki + u i, i = 1,, n (1.1) or Y i = β j X ji + u

More information

Linear Model Under General Variance Structure: Autocorrelation

Linear Model Under General Variance Structure: Autocorrelation Linear Model Under General Variance Structure: Autocorrelation A Definition of Autocorrelation In this section, we consider another special case of the model Y = X β + e, or y t = x t β + e t, t = 1,..,.

More information

Econometrics Summary Algebraic and Statistical Preliminaries

Econometrics Summary Algebraic and Statistical Preliminaries Econometrics Summary Algebraic and Statistical Preliminaries Elasticity: The point elasticity of Y with respect to L is given by α = ( Y/ L)/(Y/L). The arc elasticity is given by ( Y/ L)/(Y/L), when L

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY & Contents PREFACE xiii 1 1.1. 1.2. Difference Equations First-Order Difference Equations 1 /?th-order Difference

More information

Machine Learning Linear Classification. Prof. Matteo Matteucci

Machine Learning Linear Classification. Prof. Matteo Matteucci Machine Learning Linear Classification Prof. Matteo Matteucci Recall from the first lecture 2 X R p Regression Y R Continuous Output X R p Y {Ω 0, Ω 1,, Ω K } Classification Discrete Output X R p Y (X)

More information

Spatial Statistics For Real Estate Data 1

Spatial Statistics For Real Estate Data 1 1 Key words: spatial heterogeneity, spatial autocorrelation, spatial statistics, geostatistics, Geographical Information System SUMMARY: The paper presents spatial statistics tools in application to real

More information

Short T Panels - Review

Short T Panels - Review Short T Panels - Review We have looked at methods for estimating parameters on time-varying explanatory variables consistently in panels with many cross-section observation units but a small number of

More information

Unit 10: Simple Linear Regression and Correlation

Unit 10: Simple Linear Regression and Correlation Unit 10: Simple Linear Regression and Correlation Statistics 571: Statistical Methods Ramón V. León 6/28/2004 Unit 10 - Stat 571 - Ramón V. León 1 Introductory Remarks Regression analysis is a method for

More information

Spatial Regression. 10. Specification Tests (2) Luc Anselin. Copyright 2017 by Luc Anselin, All Rights Reserved

Spatial Regression. 10. Specification Tests (2) Luc Anselin.  Copyright 2017 by Luc Anselin, All Rights Reserved Spatial Regression 10. Specification Tests (2) Luc Anselin http://spatial.uchicago.edu 1 robust LM tests higher order tests 2SLS residuals specification search 2 Robust LM Tests 3 Recap and Notation LM-Error

More information

22s:152 Applied Linear Regression. Take random samples from each of m populations.

22s:152 Applied Linear Regression. Take random samples from each of m populations. 22s:152 Applied Linear Regression Chapter 8: ANOVA NOTE: We will meet in the lab on Monday October 10. One-way ANOVA Focuses on testing for differences among group means. Take random samples from each

More information

Econometrics of Panel Data

Econometrics of Panel Data Econometrics of Panel Data Jakub Mućk Meeting # 2 Jakub Mućk Econometrics of Panel Data Meeting # 2 1 / 26 Outline 1 Fixed effects model The Least Squares Dummy Variable Estimator The Fixed Effect (Within

More information

22s:152 Applied Linear Regression. Returning to a continuous response variable Y...

22s:152 Applied Linear Regression. Returning to a continuous response variable Y... 22s:152 Applied Linear Regression Generalized Least Squares Returning to a continuous response variable Y... Ordinary Least Squares Estimation The classical models we have fit so far with a continuous

More information

Lattice Data. Tonglin Zhang. Spatial Statistics for Point and Lattice Data (Part III)

Lattice Data. Tonglin Zhang. Spatial Statistics for Point and Lattice Data (Part III) Title: Spatial Statistics for Point Processes and Lattice Data (Part III) Lattice Data Tonglin Zhang Outline Description Research Problems Global Clustering and Local Clusters Permutation Test Spatial

More information

22s:152 Applied Linear Regression. There are a couple commonly used models for a one-way ANOVA with m groups. Chapter 8: ANOVA

22s:152 Applied Linear Regression. There are a couple commonly used models for a one-way ANOVA with m groups. Chapter 8: ANOVA 22s:152 Applied Linear Regression Chapter 8: ANOVA NOTE: We will meet in the lab on Monday October 10. One-way ANOVA Focuses on testing for differences among group means. Take random samples from each

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

22s:152 Applied Linear Regression. In matrix notation, we can write this model: Generalized Least Squares. Y = Xβ + ɛ with ɛ N n (0, Σ)

22s:152 Applied Linear Regression. In matrix notation, we can write this model: Generalized Least Squares. Y = Xβ + ɛ with ɛ N n (0, Σ) 22s:152 Applied Linear Regression Generalized Least Squares Returning to a continuous response variable Y Ordinary Least Squares Estimation The classical models we have fit so far with a continuous response

More information

y it = α i + β 0 ix it + ε it (0.1) The panel data estimators for the linear model are all standard, either the application of OLS or GLS.

y it = α i + β 0 ix it + ε it (0.1) The panel data estimators for the linear model are all standard, either the application of OLS or GLS. 0.1. Panel Data. Suppose we have a panel of data for groups (e.g. people, countries or regions) i =1, 2,..., N over time periods t =1, 2,..., T on a dependent variable y it and a kx1 vector of independent

More information

Econometric Methods for Panel Data

Econometric Methods for Panel Data Based on the books by Baltagi: Econometric Analysis of Panel Data and by Hsiao: Analysis of Panel Data Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

Switching Regime Estimation

Switching Regime Estimation Switching Regime Estimation Series de Tiempo BIrkbeck March 2013 Martin Sola (FE) Markov Switching models 01/13 1 / 52 The economy (the time series) often behaves very different in periods such as booms

More information

TIME SERIES DATA ANALYSIS USING EVIEWS

TIME SERIES DATA ANALYSIS USING EVIEWS TIME SERIES DATA ANALYSIS USING EVIEWS I Gusti Ngurah Agung Graduate School Of Management Faculty Of Economics University Of Indonesia Ph.D. in Biostatistics and MSc. in Mathematical Statistics from University

More information

Testing Error Correction in Panel data

Testing Error Correction in Panel data University of Vienna, Dept. of Economics Master in Economics Vienna 2010 The Model (1) Westerlund (2007) consider the following DGP: y it = φ 1i + φ 2i t + z it (1) x it = x it 1 + υ it (2) where the stochastic

More information

The General Linear Model (GLM)

The General Linear Model (GLM) he General Linear Model (GLM) Klaas Enno Stephan ranslational Neuromodeling Unit (NU) Institute for Biomedical Engineering University of Zurich & EH Zurich Wellcome rust Centre for Neuroimaging Institute

More information

Business Statistics. Lecture 10: Correlation and Linear Regression

Business Statistics. Lecture 10: Correlation and Linear Regression Business Statistics Lecture 10: Correlation and Linear Regression Scatterplot A scatterplot shows the relationship between two quantitative variables measured on the same individuals. It displays the Form

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/~eariasca/teaching.html 1 / 42 Passenger car mileage Consider the carmpg dataset taken from

More information

Evaluating sustainable transportation offers through housing price: a comparative analysis of Nantes urban and periurban/rural areas (France)

Evaluating sustainable transportation offers through housing price: a comparative analysis of Nantes urban and periurban/rural areas (France) Evaluating sustainable transportation offers through housing price: a comparative analysis of Nantes urban and periurban/rural areas (France) Julie Bulteau, UVSQ-CEARC-OVSQ Thierry Feuillet, Université

More information

Ch.10 Autocorrelated Disturbances (June 15, 2016)

Ch.10 Autocorrelated Disturbances (June 15, 2016) Ch10 Autocorrelated Disturbances (June 15, 2016) In a time-series linear regression model setting, Y t = x tβ + u t, t = 1, 2,, T, (10-1) a common problem is autocorrelation, or serial correlation of the

More information

Chapter 14. Linear least squares

Chapter 14. Linear least squares Serik Sagitov, Chalmers and GU, March 5, 2018 Chapter 14 Linear least squares 1 Simple linear regression model A linear model for the random response Y = Y (x) to an independent variable X = x For a given

More information

Regression. Estimation of the linear function (straight line) describing the linear component of the joint relationship between two variables X and Y.

Regression. Estimation of the linear function (straight line) describing the linear component of the joint relationship between two variables X and Y. Regression Bivariate i linear regression: Estimation of the linear function (straight line) describing the linear component of the joint relationship between two variables and. Generally describe as a

More information

Review of Classical Least Squares. James L. Powell Department of Economics University of California, Berkeley

Review of Classical Least Squares. James L. Powell Department of Economics University of California, Berkeley Review of Classical Least Squares James L. Powell Department of Economics University of California, Berkeley The Classical Linear Model The object of least squares regression methods is to model and estimate

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Reliability of inference (1 of 2 lectures)

Reliability of inference (1 of 2 lectures) Reliability of inference (1 of 2 lectures) Ragnar Nymoen University of Oslo 5 March 2013 1 / 19 This lecture (#13 and 14): I The optimality of the OLS estimators and tests depend on the assumptions of

More information

DESIGNING EXPERIMENTS AND ANALYZING DATA A Model Comparison Perspective

DESIGNING EXPERIMENTS AND ANALYZING DATA A Model Comparison Perspective DESIGNING EXPERIMENTS AND ANALYZING DATA A Model Comparison Perspective Second Edition Scott E. Maxwell Uniuersity of Notre Dame Harold D. Delaney Uniuersity of New Mexico J,t{,.?; LAWRENCE ERLBAUM ASSOCIATES,

More information

The linear regression model: functional form and structural breaks

The linear regression model: functional form and structural breaks The linear regression model: functional form and structural breaks Ragnar Nymoen Department of Economics, UiO 16 January 2009 Overview Dynamic models A little bit more about dynamics Extending inference

More information

Lecture 6: Hypothesis Testing

Lecture 6: Hypothesis Testing Lecture 6: Hypothesis Testing Mauricio Sarrias Universidad Católica del Norte November 6, 2017 1 Moran s I Statistic Mandatory Reading Moran s I based on Cliff and Ord (1972) Kelijan and Prucha (2001)

More information

G. S. Maddala Kajal Lahiri. WILEY A John Wiley and Sons, Ltd., Publication

G. S. Maddala Kajal Lahiri. WILEY A John Wiley and Sons, Ltd., Publication G. S. Maddala Kajal Lahiri WILEY A John Wiley and Sons, Ltd., Publication TEMT Foreword Preface to the Fourth Edition xvii xix Part I Introduction and the Linear Regression Model 1 CHAPTER 1 What is Econometrics?

More information

Non-linear panel data modeling

Non-linear panel data modeling Non-linear panel data modeling Laura Magazzini University of Verona laura.magazzini@univr.it http://dse.univr.it/magazzini May 2010 Laura Magazzini (@univr.it) Non-linear panel data modeling May 2010 1

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression In simple linear regression we are concerned about the relationship between two variables, X and Y. There are two components to such a relationship. 1. The strength of the relationship.

More information

Spatial inference. Spatial inference. Accounting for spatial correlation. Multivariate normal distributions

Spatial inference. Spatial inference. Accounting for spatial correlation. Multivariate normal distributions Spatial inference I will start with a simple model, using species diversity data Strong spatial dependence, Î = 0.79 what is the mean diversity? How precise is our estimate? Sampling discussion: The 64

More information

Binary Choice Models Probit & Logit. = 0 with Pr = 0 = 1. decision-making purchase of durable consumer products unemployment

Binary Choice Models Probit & Logit. = 0 with Pr = 0 = 1. decision-making purchase of durable consumer products unemployment BINARY CHOICE MODELS Y ( Y ) ( Y ) 1 with Pr = 1 = P = 0 with Pr = 0 = 1 P Examples: decision-making purchase of durable consumer products unemployment Estimation with OLS? Yi = Xiβ + εi Problems: nonsense

More information

Lecture 10 Multiple Linear Regression

Lecture 10 Multiple Linear Regression Lecture 10 Multiple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: 6.1-6.5 10-1 Topic Overview Multiple Linear Regression Model 10-2 Data for Multiple Regression Y i is the response variable

More information

Advanced Econometrics

Advanced Econometrics Based on the textbook by Verbeek: A Guide to Modern Econometrics Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna May 16, 2013 Outline Univariate

More information

Lecture 5: Clustering, Linear Regression

Lecture 5: Clustering, Linear Regression Lecture 5: Clustering, Linear Regression Reading: Chapter 10, Sections 3.1-3.2 STATS 202: Data mining and analysis October 4, 2017 1 / 22 .0.0 5 5 1.0 7 5 X2 X2 7 1.5 1.0 0.5 3 1 2 Hierarchical clustering

More information

Spatial Regression. 14. Spatial Panels (2) Luc Anselin. Copyright 2017 by Luc Anselin, All Rights Reserved

Spatial Regression. 14. Spatial Panels (2) Luc Anselin.   Copyright 2017 by Luc Anselin, All Rights Reserved Spatial Regression 14. Spatial Panels (2) Luc Anselin http://spatial.uchicago.edu 1 fixed effects models random effects models ML estimation IV/2SLS estimation GM estimation specification tests 2 Fixed

More information

Areal data models. Spatial smoothers. Brook s Lemma and Gibbs distribution. CAR models Gaussian case Non-Gaussian case

Areal data models. Spatial smoothers. Brook s Lemma and Gibbs distribution. CAR models Gaussian case Non-Gaussian case Areal data models Spatial smoothers Brook s Lemma and Gibbs distribution CAR models Gaussian case Non-Gaussian case SAR models Gaussian case Non-Gaussian case CAR vs. SAR STAR models Inference for areal

More information

Economics 536 Lecture 7. Introduction to Specification Testing in Dynamic Econometric Models

Economics 536 Lecture 7. Introduction to Specification Testing in Dynamic Econometric Models University of Illinois Fall 2016 Department of Economics Roger Koenker Economics 536 Lecture 7 Introduction to Specification Testing in Dynamic Econometric Models In this lecture I want to briefly describe

More information

Testing for Spatial Group Wise Testing for SGWH. Chasco, Le Gallo, López and Mur, Heteroskedasticity.

Testing for Spatial Group Wise Testing for SGWH. Chasco, Le Gallo, López and Mur, Heteroskedasticity. Testing for Spatial Group Wise Heteroskedasticity. A specification Scan test procedure. Coro Chasco (Universidad Autónoma de Madrid) Julie Le Gallo (Université de Franche Comté) Fernando A. López (Universidad

More information

covariance function, 174 probability structure of; Yule-Walker equations, 174 Moving average process, fluctuations, 5-6, 175 probability structure of

covariance function, 174 probability structure of; Yule-Walker equations, 174 Moving average process, fluctuations, 5-6, 175 probability structure of Index* The Statistical Analysis of Time Series by T. W. Anderson Copyright 1971 John Wiley & Sons, Inc. Aliasing, 387-388 Autoregressive {continued) Amplitude, 4, 94 case of first-order, 174 Associated

More information

Geographically Weighted Regression and Kriging: Alternative Approaches to Interpolation A Stewart Fotheringham

Geographically Weighted Regression and Kriging: Alternative Approaches to Interpolation A Stewart Fotheringham Geographically Weighted Regression and Kriging: Alternative Approaches to Interpolation A Stewart Fotheringham National Centre for Geocomputation National University of Ireland, Maynooth http://ncg.nuim.ie

More information

Spatial Heterogeneity in House Price Models: An Iterative Locally Weighted Regression Approach

Spatial Heterogeneity in House Price Models: An Iterative Locally Weighted Regression Approach Spatial Heterogeneity in House Price Models: An Iterative Locally Weighted Regression Approach Anna Gloria Billé ᵃ*, Roberto Benedetti b, Paolo Postiglione b ᵃ Department of Economics and Finance, University

More information

Additive Isotonic Regression

Additive Isotonic Regression Additive Isotonic Regression Enno Mammen and Kyusang Yu 11. July 2006 INTRODUCTION: We have i.i.d. random vectors (Y 1, X 1 ),..., (Y n, X n ) with X i = (X1 i,..., X d i ) and we consider the additive

More information

Repeated observations on the same cross-section of individual units. Important advantages relative to pure cross-section data

Repeated observations on the same cross-section of individual units. Important advantages relative to pure cross-section data Panel data Repeated observations on the same cross-section of individual units. Important advantages relative to pure cross-section data - possible to control for some unobserved heterogeneity - possible

More information

1 Estimation of Persistent Dynamic Panel Data. Motivation

1 Estimation of Persistent Dynamic Panel Data. Motivation 1 Estimation of Persistent Dynamic Panel Data. Motivation Consider the following Dynamic Panel Data (DPD) model y it = y it 1 ρ + x it β + µ i + v it (1.1) with i = {1, 2,..., N} denoting the individual

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 1 Random Vectors Let a 0 and y be n 1 vectors, and let A be an n n matrix. Here, a 0 and A are non-random, whereas y is

More information

Lecture 5: Omitted Variables, Dummy Variables and Multicollinearity

Lecture 5: Omitted Variables, Dummy Variables and Multicollinearity Lecture 5: Omitted Variables, Dummy Variables and Multicollinearity R.G. Pierse 1 Omitted Variables Suppose that the true model is Y i β 1 + β X i + β 3 X 3i + u i, i 1,, n (1.1) where β 3 0 but that the

More information

Time Series and Forecasting Lecture 4 NonLinear Time Series

Time Series and Forecasting Lecture 4 NonLinear Time Series Time Series and Forecasting Lecture 4 NonLinear Time Series Bruce E. Hansen Summer School in Economics and Econometrics University of Crete July 23-27, 2012 Bruce Hansen (University of Wisconsin) Foundations

More information

Panel Data Models. James L. Powell Department of Economics University of California, Berkeley

Panel Data Models. James L. Powell Department of Economics University of California, Berkeley Panel Data Models James L. Powell Department of Economics University of California, Berkeley Overview Like Zellner s seemingly unrelated regression models, the dependent and explanatory variables for panel

More information

Multiple Regression. More Hypothesis Testing. More Hypothesis Testing The big question: What we really want to know: What we actually know: We know:

Multiple Regression. More Hypothesis Testing. More Hypothesis Testing The big question: What we really want to know: What we actually know: We know: Multiple Regression Ψ320 Ainsworth More Hypothesis Testing What we really want to know: Is the relationship in the population we have selected between X & Y strong enough that we can use the relationship

More information

Supplemental Material for KERNEL-BASED INFERENCE IN TIME-VARYING COEFFICIENT COINTEGRATING REGRESSION. September 2017

Supplemental Material for KERNEL-BASED INFERENCE IN TIME-VARYING COEFFICIENT COINTEGRATING REGRESSION. September 2017 Supplemental Material for KERNEL-BASED INFERENCE IN TIME-VARYING COEFFICIENT COINTEGRATING REGRESSION By Degui Li, Peter C. B. Phillips, and Jiti Gao September 017 COWLES FOUNDATION DISCUSSION PAPER NO.

More information

ECON 4230 Intermediate Econometric Theory Exam

ECON 4230 Intermediate Econometric Theory Exam ECON 4230 Intermediate Econometric Theory Exam Multiple Choice (20 pts). Circle the best answer. 1. The Classical assumption of mean zero errors is satisfied if the regression model a) is linear in the

More information

Outline ESDA. Exploratory Spatial Data Analysis ESDA. Luc Anselin

Outline ESDA. Exploratory Spatial Data Analysis ESDA. Luc Anselin Exploratory Spatial Data Analysis ESDA Luc Anselin University of Illinois, Urbana-Champaign http://www.spacestat.com Outline ESDA Exploring Spatial Patterns Global Spatial Autocorrelation Local Spatial

More information

SPATIAL ECONOMETRICS: METHODS AND MODELS

SPATIAL ECONOMETRICS: METHODS AND MODELS SPATIAL ECONOMETRICS: METHODS AND MODELS STUDIES IN OPERATIONAL REGIONAL SCIENCE Folmer, H., Regional Economic Policy. 1986. ISBN 90-247-3308-1. Brouwer, F., Integrated Environmental Modelling: Design

More information

Lecture 5: Clustering, Linear Regression

Lecture 5: Clustering, Linear Regression Lecture 5: Clustering, Linear Regression Reading: Chapter 10, Sections 3.1-3.2 STATS 202: Data mining and analysis October 4, 2017 1 / 22 Hierarchical clustering Most algorithms for hierarchical clustering

More information

Economic modelling and forecasting

Economic modelling and forecasting Economic modelling and forecasting 2-6 February 2015 Bank of England he generalised method of moments Ole Rummel Adviser, CCBS at the Bank of England ole.rummel@bankofengland.co.uk Outline Classical estimation

More information

Linear, Generalized Linear, and Mixed-Effects Models in R. Linear and Generalized Linear Models in R Topics

Linear, Generalized Linear, and Mixed-Effects Models in R. Linear and Generalized Linear Models in R Topics Linear, Generalized Linear, and Mixed-Effects Models in R John Fox McMaster University ICPSR 2018 John Fox (McMaster University) Statistical Models in R ICPSR 2018 1 / 19 Linear and Generalized Linear

More information

Intermediate Econometrics

Intermediate Econometrics Intermediate Econometrics Heteroskedasticity Text: Wooldridge, 8 July 17, 2011 Heteroskedasticity Assumption of homoskedasticity, Var(u i x i1,..., x ik ) = E(u 2 i x i1,..., x ik ) = σ 2. That is, the

More information

Chapter 10. Regression. Understandable Statistics Ninth Edition By Brase and Brase Prepared by Yixun Shi Bloomsburg University of Pennsylvania

Chapter 10. Regression. Understandable Statistics Ninth Edition By Brase and Brase Prepared by Yixun Shi Bloomsburg University of Pennsylvania Chapter 10 Regression Understandable Statistics Ninth Edition By Brase and Brase Prepared by Yixun Shi Bloomsburg University of Pennsylvania Scatter Diagrams A graph in which pairs of points, (x, y), are

More information

Bivariate Relationships Between Variables

Bivariate Relationships Between Variables Bivariate Relationships Between Variables BUS 735: Business Decision Making and Research 1 Goals Specific goals: Detect relationships between variables. Be able to prescribe appropriate statistical methods

More information

The Cost of Transportation : Spatial Analysis of US Fuel Prices

The Cost of Transportation : Spatial Analysis of US Fuel Prices The Cost of Transportation : Spatial Analysis of US Fuel Prices J. Raimbault 1,2, A. Bergeaud 3 juste.raimbault@polytechnique.edu 1 UMR CNRS 8504 Géographie-cités 2 UMR-T IFSTTAR 9403 LVMT 3 Paris School

More information

MULTICOLLINEARITY AND VARIANCE INFLATION FACTORS. F. Chiaromonte 1

MULTICOLLINEARITY AND VARIANCE INFLATION FACTORS. F. Chiaromonte 1 MULTICOLLINEARITY AND VARIANCE INFLATION FACTORS F. Chiaromonte 1 Pool of available predictors/terms from them in the data set. Related to model selection, are the questions: What is the relative importance

More information

Linear Regression 9/23/17. Simple linear regression. Advertising sales: Variance changes based on # of TVs. Advertising sales: Normal error?

Linear Regression 9/23/17. Simple linear regression. Advertising sales: Variance changes based on # of TVs. Advertising sales: Normal error? Simple linear regression Linear Regression Nicole Beckage y " = β % + β ' x " + ε so y* " = β+ % + β+ ' x " Method to assess and evaluate the correlation between two (continuous) variables. The slope of

More information

Chapter 4: Models for Stationary Time Series

Chapter 4: Models for Stationary Time Series Chapter 4: Models for Stationary Time Series Now we will introduce some useful parametric models for time series that are stationary processes. We begin by defining the General Linear Process. Let {Y t

More information

Zellner s Seemingly Unrelated Regressions Model. James L. Powell Department of Economics University of California, Berkeley

Zellner s Seemingly Unrelated Regressions Model. James L. Powell Department of Economics University of California, Berkeley Zellner s Seemingly Unrelated Regressions Model James L. Powell Department of Economics University of California, Berkeley Overview The seemingly unrelated regressions (SUR) model, proposed by Zellner,

More information

Subject CS1 Actuarial Statistics 1 Core Principles

Subject CS1 Actuarial Statistics 1 Core Principles Institute of Actuaries of India Subject CS1 Actuarial Statistics 1 Core Principles For 2019 Examinations Aim The aim of the Actuarial Statistics 1 subject is to provide a grounding in mathematical and

More information

Correlation Analysis

Correlation Analysis Simple Regression Correlation Analysis Correlation analysis is used to measure strength of the association (linear relationship) between two variables Correlation is only concerned with strength of the

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Simple linear regression tries to fit a simple line between two variables Y and X. If X is linearly related to Y this explains some of the variability in Y. In most cases, there

More information

PANEL DATA RANDOM AND FIXED EFFECTS MODEL. Professor Menelaos Karanasos. December Panel Data (Institute) PANEL DATA December / 1

PANEL DATA RANDOM AND FIXED EFFECTS MODEL. Professor Menelaos Karanasos. December Panel Data (Institute) PANEL DATA December / 1 PANEL DATA RANDOM AND FIXED EFFECTS MODEL Professor Menelaos Karanasos December 2011 PANEL DATA Notation y it is the value of the dependent variable for cross-section unit i at time t where i = 1,...,

More information

A Guide to Modern Econometric:

A Guide to Modern Econometric: A Guide to Modern Econometric: 4th edition Marno Verbeek Rotterdam School of Management, Erasmus University, Rotterdam B 379887 )WILEY A John Wiley & Sons, Ltd., Publication Contents Preface xiii 1 Introduction

More information

SPATIAL PANEL ECONOMETRICS

SPATIAL PANEL ECONOMETRICS Chapter 18 SPATIAL PANEL ECONOMETRICS Luc Anselin University of Illinois, Urbana-Champaign Julie Le Gallo Universit«e Montesquieu-Bordeaux IV Hubert Jayet Universit«e de Lille 1. Introduction Spatial econometrics

More information