The choice of weights in kernel regression estimation

Size: px
Start display at page:

Download "The choice of weights in kernel regression estimation"

Transcription

1 Biometrika (1990), 77, 2, pp Printed in Great Britain The choice of weights in kernel regression estimation BY THEO GASSER Zentralinstitut fur Seelische Gesundheit, J5, P.O.B. 5970, 6800 Mannheim 1, Federal Republic of Germany AND JOACHIM ENGEL Institut fur Angewandte Mathematik, Universitat Heidelberg, Im Neuenheimer Feld294, 6900 Heidelberg, Federal Republic of Germany SUMMARY For kernel regression estimation a weighting scheme due to Nadaraya and Watson has been associated with random design, and a convolution type weighting scheme with fixed design. Based on integrated mean square error, none of the estimators is uniformly optimal in either design. However, the convolution type weights are minimax optimal. Further advantages of this estimator can be seen in the structure of the bias. Some key words: Fixed design; Kernel estimator; Minimax optimality; Nonparametric regression; Random design. 1. INTRODUCTION The multitude of nonparametric regression estimators is an issue of considerable practical and theoretical importance. A wide class of estimators studied by Jennen- Steinmetz & Gasser (1988) included fixed width kernel estimators, smoothing splines and nearest-neighbour estimators as particular cases. No estimator is uniformly best in terms of integrated mean square error, but the kernel estimator turns out to be minimax optimal. Since nonparametric methods are usually intended to be applicable to a broad variety of situations, the minimax property is an important safeguard. Two definitions of kernel weights enjoy particular popularity, the Nadaraya-Watson type (Nadaraya, 1962; Watson, 1964) and the convolution type estimator (Priestley & Chao, 1972; Gasser & Muller, 1979). The Nadaraya-Watson method is intuitively motivated as an estimator of a conditional expectation which suggests a context where the independent variable is random. Hence this method seems suited for a situation of randomly selected design points, whose distribution is determined by the design density. The convolution method traditionally has been associated with the case of fixed design points. Jennen-Steinmetz & Gasser (1988) gave some arguments in favour of the convolution estimator for both designs, but their arguments are inconclusive; see also an unpublished report by C. K. Chu and J. S. Matron. In the present note, we discuss further aspects supporting the superiority of the convolution weights. 2. PROPERTIES OF BIAS AND VARIANCE The fixed design regression model for data (Y lt t,) (i = 1,..., n) on [0,1] is

2 378 THEO GASSER AND JOACHIM ENGEL with design points f, chosen by the experimenter, regression function r and random terms,,..., which are independent and identically distributed and satisfy E(e,) = 0, var (,) = cr 2. For random design we assume independent and identically distributed data (Y,,*,),...,(Y n, t n ) satisfying E{ Y,-\ t t ) = r(t,) and var (Y t \t,) = a 2. For simplicity, the data are assumed to be ordered with respect to the second variable. The design density / may have support on the whole real line, but the estimators are studied on [0,1] only. The convolution estimator f (Gasser & Miiller, 1979) is 1 n b /_i where the s, are the midpoints between the design points t,. The kernel W is assumed to be a symmetric probability density with compact support. The Nadaraya-Watson estimator is defined by Following Jennen-Steinmetz & Gasser (1988) the asymptotic bias and variance are respectively bias: \b 2 M 2 {W)r"{t), b 2 M 2 {W){\r"{t) + r\t)f\t)/f{t)}, variance: {C* 2 V{ W)}/{nf(t)b}, {a 2 V( W))/{nf{t)b}, where M 2 (W) =J u 2 W(u) du and V( W) =\{W{u)} 2 du. The factor C in the variance of the convolution estimator equals 1 for fixed and 1-5 for random design as discussed by C. K. Chu and J. S. Marron in their unpublished report. Jennen-Steinmetz & Gasser (1988) derived this variance for s ( = t, instead for St = (t t + t i+1 )/2 for technical convenience which, however, leads to an inferior factor of C = 2. For fixed design, the variance is the same for both estimators. For random design it is still of the same form but higher by the factor C = 1-5 for the convolution estimator. However, an additional bias term appears for the Nadaraya-Watson estimator for both designs. Since this term does not necessarily inflate the bias in size, the integrated mean square error can be smaller for either estimator. However, the following qualitative arguments, together with the minimax result of 3 lead us to discourage the use of Nadaraya-Watson weights. (i) Nadaraya-Watson weights in general do not allow estimation of linear functions or linear parts without bias, in contrast to convolution weights, (ii) The bias of the Nadaraya-Watson estimator does not only depend on the regression function r but also on the design density / (iii) The bias of the convolution weights is of a simple form, is conservative, i.e. attenuates structure, and the estimate can provide qualitative information about the bias. The bias of the Nadaraya-Watson estimator is of a complicated, visually unpredictable form and can lead to qualitative errors. Statements (i) and (ii) are illustrated in Fig. 1: assume a linear function r and a bimodal design density / The finite sample expectation of the convolution estimator coincides with the linear function within the accuracy of plotting. The expectation of the Nadaraya- Watson estimator is far from linear but rather a highly sigmoid function. A bandwidth

3 Weights in kernel regression estimation 379 of b = 0-2 was chosen. Higher bandwidths would aggravate the problem. Other nonuniform densities also lead to serious departures from the linearity of the regression function, a fact which may shake the user's confidence in these nonparametric techniques. Figure 2 illustrates statement (iii): assumed is a symmetric peak as regression function r and a declining design density / The expectation of the convolution estimator is an attenuated peak which is still symmetric and at the right location. This qualitative agreement cannot be achieved with the Nadaraya-Watson estimator which shows a displaced and asymmetric peak. Given the importance of these features for practical conclusions and for model building this behaviour is hard to tolerate. These bias problems are particularly accentuated in the scientific process of many empirical sciences: studies are usually replicated by sticking to the design of the previously published study. In this way, qualitatively misleading phenomena as obtained by the Nadaraya-Watson estimator will be attributed even more confidence. For random design convolution estimators have to pay a price in variance. This can be better tolerated since replications of studies can control for random phenomena. Fig. 1 Fig ' t i Fig. 1. True curve and expectation of convolution estimator: linear, solid line. Expectation Nadaraya-Watson estimator: sigmoid, dashed line. Design density: bimodal, solid line. Fig. 2. True curve: Gauss peak, solid line. Expectation convolution estimator: dotted line. Expectation Nadaraya-Watson estimator: dashed line. Design density: declining solid line. 3. A MINIMAX RESULT The asymptotic integrated mean square error evaluated at the optimal bandwidth is given first for the convolution and then for the Nadaraya-Watson estimator: IMSE, Here /(/) is defined as J.U1*

4 380 THEO GASSER AND JOACHIM ENGEL The interplay between design density / and regression function r determines which estimator to prefer. For both types of design one can easily find combinations of/ and r that favour either one of the two estimators. However, the convolution type scheme is optimal in a minimax sense. THEOREM. For some positive real number L let F = {fec l [a,b]\0<l^f(t), te[0,1], -oo^a^o, where f is a density. Then, for all re C 2 [0,1], For sup IMSE,(^ r) = sup IMSE 2 (/, r). /ef i: 10 ' dt>0 strict inequality holds. Note that the conditions on / guarantee that there are no holes in the design on [0,1] where the curve is to be estimated. Proof. It is sufficient to give a proof in case of random design. We have to show that sup(l-5) 4 {7(/)} 4 ( \ fef Jo \2 I fef Jo The proof is given for the case when [0,1] is strictly contained within [a, >]; the case [0,1] = [a, b] is only slightly different. We prove the theorem by constructing a class of densities f 8^ in F such that, for all A, and such that sup /(/ 8,A) = sup /(/) = - a fef L i.e. we construct design densities in F such that the Nadaraya-Watson bias increases to infinity while the variance is bounded. for fe[0,1]. If 5 is sufficiently small Jo and we can extend / a>a to a density e F on all of [a, b\. Without loss of generality we can assume the existence of an interval [a, /3] c [0,1] such that \r'(t)\ s* TJ for t e [a, /?]; otherwise the above statement is trivial. Then P! T 1 l sup -^- = sup - = - 8 Jo JS,\ fef Jo J L and, provided 8 is sufficiently small, ->00

5 as A ->oo. Note that r'r" e V\_a, 0] since Weights in kernel regression estimation 381 i: 1 = ^{r'(p) 2 -r'(a) 2 }. D 4. CONCLUSIONS When considering kernel regression estimators for application one has to choose between two popular weighting schemes, one called Nadaraya-Watson weights, the other convolution weights. The bias of convolution weights is rather simple, depending essentially on the second derivative of the regression function which is easy to grasp qualitatively in an exploratory analysis. The Nadaraya-Watson estimator has a complex bias, involving first and second derivatives of the regression function as well as the density of the design and its first derivative. It may not only lead to a distortion of linear parts of the regression function but also to a qualitative distortion of its pattern which is not easy to grasp intuitively, say from a graphical display. This type of bias also leads to more severe boundary problems and to difficulties with certain methods of bandwidth choice. Both are problems of practical relevance. The variance is the same for fixed design, but is smaller for the Nadaraya-Watson estimator in case of random design. A comparison of mean square error in a minimax sense shows that Nadaraya-Watson weights can become arbitrarily bad in an unfavourable situation, which is contrary to the spirit of nonparametric methods. This altogether makes us hesitate to recommend the use of Nadaraya- Watson weights. ACKNOWLEDGEMENT This work has been performed as part of the research program of the Sonderforschungsbereich 123 at the University of Heidelberg, and was made possible by financial support from the Deutsche Forschungsgemeinschaft. REFERENCES GASSER, T. & MULLER, H. G. (1979). Kernel estimation of regression functions. In Smoothing Techniques for Curve Estimation, Ed. T. Gasser and M. Rosenblatt, pp New York: Springer-Verlag. JENNEN-STEINMETZ, C. & GASSER, T. (1988). A unifying approach to nonparametric regression estimation. /. Am. Statist Assoc 83, NADARAYA, E. A. (1964). On estimating regression. Theory Prob. Applic 9, PRIESTLEY, M. B. & CHAO, M. T. (1972). Nonparametric function fitting. J. R. Statist Soc B 34, WATSON, G. S. (1964). Smooth regression analysis. Sankhya A 26, [Received August Revised November 1989]

6

University, Tempe, Arizona, USA b Department of Mathematics and Statistics, University of New. Mexico, Albuquerque, New Mexico, USA

University, Tempe, Arizona, USA b Department of Mathematics and Statistics, University of New. Mexico, Albuquerque, New Mexico, USA This article was downloaded by: [University of New Mexico] On: 27 September 2012, At: 22:13 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered

More information

Local Polynomial Modelling and Its Applications

Local Polynomial Modelling and Its Applications Local Polynomial Modelling and Its Applications J. Fan Department of Statistics University of North Carolina Chapel Hill, USA and I. Gijbels Institute of Statistics Catholic University oflouvain Louvain-la-Neuve,

More information

Optimal global rates of convergence for interpolation problems with random design

Optimal global rates of convergence for interpolation problems with random design Optimal global rates of convergence for interpolation problems with random design Michael Kohler 1 and Adam Krzyżak 2, 1 Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstr. 7, 64289

More information

Do Markov-Switching Models Capture Nonlinearities in the Data? Tests using Nonparametric Methods

Do Markov-Switching Models Capture Nonlinearities in the Data? Tests using Nonparametric Methods Do Markov-Switching Models Capture Nonlinearities in the Data? Tests using Nonparametric Methods Robert V. Breunig Centre for Economic Policy Research, Research School of Social Sciences and School of

More information

Econ 582 Nonparametric Regression

Econ 582 Nonparametric Regression Econ 582 Nonparametric Regression Eric Zivot May 28, 2013 Nonparametric Regression Sofarwehaveonlyconsideredlinearregressionmodels = x 0 β + [ x ]=0 [ x = x] =x 0 β = [ x = x] [ x = x] x = β The assume

More information

Statistical inference on Lévy processes

Statistical inference on Lévy processes Alberto Coca Cabrero University of Cambridge - CCA Supervisors: Dr. Richard Nickl and Professor L.C.G.Rogers Funded by Fundación Mutua Madrileña and EPSRC MASDOC/CCA student workshop 2013 26th March Outline

More information

NADARAYA WATSON ESTIMATE JAN 10, 2006: version 2. Y ik ( x i

NADARAYA WATSON ESTIMATE JAN 10, 2006: version 2. Y ik ( x i NADARAYA WATSON ESTIMATE JAN 0, 2006: version 2 DATA: (x i, Y i, i =,..., n. ESTIMATE E(Y x = m(x by n i= ˆm (x = Y ik ( x i x n i= K ( x i x EXAMPLES OF K: K(u = I{ u c} (uniform or box kernel K(u = u

More information

Estimation of cumulative distribution function with spline functions

Estimation of cumulative distribution function with spline functions INTERNATIONAL JOURNAL OF ECONOMICS AND STATISTICS Volume 5, 017 Estimation of cumulative distribution function with functions Akhlitdin Nizamitdinov, Aladdin Shamilov Abstract The estimation of the cumulative

More information

Peter Hoff Minimax estimation October 31, Motivation and definition. 2 Least favorable prior 3. 3 Least favorable prior sequence 11

Peter Hoff Minimax estimation October 31, Motivation and definition. 2 Least favorable prior 3. 3 Least favorable prior sequence 11 Contents 1 Motivation and definition 1 2 Least favorable prior 3 3 Least favorable prior sequence 11 4 Nonparametric problems 15 5 Minimax and admissibility 18 6 Superefficiency and sparsity 19 Most of

More information

Smooth nonparametric estimation of a quantile function under right censoring using beta kernels

Smooth nonparametric estimation of a quantile function under right censoring using beta kernels Smooth nonparametric estimation of a quantile function under right censoring using beta kernels Chanseok Park 1 Department of Mathematical Sciences, Clemson University, Clemson, SC 29634 Short Title: Smooth

More information

Lack-of-fit Tests to Indicate Material Model Improvement or Experimental Data Noise Reduction

Lack-of-fit Tests to Indicate Material Model Improvement or Experimental Data Noise Reduction Lack-of-fit Tests to Indicate Material Model Improvement or Experimental Data Noise Reduction Charles F. Jekel and Raphael T. Haftka University of Florida, Gainesville, FL, 32611, USA Gerhard Venter and

More information

Testing for Regime Switching in Singaporean Business Cycles

Testing for Regime Switching in Singaporean Business Cycles Testing for Regime Switching in Singaporean Business Cycles Robert Breunig School of Economics Faculty of Economics and Commerce Australian National University and Alison Stegman Research School of Pacific

More information

O Combining cross-validation and plug-in methods - for kernel density bandwidth selection O

O Combining cross-validation and plug-in methods - for kernel density bandwidth selection O O Combining cross-validation and plug-in methods - for kernel density selection O Carlos Tenreiro CMUC and DMUC, University of Coimbra PhD Program UC UP February 18, 2011 1 Overview The nonparametric problem

More information

A NOTE ON THE CHOICE OF THE SMOOTHING PARAMETER IN THE KERNEL DENSITY ESTIMATE

A NOTE ON THE CHOICE OF THE SMOOTHING PARAMETER IN THE KERNEL DENSITY ESTIMATE BRAC University Journal, vol. V1, no. 1, 2009, pp. 59-68 A NOTE ON THE CHOICE OF THE SMOOTHING PARAMETER IN THE KERNEL DENSITY ESTIMATE Daniel F. Froelich Minnesota State University, Mankato, USA and Mezbahur

More information

Local Polynomial Regression

Local Polynomial Regression VI Local Polynomial Regression (1) Global polynomial regression We observe random pairs (X 1, Y 1 ),, (X n, Y n ) where (X 1, Y 1 ),, (X n, Y n ) iid (X, Y ). We want to estimate m(x) = E(Y X = x) based

More information

Additive Isotonic Regression

Additive Isotonic Regression Additive Isotonic Regression Enno Mammen and Kyusang Yu 11. July 2006 INTRODUCTION: We have i.i.d. random vectors (Y 1, X 1 ),..., (Y n, X n ) with X i = (X1 i,..., X d i ) and we consider the additive

More information

Density estimators for the convolution of discrete and continuous random variables

Density estimators for the convolution of discrete and continuous random variables Density estimators for the convolution of discrete and continuous random variables Ursula U Müller Texas A&M University Anton Schick Binghamton University Wolfgang Wefelmeyer Universität zu Köln Abstract

More information

Peter Hoff Minimax estimation November 12, Motivation and definition. 2 Least favorable prior 3. 3 Least favorable prior sequence 11

Peter Hoff Minimax estimation November 12, Motivation and definition. 2 Least favorable prior 3. 3 Least favorable prior sequence 11 Contents 1 Motivation and definition 1 2 Least favorable prior 3 3 Least favorable prior sequence 11 4 Nonparametric problems 15 5 Minimax and admissibility 18 6 Superefficiency and sparsity 19 Most of

More information

Empirical Density Estimation for Interval Censored Data

Empirical Density Estimation for Interval Censored Data AUSTRIAN JOURNAL OF STATISTICS Volume 37 (2008), Number 1, 119 128 Empirical Density Estimation for Interval Censored Data Eugenia Stoimenova Bulgarian Academy of Sciences, Sofia Abstract: This paper is

More information

Asymptotic inference for a nonstationary double ar(1) model

Asymptotic inference for a nonstationary double ar(1) model Asymptotic inference for a nonstationary double ar() model By SHIQING LING and DONG LI Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong maling@ust.hk malidong@ust.hk

More information

Simple and Honest Confidence Intervals in Nonparametric Regression

Simple and Honest Confidence Intervals in Nonparametric Regression Simple and Honest Confidence Intervals in Nonparametric Regression Timothy B. Armstrong Yale University Michal Kolesár Princeton University June, 206 Abstract We consider the problem of constructing honest

More information

A nonparametric method of multi-step ahead forecasting in diffusion processes

A nonparametric method of multi-step ahead forecasting in diffusion processes A nonparametric method of multi-step ahead forecasting in diffusion processes Mariko Yamamura a, Isao Shoji b a School of Pharmacy, Kitasato University, Minato-ku, Tokyo, 108-8641, Japan. b Graduate School

More information

SCALE SPACE VIEW OF CURVE ESTIMATION. By Probal Chaudhuri and J. S. Marron Indian Statistical Institute and University of North Carolina

SCALE SPACE VIEW OF CURVE ESTIMATION. By Probal Chaudhuri and J. S. Marron Indian Statistical Institute and University of North Carolina The Annals of Statistics 2000, Vol. 28, No. 2, 408 428 SCALE SPACE VIEW OF CURVE ESTIMATION By Probal Chaudhuri and J. S. Marron Indian Statistical Institute and University of North Carolina Scale space

More information

Asymptotic Distribution of the Largest Eigenvalue via Geometric Representations of High-Dimension, Low-Sample-Size Data

Asymptotic Distribution of the Largest Eigenvalue via Geometric Representations of High-Dimension, Low-Sample-Size Data Sri Lankan Journal of Applied Statistics (Special Issue) Modern Statistical Methodologies in the Cutting Edge of Science Asymptotic Distribution of the Largest Eigenvalue via Geometric Representations

More information

Nonparametric Regression. Changliang Zou

Nonparametric Regression. Changliang Zou Nonparametric Regression Institute of Statistics, Nankai University Email: nk.chlzou@gmail.com Smoothing parameter selection An overall measure of how well m h (x) performs in estimating m(x) over x (0,

More information

Supplement to Quantile-Based Nonparametric Inference for First-Price Auctions

Supplement to Quantile-Based Nonparametric Inference for First-Price Auctions Supplement to Quantile-Based Nonparametric Inference for First-Price Auctions Vadim Marmer University of British Columbia Artyom Shneyerov CIRANO, CIREQ, and Concordia University August 30, 2010 Abstract

More information

UNIVERSITÄT POTSDAM Institut für Mathematik

UNIVERSITÄT POTSDAM Institut für Mathematik UNIVERSITÄT POTSDAM Institut für Mathematik Testing the Acceleration Function in Life Time Models Hannelore Liero Matthias Liero Mathematische Statistik und Wahrscheinlichkeitstheorie Universität Potsdam

More information

Model Selection and Geometry

Model Selection and Geometry Model Selection and Geometry Pascal Massart Université Paris-Sud, Orsay Leipzig, February Purpose of the talk! Concentration of measure plays a fundamental role in the theory of model selection! Model

More information

A MODEL-BASED EVALUATION OF SEVERAL WELL-KNOWN VARIANCE ESTIMATORS FOR THE COMBINED RATIO ESTIMATOR

A MODEL-BASED EVALUATION OF SEVERAL WELL-KNOWN VARIANCE ESTIMATORS FOR THE COMBINED RATIO ESTIMATOR Statistica Sinica 8(1998), 1165-1173 A MODEL-BASED EVALUATION OF SEVERAL WELL-KNOWN VARIANCE ESTIMATORS FOR THE COMBINED RATIO ESTIMATOR Phillip S. Kott National Agricultural Statistics Service Abstract:

More information

CONSISTENCY OF CROSS VALIDATION FOR COMPARING REGRESSION PROCEDURES. By Yuhong Yang University of Minnesota

CONSISTENCY OF CROSS VALIDATION FOR COMPARING REGRESSION PROCEDURES. By Yuhong Yang University of Minnesota Submitted to the Annals of Statistics CONSISTENCY OF CROSS VALIDATION FOR COMPARING REGRESSION PROCEDURES By Yuhong Yang University of Minnesota Theoretical developments on cross validation CV) have mainly

More information

Smooth functions and local extreme values

Smooth functions and local extreme values Smooth functions and local extreme values A. Kovac 1 Department of Mathematics University of Bristol Abstract Given a sample of n observations y 1,..., y n at time points t 1,..., t n we consider the problem

More information

Nonparametric Methods

Nonparametric Methods Nonparametric Methods Michael R. Roberts Department of Finance The Wharton School University of Pennsylvania July 28, 2009 Michael R. Roberts Nonparametric Methods 1/42 Overview Great for data analysis

More information

Issues on quantile autoregression

Issues on quantile autoregression Issues on quantile autoregression Jianqing Fan and Yingying Fan We congratulate Koenker and Xiao on their interesting and important contribution to the quantile autoregression (QAR). The paper provides

More information

Asymptotically Optimal Regression Trees

Asymptotically Optimal Regression Trees Working Paper 208:2 Department of Economics School of Economics and Management Asymptotically Optimal Regression Trees Erik Mohlin May 208 Asymptotically Optimal Regression Trees Erik Mohlin Lund University

More information

Root-Unroot Methods for Nonparametric Density Estimation and Poisson Random-Effects Models

Root-Unroot Methods for Nonparametric Density Estimation and Poisson Random-Effects Models University of Pennsylvania ScholarlyCommons Statistics Papers Wharton Faculty Research 00 Root-Unroot Methods for Nonparametric Density Estimation and Poisson Random-Effects Models Lwawrence D. Brown University

More information

Nonparametric regression with martingale increment errors

Nonparametric regression with martingale increment errors S. Gaïffas (LSTA - Paris 6) joint work with S. Delattre (LPMA - Paris 7) work in progress Motivations Some facts: Theoretical study of statistical algorithms requires stationary and ergodicity. Concentration

More information

Convergence rates in weighted L 1 spaces of kernel density estimators for linear processes

Convergence rates in weighted L 1 spaces of kernel density estimators for linear processes Alea 4, 117 129 (2008) Convergence rates in weighted L 1 spaces of kernel density estimators for linear processes Anton Schick and Wolfgang Wefelmeyer Anton Schick, Department of Mathematical Sciences,

More information

Nonparametric Inference via Bootstrapping the Debiased Estimator

Nonparametric Inference via Bootstrapping the Debiased Estimator Nonparametric Inference via Bootstrapping the Debiased Estimator Yen-Chi Chen Department of Statistics, University of Washington ICSA-Canada Chapter Symposium 2017 1 / 21 Problem Setup Let X 1,, X n be

More information

Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones

Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones http://www.mpia.de/homes/calj/mlpr_mpia2008.html 1 1 Last week... supervised and unsupervised methods need adaptive

More information

Time Series and Forecasting Lecture 4 NonLinear Time Series

Time Series and Forecasting Lecture 4 NonLinear Time Series Time Series and Forecasting Lecture 4 NonLinear Time Series Bruce E. Hansen Summer School in Economics and Econometrics University of Crete July 23-27, 2012 Bruce Hansen (University of Wisconsin) Foundations

More information

Smooth simultaneous confidence bands for cumulative distribution functions

Smooth simultaneous confidence bands for cumulative distribution functions Journal of Nonparametric Statistics, 2013 Vol. 25, No. 2, 395 407, http://dx.doi.org/10.1080/10485252.2012.759219 Smooth simultaneous confidence bands for cumulative distribution functions Jiangyan Wang

More information

NCoVaR Granger Causality

NCoVaR Granger Causality NCoVaR Granger Causality Cees Diks 1 Marcin Wolski 2 1 Universiteit van Amsterdam 2 European Investment Bank Bank of Italy Rome, 26 January 2018 The opinions expressed herein are those of the authors and

More information

Principles of Risk Minimization for Learning Theory

Principles of Risk Minimization for Learning Theory Principles of Risk Minimization for Learning Theory V. Vapnik AT &T Bell Laboratories Holmdel, NJ 07733, USA Abstract Learning is posed as a problem of function estimation, for which two principles of

More information

Sparse Nonparametric Density Estimation in High Dimensions Using the Rodeo

Sparse Nonparametric Density Estimation in High Dimensions Using the Rodeo Outline in High Dimensions Using the Rodeo Han Liu 1,2 John Lafferty 2,3 Larry Wasserman 1,2 1 Statistics Department, 2 Machine Learning Department, 3 Computer Science Department, Carnegie Mellon University

More information

Discussion of the paper Inference for Semiparametric Models: Some Questions and an Answer by Bickel and Kwon

Discussion of the paper Inference for Semiparametric Models: Some Questions and an Answer by Bickel and Kwon Discussion of the paper Inference for Semiparametric Models: Some Questions and an Answer by Bickel and Kwon Jianqing Fan Department of Statistics Chinese University of Hong Kong AND Department of Statistics

More information

Introduction. Linear Regression. coefficient estimates for the wage equation: E(Y X) = X 1 β X d β d = X β

Introduction. Linear Regression. coefficient estimates for the wage equation: E(Y X) = X 1 β X d β d = X β Introduction - Introduction -2 Introduction Linear Regression E(Y X) = X β +...+X d β d = X β Example: Wage equation Y = log wages, X = schooling (measured in years), labor market experience (measured

More information

Likelihood ratio confidence bands in nonparametric regression with censored data

Likelihood ratio confidence bands in nonparametric regression with censored data Likelihood ratio confidence bands in nonparametric regression with censored data Gang Li University of California at Los Angeles Department of Biostatistics Ingrid Van Keilegom Eindhoven University of

More information

Estimation of the Bivariate and Marginal Distributions with Censored Data

Estimation of the Bivariate and Marginal Distributions with Censored Data Estimation of the Bivariate and Marginal Distributions with Censored Data Michael Akritas and Ingrid Van Keilegom Penn State University and Eindhoven University of Technology May 22, 2 Abstract Two new

More information

Robust Preprocessing of Time Series with Trends

Robust Preprocessing of Time Series with Trends Robust Preprocessing of Time Series with Trends Roland Fried Ursula Gather Department of Statistics, Universität Dortmund ffried,gatherg@statistik.uni-dortmund.de Michael Imhoff Klinikum Dortmund ggmbh

More information

Local Modelling of Nonlinear Dynamic Systems Using Direct Weight Optimization

Local Modelling of Nonlinear Dynamic Systems Using Direct Weight Optimization Local Modelling of Nonlinear Dynamic Systems Using Direct Weight Optimization Jacob Roll, Alexander Nazin, Lennart Ljung Division of Automatic Control Department of Electrical Engineering Linköpings universitet,

More information

FUNCTIONAL DATA ANALYSIS. Contribution to the. International Handbook (Encyclopedia) of Statistical Sciences. July 28, Hans-Georg Müller 1

FUNCTIONAL DATA ANALYSIS. Contribution to the. International Handbook (Encyclopedia) of Statistical Sciences. July 28, Hans-Georg Müller 1 FUNCTIONAL DATA ANALYSIS Contribution to the International Handbook (Encyclopedia) of Statistical Sciences July 28, 2009 Hans-Georg Müller 1 Department of Statistics University of California, Davis One

More information

OPTIMAL POINTWISE ADAPTIVE METHODS IN NONPARAMETRIC ESTIMATION 1

OPTIMAL POINTWISE ADAPTIVE METHODS IN NONPARAMETRIC ESTIMATION 1 The Annals of Statistics 1997, Vol. 25, No. 6, 2512 2546 OPTIMAL POINTWISE ADAPTIVE METHODS IN NONPARAMETRIC ESTIMATION 1 By O. V. Lepski and V. G. Spokoiny Humboldt University and Weierstrass Institute

More information

Econometrics I. Lecture 10: Nonparametric Estimation with Kernels. Paul T. Scott NYU Stern. Fall 2018

Econometrics I. Lecture 10: Nonparametric Estimation with Kernels. Paul T. Scott NYU Stern. Fall 2018 Econometrics I Lecture 10: Nonparametric Estimation with Kernels Paul T. Scott NYU Stern Fall 2018 Paul T. Scott NYU Stern Econometrics I Fall 2018 1 / 12 Nonparametric Regression: Intuition Let s get

More information

Density Estimation (II)

Density Estimation (II) Density Estimation (II) Yesterday Overview & Issues Histogram Kernel estimators Ideogram Today Further development of optimization Estimating variance and bias Adaptive kernels Multivariate kernel estimation

More information

Goodness-of-fit tests for the cure rate in a mixture cure model

Goodness-of-fit tests for the cure rate in a mixture cure model Biometrika (217), 13, 1, pp. 1 7 Printed in Great Britain Advance Access publication on 31 July 216 Goodness-of-fit tests for the cure rate in a mixture cure model BY U.U. MÜLLER Department of Statistics,

More information

ON THE FOLIATION OF SPACE-TIME BY CONSTANT MEAN CURVATURE HYPERSURFACES

ON THE FOLIATION OF SPACE-TIME BY CONSTANT MEAN CURVATURE HYPERSURFACES ON THE FOLIATION OF SPACE-TIME BY CONSTANT MEAN CURVATURE HYPERSURFACES CLAUS GERHARDT Abstract. We prove that the mean curvature τ of the slices given by a constant mean curvature foliation can be used

More information

Pointwise convergence rates and central limit theorems for kernel density estimators in linear processes

Pointwise convergence rates and central limit theorems for kernel density estimators in linear processes Pointwise convergence rates and central limit theorems for kernel density estimators in linear processes Anton Schick Binghamton University Wolfgang Wefelmeyer Universität zu Köln Abstract Convergence

More information

The Priestley-Chao Estimator - Bias, Variance and Mean-Square Error

The Priestley-Chao Estimator - Bias, Variance and Mean-Square Error The Priestley-Chao Estimator - Bias, Variance and Mean-Square Error Bias, variance and mse properties In the previous section we saw that the eact mean and variance of the Pristley-Chao estimator ˆm()

More information

CURVATURE ESTIMATES FOR WEINGARTEN HYPERSURFACES IN RIEMANNIAN MANIFOLDS

CURVATURE ESTIMATES FOR WEINGARTEN HYPERSURFACES IN RIEMANNIAN MANIFOLDS CURVATURE ESTIMATES FOR WEINGARTEN HYPERSURFACES IN RIEMANNIAN MANIFOLDS CLAUS GERHARDT Abstract. We prove curvature estimates for general curvature functions. As an application we show the existence of

More information

Nonparametric Estimation of Functional-Coefficient Autoregressive Models

Nonparametric Estimation of Functional-Coefficient Autoregressive Models Nonparametric Estimation of Functional-Coefficient Autoregressive Models PEDRO A. MORETTIN and CHANG CHIANN Department of Statistics, University of São Paulo Introduction Nonlinear Models: - Exponential

More information

Nonparametric Modal Regression

Nonparametric Modal Regression Nonparametric Modal Regression Summary In this article, we propose a new nonparametric modal regression model, which aims to estimate the mode of the conditional density of Y given predictors X. The nonparametric

More information

More on Estimation. Maximum Likelihood Estimation.

More on Estimation. Maximum Likelihood Estimation. More on Estimation. In the previous chapter we looked at the properties of estimators and the criteria we could use to choose between types of estimators. Here we examine more closely some very popular

More information

Estimation of a quadratic regression functional using the sinc kernel

Estimation of a quadratic regression functional using the sinc kernel Estimation of a quadratic regression functional using the sinc kernel Nicolai Bissantz Hajo Holzmann Institute for Mathematical Stochastics, Georg-August-University Göttingen, Maschmühlenweg 8 10, D-37073

More information

On the Use of Nonparametric ICC Estimation Techniques For Checking Parametric Model Fit

On the Use of Nonparametric ICC Estimation Techniques For Checking Parametric Model Fit On the Use of Nonparametric ICC Estimation Techniques For Checking Parametric Model Fit March 27, 2004 Young-Sun Lee Teachers College, Columbia University James A.Wollack University of Wisconsin Madison

More information

Bias Correction and Higher Order Kernel Functions

Bias Correction and Higher Order Kernel Functions Bias Correction and Higher Order Kernel Functions Tien-Chung Hu 1 Department of Mathematics National Tsing-Hua University Hsinchu, Taiwan Jianqing Fan Department of Statistics University of North Carolina

More information

Research Article A Nonparametric Two-Sample Wald Test of Equality of Variances

Research Article A Nonparametric Two-Sample Wald Test of Equality of Variances Advances in Decision Sciences Volume 211, Article ID 74858, 8 pages doi:1.1155/211/74858 Research Article A Nonparametric Two-Sample Wald Test of Equality of Variances David Allingham 1 andj.c.w.rayner

More information

Local regression I. Patrick Breheny. November 1. Kernel weighted averages Local linear regression

Local regression I. Patrick Breheny. November 1. Kernel weighted averages Local linear regression Local regression I Patrick Breheny November 1 Patrick Breheny STA 621: Nonparametric Statistics 1/27 Simple local models Kernel weighted averages The Nadaraya-Watson estimator Expected loss and prediction

More information

Can we do statistical inference in a non-asymptotic way? 1

Can we do statistical inference in a non-asymptotic way? 1 Can we do statistical inference in a non-asymptotic way? 1 Guang Cheng 2 Statistics@Purdue www.science.purdue.edu/bigdata/ ONR Review Meeting@Duke Oct 11, 2017 1 Acknowledge NSF, ONR and Simons Foundation.

More information

On robust and efficient estimation of the center of. Symmetry.

On robust and efficient estimation of the center of. Symmetry. On robust and efficient estimation of the center of symmetry Howard D. Bondell Department of Statistics, North Carolina State University Raleigh, NC 27695-8203, U.S.A (email: bondell@stat.ncsu.edu) Abstract

More information

Confidence intervals for kernel density estimation

Confidence intervals for kernel density estimation Stata User Group - 9th UK meeting - 19/20 May 2003 Confidence intervals for kernel density estimation Carlo Fiorio c.fiorio@lse.ac.uk London School of Economics and STICERD Stata User Group - 9th UK meeting

More information

Modelling Non-linear and Non-stationary Time Series

Modelling Non-linear and Non-stationary Time Series Modelling Non-linear and Non-stationary Time Series Chapter 2: Non-parametric methods Henrik Madsen Advanced Time Series Analysis September 206 Henrik Madsen (02427 Adv. TS Analysis) Lecture Notes September

More information

Nonparametric Regression Estimation for Nonlinear Systems: A Case Study of Sigmoidal Growths

Nonparametric Regression Estimation for Nonlinear Systems: A Case Study of Sigmoidal Growths Pakistan Journal of Social Sciences (PJSS) Vol. 31, No. 2 (December 2011), pp. 423-432 Nonparametric Regression Estimation for Nonlinear Systems: A Case Study of Sigmoidal Growths Atif Akbar Department

More information

Department of Economics, Vanderbilt University While it is known that pseudo-out-of-sample methods are not optimal for

Department of Economics, Vanderbilt University While it is known that pseudo-out-of-sample methods are not optimal for Comment Atsushi Inoue Department of Economics, Vanderbilt University (atsushi.inoue@vanderbilt.edu) While it is known that pseudo-out-of-sample methods are not optimal for comparing models, they are nevertheless

More information

A Novel Nonparametric Density Estimator

A Novel Nonparametric Density Estimator A Novel Nonparametric Density Estimator Z. I. Botev The University of Queensland Australia Abstract We present a novel nonparametric density estimator and a new data-driven bandwidth selection method with

More information

CURRENT STATUS LINEAR REGRESSION. By Piet Groeneboom and Kim Hendrickx Delft University of Technology and Hasselt University

CURRENT STATUS LINEAR REGRESSION. By Piet Groeneboom and Kim Hendrickx Delft University of Technology and Hasselt University CURRENT STATUS LINEAR REGRESSION By Piet Groeneboom and Kim Hendrickx Delft University of Technology and Hasselt University We construct n-consistent and asymptotically normal estimates for the finite

More information

ORTHOGONAL SERIES REGRESSION ESTIMATORS FOR AN IRREGULARLY SPACED DESIGN

ORTHOGONAL SERIES REGRESSION ESTIMATORS FOR AN IRREGULARLY SPACED DESIGN APPLICATIONES MATHEMATICAE 7,3(000), pp. 309 318 W.POPIŃSKI(Warszawa) ORTHOGONAL SERIES REGRESSION ESTIMATORS FOR AN IRREGULARLY SPACED DESIGN Abstract. Nonparametric orthogonal series regression function

More information

Variance Function Estimation in Multivariate Nonparametric Regression

Variance Function Estimation in Multivariate Nonparametric Regression Variance Function Estimation in Multivariate Nonparametric Regression T. Tony Cai 1, Michael Levine Lie Wang 1 Abstract Variance function estimation in multivariate nonparametric regression is considered

More information

Defect Detection using Nonparametric Regression

Defect Detection using Nonparametric Regression Defect Detection using Nonparametric Regression Siana Halim Industrial Engineering Department-Petra Christian University Siwalankerto 121-131 Surabaya- Indonesia halim@petra.ac.id Abstract: To compare

More information

Sliced Inverse Regression

Sliced Inverse Regression Sliced Inverse Regression Ge Zhao gzz13@psu.edu Department of Statistics The Pennsylvania State University Outline Background of Sliced Inverse Regression (SIR) Dimension Reduction Definition of SIR Inversed

More information

Uncertainty Quantification for Inverse Problems. November 7, 2011

Uncertainty Quantification for Inverse Problems. November 7, 2011 Uncertainty Quantification for Inverse Problems November 7, 2011 Outline UQ and inverse problems Review: least-squares Review: Gaussian Bayesian linear model Parametric reductions for IP Bias, variance

More information

3.0.1 Multivariate version and tensor product of experiments

3.0.1 Multivariate version and tensor product of experiments ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 Lecture 3: Minimax risk of GLM and four extensions Lecturer: Yihong Wu Scribe: Ashok Vardhan, Jan 28, 2016 [Ed. Mar 24]

More information

ECO Class 6 Nonparametric Econometrics

ECO Class 6 Nonparametric Econometrics ECO 523 - Class 6 Nonparametric Econometrics Carolina Caetano Contents 1 Nonparametric instrumental variable regression 1 2 Nonparametric Estimation of Average Treatment Effects 3 2.1 Asymptotic results................................

More information

ASYMPTOTICS FOR PENALIZED SPLINES IN ADDITIVE MODELS

ASYMPTOTICS FOR PENALIZED SPLINES IN ADDITIVE MODELS Mem. Gra. Sci. Eng. Shimane Univ. Series B: Mathematics 47 (2014), pp. 63 71 ASYMPTOTICS FOR PENALIZED SPLINES IN ADDITIVE MODELS TAKUMA YOSHIDA Communicated by Kanta Naito (Received: December 19, 2013)

More information

EXTREMAL QUANTILES OF MAXIMUMS FOR STATIONARY SEQUENCES WITH PSEUDO-STATIONARY TREND WITH APPLICATIONS IN ELECTRICITY CONSUMPTION ALEXANDR V.

EXTREMAL QUANTILES OF MAXIMUMS FOR STATIONARY SEQUENCES WITH PSEUDO-STATIONARY TREND WITH APPLICATIONS IN ELECTRICITY CONSUMPTION ALEXANDR V. MONTENEGRIN STATIONARY JOURNAL TREND WITH OF ECONOMICS, APPLICATIONS Vol. IN 9, ELECTRICITY No. 4 (December CONSUMPTION 2013), 53-63 53 EXTREMAL QUANTILES OF MAXIMUMS FOR STATIONARY SEQUENCES WITH PSEUDO-STATIONARY

More information

Quantile Processes for Semi and Nonparametric Regression

Quantile Processes for Semi and Nonparametric Regression Quantile Processes for Semi and Nonparametric Regression Shih-Kang Chao Department of Statistics Purdue University IMS-APRM 2016 A joint work with Stanislav Volgushev and Guang Cheng Quantile Response

More information

Wavelet Regression Estimation in Longitudinal Data Analysis

Wavelet Regression Estimation in Longitudinal Data Analysis Wavelet Regression Estimation in Longitudinal Data Analysis ALWELL J. OYET and BRAJENDRA SUTRADHAR Department of Mathematics and Statistics, Memorial University of Newfoundland St. John s, NF Canada, A1C

More information

DISCUSSION: COVERAGE OF BAYESIAN CREDIBLE SETS. By Subhashis Ghosal North Carolina State University

DISCUSSION: COVERAGE OF BAYESIAN CREDIBLE SETS. By Subhashis Ghosal North Carolina State University Submitted to the Annals of Statistics DISCUSSION: COVERAGE OF BAYESIAN CREDIBLE SETS By Subhashis Ghosal North Carolina State University First I like to congratulate the authors Botond Szabó, Aad van der

More information

A nonparametric two-sample wald test of equality of variances

A nonparametric two-sample wald test of equality of variances University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 211 A nonparametric two-sample wald test of equality of variances David

More information

Minimax Rate of Convergence for an Estimator of the Functional Component in a Semiparametric Multivariate Partially Linear Model.

Minimax Rate of Convergence for an Estimator of the Functional Component in a Semiparametric Multivariate Partially Linear Model. Minimax Rate of Convergence for an Estimator of the Functional Component in a Semiparametric Multivariate Partially Linear Model By Michael Levine Purdue University Technical Report #14-03 Department of

More information

Department of Statistics Purdue University West Lafayette, IN USA

Department of Statistics Purdue University West Lafayette, IN USA Variance Estimation in Nonparametric Regression Via the Difference Sequence Method by Lawrence D. Brown University of Pennsylvania M. Levine Purdue University Technical Report #06-07 Department of Statistics

More information

A comparative study of ordinary cross-validation, r-fold cross-validation and the repeated learning-testing methods

A comparative study of ordinary cross-validation, r-fold cross-validation and the repeated learning-testing methods Biometrika (1989), 76, 3, pp. 503-14 Printed in Great Britain A comparative study of ordinary cross-validation, r-fold cross-validation and the repeated learning-testing methods BY PRABIR BURMAN Division

More information

ERROR VARIANCE ESTIMATION IN NONPARAMETRIC REGRESSION MODELS

ERROR VARIANCE ESTIMATION IN NONPARAMETRIC REGRESSION MODELS ERROR VARIANCE ESTIMATION IN NONPARAMETRIC REGRESSION MODELS By YOUSEF FAYZ M ALHARBI A thesis submitted to The University of Birmingham for the Degree of DOCTOR OF PHILOSOPHY School of Mathematics The

More information

Kernel-based density. Nuno Vasconcelos ECE Department, UCSD

Kernel-based density. Nuno Vasconcelos ECE Department, UCSD Kernel-based density estimation Nuno Vasconcelos ECE Department, UCSD Announcement last week of classes we will have Cheetah Day (exact day TBA) what: 4 teams of 6 people each team will write a report

More information

Lecture 3: Statistical Decision Theory (Part II)

Lecture 3: Statistical Decision Theory (Part II) Lecture 3: Statistical Decision Theory (Part II) Hao Helen Zhang Hao Helen Zhang Lecture 3: Statistical Decision Theory (Part II) 1 / 27 Outline of This Note Part I: Statistics Decision Theory (Classical

More information

12 - Nonparametric Density Estimation

12 - Nonparametric Density Estimation ST 697 Fall 2017 1/49 12 - Nonparametric Density Estimation ST 697 Fall 2017 University of Alabama Density Review ST 697 Fall 2017 2/49 Continuous Random Variables ST 697 Fall 2017 3/49 1.0 0.8 F(x) 0.6

More information

Fast learning rates for plug-in classifiers under the margin condition

Fast learning rates for plug-in classifiers under the margin condition Fast learning rates for plug-in classifiers under the margin condition Jean-Yves Audibert 1 Alexandre B. Tsybakov 2 1 Certis ParisTech - Ecole des Ponts, France 2 LPMA Université Pierre et Marie Curie,

More information

On detection of unit roots generalizing the classic Dickey-Fuller approach

On detection of unit roots generalizing the classic Dickey-Fuller approach On detection of unit roots generalizing the classic Dickey-Fuller approach A. Steland Ruhr-Universität Bochum Fakultät für Mathematik Building NA 3/71 D-4478 Bochum, Germany February 18, 25 1 Abstract

More information

Understanding Generalization Error: Bounds and Decompositions

Understanding Generalization Error: Bounds and Decompositions CIS 520: Machine Learning Spring 2018: Lecture 11 Understanding Generalization Error: Bounds and Decompositions Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the

More information

Strictly Stationary Solutions of Autoregressive Moving Average Equations

Strictly Stationary Solutions of Autoregressive Moving Average Equations Strictly Stationary Solutions of Autoregressive Moving Average Equations Peter J. Brockwell Alexander Lindner Abstract Necessary and sufficient conditions for the existence of a strictly stationary solution

More information

Institut für Mathematik

Institut für Mathematik U n i v e r s i t ä t A u g s b u r g Institut für Mathematik Martin Rasmussen, Peter Giesl A Note on Almost Periodic Variational Equations Preprint Nr. 13/28 14. März 28 Institut für Mathematik, Universitätsstraße,

More information