TDCR in a nutshell. P. Cassette, Laboratoire National Henri Becquerel, France

Size: px
Start display at page:

Download "TDCR in a nutshell. P. Cassette, Laboratoire National Henri Becquerel, France"

Transcription

1 TDCR in a nutshell P. Cassette, Laboratoire National Henri Becquerel, France

2 Summary LSC in radionuclide metrology, free parameter model The TDCR model Examples of relations between efficiency and TDCR Detection efficiency = TDCR? Conclusions

3 LSC in radionuclide metrology, the free parameter model

4 A short history Invention of LSC: Kallman and Reynolds et al., 1950 LS theory: Birks, Voltz, Da Silva sixties Calculation models: Gibson, Gales, Houtermans end of sixties Precursor of the free parameter model: Kolarov, Vatin 1970 TDCR method: Pochwalski, Radoszewski, Broda 1979 CIEMAT/NIST: Grau Malonda, Coursey, 1982 Development of TDCR counters: France, Poland, South Africa, China in the eighties Rapid development of the TDCR method since 1995 Commercial 3-PMT counters 2007

5 TDCR in National Metrology Laboratories (2009)

6 1. Free parameter model: light emission If an electron with energy E is absorbed by the liquid scintillator, a Poisson-distributed random number of photons is emitted with a mean value m, function of E P ( x / m) = m x m e x! Probability of emission of x photons for an average value m(e)

7 2. Free parameter model: light detection The photons emitted are randomly distributed within the optical chamber of the counter and can create photoelectrons in photomultiplier tubes with an overall probability of ν. The resulting statistics of the number of photoelectrons created is also Poisson-distributed with mean value νm P ( y / νm) = ν ( m) y νm y! e Probability of emission of y photoelectrons for an average value νm(e)

8 3. Free parameter model: detection efficiency of an electron with energy E injected in a liquid scintillator If the threshold of the detector is correctly adjusted, a photoelectron will produce a detectable pulse. The detection efficiency is the detection probability The detection probability is the complement of the non-detection probability. Non-detection probability : probability of creation of 0 photoelectron when a mean value of νm is expected ε νm ( νm) e = 1 P(0) = 1 = 1 0! 0 e νm The detection efficiency is a function of a free parameter, νm, meaning the mean number of photoelectrons produced after the absorption of E

9 Relation between m and E Experimental evidence: The number of photons emitted is not proportional to the energy released in the LS cocktail For a given energy, the number of photons emitted by alpha particles is lower than the one emitted by electrons The light emission is an inverse function of the stopping power of the incident particle

10 Relation between m and E Birks formula (integral form) : m( E) = α 0 E 1+ de de kb dx Electron stopping power Birks factor Intrinsic light yield of the scintillator Mean number of photons emitted after absorption of E

11 4. Free parameter model: detection efficiency of electrons with energy spectrum S(E) injected in a liquid scintillator ε ν = E S( E)(1 e m ) de with 0 m = α 0 E 1+ de kb de dx να (fom) is the intrinsic efficiency of the detector (in number of photoelectrons per kev) The knowledge of να allows the calculation of ε

12 The TDCR method Calculation of νm using a LS counter with 3 PMT s

13 LSC TDCR Counter A vial B C F Coincidence and dead-time unit PMT preamplifiers AB CA T F BC D F Time base scalers

14 The TDCR method in short AB, BC, AC D T Free parameter model Absorbed Energy Spectrum TDCR calculation algorithm (numerical) Activity

15 Radionuclide with normalized spectrum density S(E) Events Detection efficiency for S(E) 2 PMT s in coincidence 3 PMT s in coincidence E νm max 3 ε 2 = S( E)(1 e ) ε T = 0 0 E max S( E)(1 e νm 3 ) 3 2 de de Logical sum of double coincidences ε D = 0 E max S( E)(3(1 e νm 3 ) 2 2(1 e νm 3 ) 3 ) de

16 The ratio of triple to double detection efficiency is: εt ε D = 0 E max S 0 E max S ( E) (1 e νm νm 3 de νm ( ) E (3(1 e ) 2(1 e ) ) de ) 3 with For a large number of recorded events, the ratio of frequencies converges towards the ratio of probabilities: T D = ε ε T = D m = α TDCR 0 E 1+ de kb de dx

17 Resolution algorithm: Find a value of the free parameter (να) giving: ε T /ε D calculated = T/D experimental How many solutions? Monoenergetic electrons: 1 analytical solution Pure-beta radionuclides: 1 solution Beta-gamma, electron capture: up to 3 solutions...

18 Detection efficiency (single energy) Similar PMT s: Analytical solution εd = 2 27( TDCR) (1 + 2 TDCR) 3 PMT s with different quantum efficiencies: mν A = 3Ln(1 T BC ) a.s.o. for ν B and ν C εd = T 2 1 ( BC AC + 1 AC AB + 1 AB BC 2 AB T BC AC )

19 Detection efficiency (multiple energies) Normalized energy spectrum S(E) Numerical solution: find out νa (fom) to solve: TDCR = spectrum S spectrum S ( E) (1 e m( E ) de ( ) m( E ) 2 m( E ) 3 E ((3(1 e ) 2(1 e ) )) de ) 3 with m( E) ν = 3 E 0 1 AdE de + kb dx

20 ( ) ( ) de e e E S de e e e E S m m E m m m E AB T B A C A ) )(1 (1 ) )(1 )(1 ( max max ν ν ν ν ν ε ε = B a.s.o. for and BC T ε ε AC T ε ε If the 3 PMT s are different (and they really are!) Ac T BC T AB T AC T BC T AB T ε ε ε ε ε ε Solution, minimize: This gives the detection efficiency and fom for of each PMT

21 Examples of calculations for various radionuclides Calculation using figure of merit (fom) value between 0.1 and 2. photoelectrons/ kev Similar PMT s Program TDCR07c (see your LSC2010 memory key!) kb value: 0.01 cm/mev

22 Monoenergetic emission 6 kev, detection efficiency vs. TDCR Detection efficiency TDCR

23 3 H H-3, detection efficiency vs. TDCR Detection efficiency TDCR

24 14 C C-14, detection efficiency vs. TDCR Detection efficiency TDCR

25 90 Y Y-90, figure of merit and detection efficiency vs. TDCR 2 fom and detection efficiency Detection efficiency D fom TDCR

26 90 Y Y-90, detection efficiency vs. TDCR Detection efficiency TDCR

27 18 F F-18, detection efficiency vs. TDCR 0.97 Detection efficiency TDCR

28 18 F F-18, detection efficiency vs. TDCR 0.97 Detection efficiency TDCR Zoom in the high-efficiency region

29 64 Cu (β +, β -, e.c.) Cu-64, detection efficiency vs. TDCR Detection efficiency TDCR

30 Typical TDCR uncertainty budget Uncertainty component Weighing Counting statistics Background Detection efficiency Sources variability Total Relative uncertainty (k=1) ~ 0.1 % ALARA (e.g. 0.1 %) ALARA (e.g %) 0.1 % - 1 % function of E Generally ~ 0.2 % From a few 0.1 % to a few %

31 Detection efficiency=tdcr (± 15 %)?

32 Not true for monoenergetic electrons (and quasi-monoenergetic spectra like 55 Fe) 27( TDCR) (1 + ( TDCR)) 2 ε D =! 3 εd = TDCR only if TDCR=1 or TDCR = (3 3-5)/4 6 kev, TDCR as detection efficiency, relative bias 60.00% 50.00% Relative bias % 40.00% 30.00% 20.00% 10.00% 0.00% TDCR

33 Not bad for 3 H (if the detection efficiency is not too small) H-3: TDCR as detection efficiency, relative bias 70.00% 60.00% Relative bias % 50.00% 40.00% 30.00% 20.00% 10.00% 0.00% TDCR

34 True for 63 Ni Ni-63, TDCR as detection efficiency, relative bias 3.50% 3.00% Relative bias % 2.50% 2.00% 1.50% 1.00% 0.50% 0.00% TDCR

35 Fair for 14 C (experimental TDCR is generally > 0.9) C-14, TDCR as detection efficiency, relative bias 14.00% 12.00% Relative bias % 10.00% 8.00% 6.00% 4.00% 2.00% 0.00% TDCR

36 Very good (albeit useless) for 90 Y Y-90, TDCR as detection efficiency, relative bias 0.25% 0.20% Relative bias % 0.15% 0.10% 0.05% 0.00% TDCR

37 Is TDCR a good quenching indicator? Advantages: TDCR is representative of the light emission process of the radionuclide to measure no need for an external source Drawbacks: TDCR is not a robust quenching indicator for high efficiency sources (but this is not really a problem ) for some radionuclides, several values of detection efficiency can correspond to one value of TDCR (e.g. 54 Mn, 64 Cu). In this case, TDCR cannot be used as a quenching index.

38 TDCR as a quenching indicator Example of spectrum with low-energy peak S(E) S(E) Unquenched spectrum Nb of photons Quenched spectrum Nb of photons Quenching increases T decreases D decreases (but more than T) So: T D If increases

39 Conclusions If you have a 3-PMT LS counter, you can generally use it like any other LS counter with the TDCR value as a quenching indicator But You can also do precise metrology using the TDCR method, i.e. by calculating the detection efficiency from the TDCR value!

40 What 3-PMT LS counter can be used for implementing the TDCR method? The counter must be linear (in counting rate) The afterpulses must be correctly processed The detection threshold must be adjusted under the single electron response of the PMT s but this is also the qualities expected for a 2-PMT LS counter to be used for radioactivity metrology! With an extending-type dead-time unit and live-time clock, a LS counter can be linear (without any dead-time correction) and afterpulse interference can be safely removed (see literature)

41 Thank you for your attention

42 LSC afterpulses

43 Optimum threshold level Threshold

The TDCR method in LSC. P. Cassette Laboratoire National Henri Becquerel CEA/LNE, France

The TDCR method in LSC. P. Cassette Laboratoire National Henri Becquerel CEA/LNE, France The TDCR method in LSC P. Cassette Laboratoire National Henri Becquerel CEA/LNE, France LIQUID SCINTILLATION USERS FORUM 2009 Summary I. Some information on LSC II. LSC in metrology: the free parameter

More information

Fundamentals of Radionuclide Metrology

Fundamentals of Radionuclide Metrology Fundamentals of Radionuclide Metrology Brian E. Zimmerman, PhD Physical Measurement Laboratory National Institute of Standards and Technology Gaithersburg, MD USA SIM Metrology Workshop Buenos Aires, Argentina

More information

TDCR and CIEMAT/NIST Liquid Scintillation Methods applied to the Radionuclide Metrology

TDCR and CIEMAT/NIST Liquid Scintillation Methods applied to the Radionuclide Metrology TDCR and CIEMAT/NIST Liquid Scintillation Methods applied to the Radionuclide Metrology Paulo A. L. da Cruz 1, Carlos J. da Silva 1, Akira Iwahara 1, Jamir S. Loureiro 1, Antônio E. de Oliveira 1, Luiz

More information

BUREAU INTERNATIONAL DES POIDS ET MESURES

BUREAU INTERNATIONAL DES POIDS ET MESURES 1 BUREAU INTERNATIONAL DES POIDS ET MESURES International comparison of activity measurements of a solution of 3 H (January 2009) Participating laboratory: T ½ = (4 496.862 d; u = 9.131 d)* Ampoule number

More information

Standardization of 18 F by Digital β(ls)-γ Coincidence Counting

Standardization of 18 F by Digital β(ls)-γ Coincidence Counting Standardization of 18 F by Digital β(ls)-γ Coincidence Counting Rodrigues D. 1, Balpardo C. 1, Cassette P. 2, Arenillas P. 1, Capoulat M. E. 1, Ceruti G. 1, García-Toraño E. 3 1 Laboratorio de Metrología

More information

Primary Standardization of 152 Eu by 4πβ(LS) γ (NaI) coincidence counting and CIEMAT-NIST method

Primary Standardization of 152 Eu by 4πβ(LS) γ (NaI) coincidence counting and CIEMAT-NIST method Primary Standardization of 152 Eu by 4πβ(LS) γ (NaI) coincidence counting and CIEMAT-NIST method A Ruzzarin 1, P A L da Cruz 2, A L Ferreira Filho 2, A Iwahara 2 1 Laboratório de Instrumentação Nuclear/Programa

More information

Čerenkov counting and liquid scintillation counting of 36 Cl

Čerenkov counting and liquid scintillation counting of 36 Cl Čerenkov counting and liquid scintillation counting of 36 Cl Karsten Kossert, Ole Nähle Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany and Agustín Grau Carles Instituto de Física Fundamental

More information

J. Keightley 1 P. Cassette 2, L. Johansson 1

J. Keightley 1 P. Cassette 2, L. Johansson 1 RADIONUCLIDE METROLOGY FOR NEW GENERATION NUCLEAR POWER PLANTS J. Keightley 1 P. Cassette 2, L. Johansson 1 1 NPL, Teddington, United Kingdom 2 CEA-LNHB, Saclay, France E-mail (corresponding author): john.keightley@npl.co.uk

More information

DETERMINING FUNDAMENTAL PARAMETERS OF A SINGLE-PHOTOTUBE LIQUID SCINTILLATION COUNTER

DETERMINING FUNDAMENTAL PARAMETERS OF A SINGLE-PHOTOTUBE LIQUID SCINTILLATION COUNTER DETERMINING FUNDAMENTAL PARAMETERS OF A SINGLE-PHOTOTUBE LIQUID SCINTILLATION COUNTER Pall Theodórsson Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavík, Iceland. Email: pth@raunvis.hi.is.

More information

Radioactivity standardization in South Africa

Radioactivity standardization in South Africa Applied Radiation and Isotopes 56 (2002) 301 305 Radioactivity standardization in South Africa B.R.S. Simpson* Radioactivity Standards Laboratory, CSIR NML, 15 Lower Hope Road, Rosebank 7700, Cape Town,

More information

Adaptation of PTB s analytical modelling for TDCR-Cherenkov activity measurements at LNE-LNHB. LSC 2017, Copenhagen, 1-5 May 2017

Adaptation of PTB s analytical modelling for TDCR-Cherenkov activity measurements at LNE-LNHB. LSC 2017, Copenhagen, 1-5 May 2017 Adaptation of PTB s analytical modelling for TDCR-Cherenkov activity measurements at LNE-LNHB Cheick THIAM, Christophe BOBIN and Jacques BOUCHARD LSC 2017, Copenhagen, 1-5 May 2017 General introduction

More information

Activity measurement of 55 Fe within the scope of the BIPM comparison 2006

Activity measurement of 55 Fe within the scope of the BIPM comparison 2006 Activity measurement of 55 Fe within the scope of the BIPM comparison 2006 Karsten Kossert PTB, Department 6.1 Radioactivity BIPM Workshop 2 on CCRI(II) Activity Uncertainties and Comparisons, 17-18 September

More information

Time-Resolved Liquid Scintillation Counting

Time-Resolved Liquid Scintillation Counting CHAPTER 44 Time-Resolved Liquid Scintillation Counting Norbert Roessler, Robert J. Valenta, and Stat van Cauter ABSTRACT A comparison is made between standard, two-tube coincidence liquid scintillation

More information

Standardization of Tritium by CIEMAT/NIST Method and TDCR Method

Standardization of Tritium by CIEMAT/NIST Method and TDCR Method Standardization of Tritium by CIEMAT/NIST Method and TDCR Method Wu Yongle 1,3 ; Liu Haoran 1,2 ; Liang Juncheng 2 ; Liu Jiacheng 2 ; Yue Huiguo 3 ; Liu Senlin 1 ; Yang Yuandi 2 ; Yuan Daqing 1 ; 1.China

More information

RADIOPHARMACEUTICAL 11 C ACTIVITY MEASUREMENTS BY MEANS OF THE TDCR-CERENKOV METHOD BASED ON A GEANT4 STOCHASTIC MODELING

RADIOPHARMACEUTICAL 11 C ACTIVITY MEASUREMENTS BY MEANS OF THE TDCR-CERENKOV METHOD BASED ON A GEANT4 STOCHASTIC MODELING C:\Documents and Settings\Mark McClure\Desktop\LSC2010\P-21- Thiam.fm printed: 27 July 2011 PAGE PROOF MM AUTHOR S PROOF Please check carefully and return any corrections via email as soon as possible

More information

CIEMAT/NIST STANDARDIZATION METHOD EXTENDED TO ANODE OUTPUTS FOR BETA AND ELECTRON-CAPTURE NUCLIDES J. F. ORTIZ

CIEMAT/NIST STANDARDIZATION METHOD EXTENDED TO ANODE OUTPUTS FOR BETA AND ELECTRON-CAPTURE NUCLIDES J. F. ORTIZ CIEMAT/NIST STANDARDIZATION METHOD EXTENDED TO ANODE OUTPUTS FOR BETA AND ELECTRON-CAPTURE NUCLIDES J. F. ORTIZ Departmento de Mecanica, Escuela Tecnica Superior de Ingenieros Industriales (ETSII), Universidad

More information

Activity determination of 88 Y by means of 4πβ(LS)-γ coincidence counting

Activity determination of 88 Y by means of 4πβ(LS)-γ coincidence counting Activity determination of 88 Y by means of 4πβ(LS)-γ coincidence counting Justyna Marganiec-Galazka Ole J. Nähle Karsten Kossert Division 6 Ionizing Radiation Department 6.1 Radioactivity Working Group

More information

APPLICATION OF A FREE PARAMETER MODEL TO PLASTIC SCINTILLATION SAMPLES

APPLICATION OF A FREE PARAMETER MODEL TO PLASTIC SCINTILLATION SAMPLES APPLICATION OF A FR PARAMTR MODL TO PLASTIC SCINTILLATION SAMPLS Alex Tarancón Sanz 1, Hector Bagan 1, Karsten Kossert 2, Ole Nähle 2 1 Departmento de Química Analitica de la Universidad de Barcelona.

More information

1220 QUANTULUS The Ultra Low Level Liquid Scintillation Spectrometer

1220 QUANTULUS The Ultra Low Level Liquid Scintillation Spectrometer 1220 QUANTULUS The Ultra Low Level Liquid Scintillation Spectrometer PerkinElmer LAS (UK) Ltd, Chalfont Rd, Seer Green, Beaconsfield, Bucks HP9 2FX tel: 0800 896046 www.perkinelmer.com John Davies January

More information

Determination of the activity of radionuclides

Determination of the activity of radionuclides BUREAU NATIONAL DE MÉTROLOGIE COMMISSARIAT À L'ÉNERGIE ATOMIQUE LABORATOIRE NATIONAL HENRI BECQUEREL Note technique LNHB/04-33 Determination of the activity of radionuclides contained in volume samples

More information

*Corresponding author,

*Corresponding author, Horia Hulubei National Institute of Physics and Nuclear Engineering g - IFIN HH Horia Hulubei National Institute of Physics and Nuclear Engineering, IFIN-HH ROMANIA *Corresponding author, e-mail bercea@nipne.ro

More information

TIME-RESOLVED LIQUID SCINTILLATION COUNTING

TIME-RESOLVED LIQUID SCINTILLATION COUNTING [RADOCARBON, VOL 32, No. 3, 1990, P 381-386] TME-RESOLVED LQUD SCNTLLATON COUNTNG MCHAEL KESSLER Packard nstrument Company, One State Street, Meriden, Connecticut 06450 ABSTRACT. Historically, scientists

More information

Validation of detection efficiency of alpha particles in commercial liquid scintillation counters

Validation of detection efficiency of alpha particles in commercial liquid scintillation counters Validation of detection efficiency of alpha particles in commercial liquid scintillation counters Liquid Scintillation Users' Forum 14th October 2008 Andy Pearce Radionuclide and Neutron Metrology Group

More information

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous?

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? 2. Briefly discuss dead time in a detector. What factors are important

More information

Hidex 300 SL Automatic TDCR Liquid Scintillation Counter

Hidex 300 SL Automatic TDCR Liquid Scintillation Counter Hidex 300 SL Automatic TDCR Liquid Scintillation Counter The new dimension of versatility Our mission is to help your lab become more effective and make your work a pleasure by providing user-friendly

More information

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY ABSORBED DOSE: The amount of energy absorbed, as a result of radiation passing through a material, per unit mass of material. Measured in rads (1 rad

More information

Liquid Scintillation at NPL: Practical Applications

Liquid Scintillation at NPL: Practical Applications 2003 LS User s Forum Liquid Scintillation at NPL: Practical Applications Andy Pearce CAIR, NPL 2 nd April 2003 Introduction Overview of applications Current projects Neutron-activated thioacetamide discs

More information

Radioactivity. The Nobel Prize in Physics 1903 for their work on radioactivity. Henri Becquerel Pierre Curie Marie Curie

Radioactivity. The Nobel Prize in Physics 1903 for their work on radioactivity. Henri Becquerel Pierre Curie Marie Curie Radioactivity Toward the end of the 19 th century, minerals were found that would darken a photographic plate even in the absence of light. This phenomenon is now called radioactivity. Marie and Pierre

More information

Liquid Scintillation Counting Performance Using Glass Vials in the Wallac 1220 QuantulusTM

Liquid Scintillation Counting Performance Using Glass Vials in the Wallac 1220 QuantulusTM CHAPTER 43 Liquid Scintillation Counting Performance Using Glass Vials in the Wallac 1220 QuantulusTM Lauri Kaihola ABSTRACT Low-potassium glass vials can obtain reduced background count rates for beta

More information

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy Topic 2b: X-ray Fluorescence Spectrometry Text: Chapter 12 Rouessac (1 week) 4.0 X-ray Fluorescence Download, read and understand EPA method 6010C ICP-OES Winter 2009 Page 1 Atomic X-ray Spectrometry Fundamental

More information

LS6500 Scintillation Counting Systems

LS6500 Scintillation Counting Systems LS6500 Scintillation Counting Systems Agenda LS6500 Concepts and Design H# Plus - The Basis of Advanced Technology Low Level Counting Alpha/Beta Discrimination LS6500 Concepts Give reproducible results

More information

Radioactivity. Lecture 6 Detectors and Instrumentation

Radioactivity. Lecture 6 Detectors and Instrumentation Radioactivity Lecture 6 Detectors and Instrumentation The human organs Neither humans nor animals have an organ for detecting radiation from radioactive decay! We can not hear it, smell it, feel it or

More information

Disproof of solar influence on the decay rates of 90 Sr/ 90 Y

Disproof of solar influence on the decay rates of 90 Sr/ 90 Y Disproof of solar influence on the decay rates of 90 Sr/ 90 Y Karsten Kossert * and Ole J. Nähle Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany Abstract A custom-built

More information

PoS(TIPP2014)033. Upgrade of MEG Liquid Xenon Calorimeter. Ryu SAWADA. ICEPP, the University of Tokyo

PoS(TIPP2014)033. Upgrade of MEG Liquid Xenon Calorimeter. Ryu SAWADA. ICEPP, the University of Tokyo ICEPP, the University of Tokyo E-mail: sawada@icepp.s.u-tokyo.ac.jp The MEG experiment yielded the most stringent upper limit on the branching ratio of the flavorviolating muon decay µ + e + γ. A major

More information

Jerde, Peterson and Stein (1967) indicated that high-energy radiation

Jerde, Peterson and Stein (1967) indicated that high-energy radiation [RADIOCARBON, VOL 31, No. 3, 1989, P 332-341] LOW BACKGROUND LIQUID SCINTILLATION COUNTING USING AN ACTIVE SAMPLE HOLDER AND PULSE DISCRIMINATION ELECTRONICS JOHN E NOAKES Center for Applied Isotope Studies

More information

The metrology of radioactivity. C. Michotte, BIPM

The metrology of radioactivity. C. Michotte, BIPM The metrology of radioactivity C. Michotte, BIPM SUMMARY Introduction Nuclear data of interest in activity measurements Activity measurement methods (primary and secondary) Monte Carlo simulations The

More information

19:00 21:30 Registration and reception at Hotel ETAP Altinel. Welcome

19:00 21:30 Registration and reception at Hotel ETAP Altinel. Welcome AGENDA FOR 5th VERMI YOUNG RESEARCHERS WORKSHOP ON STANDARDISATION OF S in the frame of IPA Turkey* 1 6 November 2009, TAEK, Ankara, Turkey Sunday, 1 November 2009 19:00 21:30 Registration and reception

More information

Acronyms, Abbreviations, and Symbols Foreword to the First Edition Foreword to the Second Edition Preface to the First Edition Preface to the Second

Acronyms, Abbreviations, and Symbols Foreword to the First Edition Foreword to the Second Edition Preface to the First Edition Preface to the Second Contributors p. xxix Acronyms, Abbreviations, and Symbols p. xxxi Foreword to the First Edition p. xliii Foreword to the Second Edition p. xlv Preface to the First Edition p. xlvii Preface to the Second

More information

1/5 Specifications Hidex 300 SLL automatic TDCR liquid scintillation counter

1/5 Specifications Hidex 300 SLL automatic TDCR liquid scintillation counter 1/5 Specification Hidex 300 SL-SLL 100-240V AC and 24 V DC. Features Model (425-020) Super Low Level (SLL) Automatic TDCR Liquid Scintillation Counter with Guard Detector and Low Level PMTs General Description

More information

DETECTORS. I. Charged Particle Detectors

DETECTORS. I. Charged Particle Detectors DETECTORS I. Charged Particle Detectors A. Scintillators B. Gas Detectors 1. Ionization Chambers 2. Proportional Counters 3. Avalanche detectors 4. Geiger-Muller counters 5. Spark detectors C. Solid State

More information

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Module - 2 Radioisotopes Techniques Lecture - 3 GM Counting and

More information

LAAPD Performance Measurements in Liquid Xenon

LAAPD Performance Measurements in Liquid Xenon LAAPD Performance Measurements in Liquid Xenon David Day Summer REU 2004 Nevis Laboratories, Columbia University Irvington, NY August 3, 2004 Abstract Performance measurements of a 16mm diameter large

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-30 Dr. E. Rizvi Lecture 4 - Detectors Binding Energy Nuclear mass MN less than sum of nucleon masses Shows nucleus is a bound (lower energy) state for this configuration

More information

RESULTS YOU CAN COUNT ON

RESULTS YOU CAN COUNT ON RESULTS YOU CAN COUNT ON Liquid Scintillation Counting Principle and the Application in Biological Research 1 2009 PerkinElmer liquid scintillation counting β particle Tri-Carb family of liquid scintillation

More information

Radioactivity and Ionizing Radiation

Radioactivity and Ionizing Radiation Radioactivity and Ionizing Radiation QuarkNet summer workshop June 24-28, 2013 1 Recent History Most natural phenomena can be explained by a small number of simple rules. You can determine what these rules

More information

CCRI(II) activity comparison of 241 Pu CCRI(II)-K2.Pu-241

CCRI(II) activity comparison of 241 Pu CCRI(II)-K2.Pu-241 Metrologia 49 (2012) Tech. Suppl. 06012 CCRI(II) activity comparison of 241 Pu CCRI(II)-K2.Pu-241 C. Michotte 1, L. Johansson 2 1 BIPM and 2 NPL Abstract In 2010, seven laboratories took part in the CCRI(II)

More information

LIQUID SCINTILLATION COUNTERS. {Beta Counters}

LIQUID SCINTILLATION COUNTERS. {Beta Counters} LIQUID SCINTILLATION COUNTERS {Beta Counters} We offer a range of Alpha, Beta & Gama counters, from Hidex Oy, Finland to meet your specific Liquid Scintillation counting requirements. Triathler LSC Sense

More information

Monte Carlo Simulations for Future Geoneutrino Detectors

Monte Carlo Simulations for Future Geoneutrino Detectors Monte Carlo Simulations for Future Geoneutrino Detectors Morgan Askins Abstract The main contribution of heat in the earth s mantle is thought to be the radioactive decays of 238 U, 232 T h, and 40 K.

More information

MEDICAL EQUIPMENT: NUCLEAR MEDICINE. Prof. Yasser Mostafa Kadah

MEDICAL EQUIPMENT: NUCLEAR MEDICINE. Prof. Yasser Mostafa Kadah MEDICAL EQUIPMENT: NUCLEAR MEDICINE Prof. Yasser Mostafa Kadah www.k-space.org Recommended Textbook Introduction to Medical Imaging: Physics, Engineering and Clinical Applications, by Nadine Barrie Smith

More information

Liquid Scintillation Counter

Liquid Scintillation Counter Instrumentation & Methods: s & Tritium Richard Sheibley Pennsylvania Dept of Env Protection Principle Beta particle emission Energy transferred to Solute Energy released as UV Pulse Intensity proportional

More information

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 19 Chapter 12 There are three major techniques used for elemental analysis: Optical spectrometry Mass spectrometry X-ray spectrometry X-ray Techniques include:

More information

SCINTILLATION DETECTORS AND PM TUBES

SCINTILLATION DETECTORS AND PM TUBES SCINTILLATION DETECTORS AND PM TUBES General Characteristics Introduction Luminescence Light emission without heat generation Scintillation Luminescence by radiation Scintillation detector Radiation detector

More information

Single Channel Beta-Gamma Coincidence Detection of Radioactive Xenon Using Digital Pulse Shape Analysis of Phoswich Detector Signals

Single Channel Beta-Gamma Coincidence Detection of Radioactive Xenon Using Digital Pulse Shape Analysis of Phoswich Detector Signals Single Channel Beta-Gamma Coincidence Detection of Radioactive Xenon Using Digital Pulse Shape Analysis of Phoswich Detector Signals Wolfgang Hennig, Hui Tan, William K Warburton, and Justin I McIntyre

More information

Working Copy. P /ru /,6. 8-tt tt. EffectiveDate: I ^, Operation and Calibration of the Tri-Carb Liquid Sclntillation Counter QAM-RI.106.

Working Copy. P /ru /,6. 8-tt tt. EffectiveDate: I ^, Operation and Calibration of the Tri-Carb Liquid Sclntillation Counter QAM-RI.106. QAM-RI.106 Operation and Calibration of the Tri-Carb Liquid Sclntillation Counter Revision: 0 Laboratory Man ager/lqao/rso Date Date EffectiveDate: I ^, P /ru /,6 8-tt tt Renewal Date: lnitials: Texas

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information

STUDY ON THE ENERGY RESPONSE OF PLASTIC SCINTILLATION DETECTOR TO MEV NEUTRONS ABSTRACT

STUDY ON THE ENERGY RESPONSE OF PLASTIC SCINTILLATION DETECTOR TO MEV NEUTRONS ABSTRACT STUDY ON THE ENERGY RESPONSE OF PLASTIC SCINTILLATION DETECTOR TO 0.75-14.75 MEV NEUTRONS Jianfu Zhang 1, 2, Xiaoping Ouyang 1, 2, Suizheng Qiu 1, Xichao Ruan 3, Jinlu Ruan 2 1 School of Nuclear Science

More information

Lecture 16 Light transmission and optical detectors

Lecture 16 Light transmission and optical detectors Lecture 6 Light transmission and optical detectors Charged particle traversing through a material can generate signal in form of light via electromagnetic interactions with orbital electrons of the atoms

More information

Radiation Detection and Measurement

Radiation Detection and Measurement Radiation Detection and Measurement June 2008 Tom Lewellen Tkldog@u.washington.edu Types of radiation relevant to Nuclear Medicine Particle Symbol Mass (MeV/c 2 ) Charge Electron e-,! - 0.511-1 Positron

More information

DESIGN OF NEUTRON DOSE RATE METER FOR RADIATION PROTECTION IN THE EQUIVALENT DOSE

DESIGN OF NEUTRON DOSE RATE METER FOR RADIATION PROTECTION IN THE EQUIVALENT DOSE DESIGN OF NEUTRON DOSE RATE METER FOR RADIATION PROTECTION IN THE EQUIVALENT DOSE Hiroo Sato 1 and Yoichi Sakuma 2 1 International University of Health and Welfare, Kitakanemaru 2600-1, Ohtawara 324-8501

More information

Gamma and X-Ray Detection

Gamma and X-Ray Detection Gamma and X-Ray Detection DETECTOR OVERVIEW The kinds of detectors commonly used can be categorized as: a. Gas-filled Detectors b. Scintillation Detectors c. Semiconductor Detectors The choice of a particular

More information

Diffractometer. Geometry Optics Detectors

Diffractometer. Geometry Optics Detectors Diffractometer Geometry Optics Detectors Diffractometers Debye Scherrer Camera V.K. Pecharsky and P.Y. Zavalij Fundamentals of Powder Diffraction and Structural Characterization of Materials. Diffractometers

More information

Practical Approaches using TDCR Measurements and Alpha/Beta Separation

Practical Approaches using TDCR Measurements and Alpha/Beta Separation Practical Approaches using TDCR Measurements and Alpha/Beta Separation Jost Eikenberg, Maya Jäggi, Andreas Brand Division for Radiation Protection and Safety Paul Scherrer Institute, CH-5232 Villigen Overview

More information

Unit 2. Instrumentation. Experts Teaching from Practical Experience

Unit 2. Instrumentation. Experts Teaching from Practical Experience Unit 2 Instrumentation Experts Teaching from Practical Experience Gas-Filled Detectors Gas-filled detectors measure the charge released when radiation interacts with the gas Three types: Ion Chambers,

More information

C2-05: Creation of national standards for some emerging pharmaceutical radionuclides to ensure the radioprotection of patients and medical staffs

C2-05: Creation of national standards for some emerging pharmaceutical radionuclides to ensure the radioprotection of patients and medical staffs C2-05: Creation of national standards for some emerging pharmaceutical radionuclides to ensure the radioprotection of patients and medical staffs Project Leaders: IFIN-HH/DRMR/LMR: Dr. Aurelian Luca ;

More information

Radiation (Particle) Detection and Measurement

Radiation (Particle) Detection and Measurement Radiation (Particle) Detection and Measurement Radiation detection implies that the radiation interacts (e.g. leaves at least part of its energy) in the material. A specific material is chosen, because

More information

Hidex Liquid Scintillation Counters

Hidex Liquid Scintillation Counters Hidex Liquid Scintillation Counters The new dimension of versatility Our mission is to help your lab become more effective and make your work a pleasure by providing user-friendly instruments with ultimate

More information

Detection of X-Rays. Solid state detectors Proportional counters Microcalorimeters Detector characteristics

Detection of X-Rays. Solid state detectors Proportional counters Microcalorimeters Detector characteristics Detection of X-Rays Solid state detectors Proportional counters Microcalorimeters Detector characteristics Solid State X-ray Detectors X-ray interacts in material to produce photoelectrons which are collected

More information

Depth Distribution of H-3, C-14 and Co-60 in Decommissioning of the Biological Shielding Concrete of KRR-2

Depth Distribution of H-3, C-14 and Co-60 in Decommissioning of the Biological Shielding Concrete of KRR-2 Depth Distribution of H-3, C-14 and Co-60 in Decommissioning of the Biological Shielding Concrete of KRR-2 S.B. Hong, H.R. Kim, K.H. Chung, K.H. Chung, J.H. Park Korea Atomic Energy Research Institute

More information

Hidex LSCs. LSC 2013 Barcelona

Hidex LSCs. LSC 2013 Barcelona 4.9.2013 1 4.9.2013 2 Hidex LSCs LSC 2013 Barcelona On Sunday March 24th Hidex is celebrating 20 years in the liquid scintillation counting community. Method to validate beef needed? Contents Hidex 300

More information

Application Note. Abstract. Introduction. Experimental

Application Note. Abstract. Introduction. Experimental Application Note Alpha/Beta ABA-004 Quantitation of Transuranium Elements in High Activity Waste (HAW) Using Alpha/Beta Liquid Scintillation Counting and Extractive Scintillators by Jim Floeckher Abstract

More information

Chapter 4 Scintillation Detectors

Chapter 4 Scintillation Detectors Med Phys 4RA3, 4RB3/6R03 Radioisotopes and Radiation Methodology 4-1 4.1. Basic principle of the scintillator Chapter 4 Scintillation Detectors Scintillator Light sensor Ionizing radiation Light (visible,

More information

IMPROVED TECHNIQUES FOR THE ACTIVITY STANDARDIZATION OF 109 Cd BY MEANS OF LIQUID SCINTILLATION SPECTROMETRY

IMPROVED TECHNIQUES FOR THE ACTIVITY STANDARDIZATION OF 109 Cd BY MEANS OF LIQUID SCINTILLATION SPECTROMETRY IMPROVED TECHNIQUES FOR THE ACTIVITY STANDARDIZATION OF 109 Cd BY MEANS OF LIQUID SCINTILLATION SPECTROMETRY K Kossert 1 O Ott O Nähle Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116

More information

Basic hands-on gamma calibration for low activity environmental levels

Basic hands-on gamma calibration for low activity environmental levels Basic hands-on gamma calibration for low activity environmental levels Iolanda Osvath Presented by Mats Eriksson Environment Laboratories Marine Environment Laboratories, Monaco Radiometrics Laboratory

More information

Radiation Protection Training Manual & Study Guide. Jump to the Table of Contents

Radiation Protection Training Manual & Study Guide. Jump to the Table of Contents Radiation Protection Training Manual & Study Guide Jump to the Table of Contents December 1986 Revised 1994 Radiation Safety Office Radiation Protection Training Course Course Outline Time Lecture Topic

More information

arxiv:physics/ v1 3 Aug 2006

arxiv:physics/ v1 3 Aug 2006 Gamma Ray Spectroscopy with Scintillation Light in Liquid Xenon arxiv:physics/6834 v1 3 Aug 26 K. Ni, E. Aprile, K.L. Giboni, P. Majewski, M. Yamashita Physics Department and Columbia Astrophysics Laboratory

More information

Primary Standardisation of I-125

Primary Standardisation of I-125 Primary Standardisation of S. Pommé, T. Altzitzoglou, R. Van Ammel, G. Sibbens Institute for Reference Materials and Measurements (IRMM) Geel, Belgium http://www.irmm.jrc.be http://www.jrc.cec.eu.int Stefaan

More information

PHYS 3650L - Modern Physics Laboratory

PHYS 3650L - Modern Physics Laboratory PHYS 3650L - Modern Physics Laboratory Laboratory Advanced Sheet Photon Attenuation 1. Objectives. The objectives of this laboratory exercise are: a. To measure the mass attenuation coefficient at a gamma

More information

arxiv: v1 [physics.ins-det] 3 Feb 2011

arxiv: v1 [physics.ins-det] 3 Feb 2011 Nuclear Instruments and Methods in Physics Research A 00 (2018) 1 5 Alogo.pdf Nuclear Instruments and Methods in Physics Research A Scintillation decay time and pulse shape discrimination in oxygenated

More information

DIGITAL PULSE SHAPE ANALYSIS WITH PHOSWICH DETECTORS TO SIMPLIFY COINCIDENCE MEASUREMENTS OF RADIOACTIVE XENON

DIGITAL PULSE SHAPE ANALYSIS WITH PHOSWICH DETECTORS TO SIMPLIFY COINCIDENCE MEASUREMENTS OF RADIOACTIVE XENON DIGITAL PULSE SHAPE ANALYSIS WITH PHOSWICH DETECTORS TO SIMPLIFY COINCIDENCE MEASUREMENTS OF RADIOACTIVE XENON W. Hennig 1, H. Tan 1, W.K. Warburton 1, and J.I. McIntyre 2 XIA LLC 1, Pacific Northwest

More information

Calibration & Use of a Capintec CAPTUS 3000 Portable Thyroid Uptake System for Iodine-125 Bioassay Measurements Todd W.

Calibration & Use of a Capintec CAPTUS 3000 Portable Thyroid Uptake System for Iodine-125 Bioassay Measurements Todd W. Calibration & Use of a Capintec CAPTUS 3000 Portable Thyroid Uptake System for Iodine-125 Bioassay Measurements Todd W. Baker, MSPH, CHP Photo image area measures 2 H x 6.93 W and can be masked by a collage

More information

Photons and Electrons, Part 2

Photons and Electrons, Part 2 Photons and Electrons, Part 2 Erwin Schrödinger 1887-1961 Albert Einstein 1879-1955 The Photoelectric Effect (1905) Wavelength dependence must be explained by the existence of quantized light. Albert Einstein

More information

Physics in Nuclear Medicine

Physics in Nuclear Medicine SIMON R. CHERRY, PH.D. Professor Department of Biomedical Engineering University of California-Davis Davis, California JAMES A. SORENSON, PH.D. Emeritus Professor of Medical Physics University of Wisconsin-Madison

More information

CHARACTERIZING THE DETECTOR RESPONSE AND TESTING THE PERFORMANCE OF A NEW WELL COUNTER FOR NEUTRON COINCIDENCE MEASUREMENTS OF PLUTONIUM IN RESIDUES

CHARACTERIZING THE DETECTOR RESPONSE AND TESTING THE PERFORMANCE OF A NEW WELL COUNTER FOR NEUTRON COINCIDENCE MEASUREMENTS OF PLUTONIUM IN RESIDUES LA-UR-01-3848 CHARACTERIZING THE DETECTOR RESPONSE AND TESTING THE PERFORMANCE OF A NEW WELL COUNTER FOR NEUTRON COINCIDENCE MEASUREMENTS OF PLUTONIUM IN RESIDUES A. P. Belian, M. C. Browne, N. Ensslin,

More information

Detection and measurement of gamma-radiation by gammaspectroscopy

Detection and measurement of gamma-radiation by gammaspectroscopy Detection and measurement of gamma-radiation by gammaspectroscopy Gamma-radiation is electromagnetic radiation having speed equal to the light in vacuum. As reaching a matter it interact with the different

More information

Scintillators 1. YEAR, I. CYCLE. AUTHOR: BPhys. Manja Ščetinec ADVISOR/MENTOR: Prof. Boštjan Golob

Scintillators 1. YEAR, I. CYCLE. AUTHOR: BPhys. Manja Ščetinec ADVISOR/MENTOR: Prof. Boštjan Golob Scintillators SEMINAR 1. YEAR, I. CYCLE AUTHOR: BPhys. Manja Ščetinec ADVISOR/MENTOR: Prof. Boštjan Golob Faculty of Mathematics and Physics, University in Ljubljana Ljubljana, October 2017 Abstract In

More information

Week 7: Ch. 10 Spec. w/ Scintillation Ctrs. Photomultiplier Devices

Week 7: Ch. 10 Spec. w/ Scintillation Ctrs. Photomultiplier Devices Week 7: Ch. 0 Spec. w/ Scintillation Ctrs. multiplier Devices Spectroscopy with Scint. Counters -- gamma-ray interactions, reprise -- observed spectra --- spectral components, backscatter --- summing --

More information

Work Programme. of the International Bureau of Weights and Measures. for the four years Comité international des poids et mesures

Work Programme. of the International Bureau of Weights and Measures. for the four years Comité international des poids et mesures Work Programme of the International Bureau of Weights and Measures for the four years 2016-2019 Comité international des poids et mesures Section II : BIPM Work Programme for 2016-2019 35 Priority activities

More information

Radionuclide Imaging MII Positron Emission Tomography (PET)

Radionuclide Imaging MII Positron Emission Tomography (PET) Radionuclide Imaging MII 3073 Positron Emission Tomography (PET) Positron (β + ) emission Positron is an electron with positive charge. Positron-emitting radionuclides are most commonly produced in cyclotron

More information

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09 Experimental production of many- positron systems: L2, techniques David B. Cassidy Department of Physics and Astronomy, University of California, Riverside, USA cassidy@physics.ucr.edu Varenna, July 09

More information

Applied Radiation and Isotopes

Applied Radiation and Isotopes Applied Radiation and Isotopes 70 (2012) 2091 2096 Contents lists available at SciVerse ScienceDirect Applied Radiation and Isotopes journal homepage: www.elsevier.com/locate/apradiso Disintegration rate

More information

XENON Dark Matter Search. Juliette Alimena Columbia University REU August 2 nd 2007

XENON Dark Matter Search. Juliette Alimena Columbia University REU August 2 nd 2007 XENON Dark Matter Search Juliette Alimena Columbia University REU August 2 nd 2007 Evidence of Dark Matter Missing mass in Coma galaxy cluster (Fritz Zwicky) Flat rotation curves of spiral galaxies (Vera

More information

Metrology for Molecular Radiotherapy MetroMRT V. Smyth (coordinator) Lena Johansson, Andrew Fenwick, Kelley Ferreira et al.

Metrology for Molecular Radiotherapy MetroMRT V. Smyth (coordinator) Lena Johansson, Andrew Fenwick, Kelley Ferreira et al. EMRP Health(II) Metrology for Molecular Radiotherapy MetroMRT V. Smyth (coordinator) Lena Johansson, Andrew Fenwick, Kelley Ferreira et al. Metro-MRT Metrology for Molecular Radiotherapy, 2012-2015 WP

More information

Acoustics and Ionising Radiation Formulation and Strategy. 13 November 2008 Alan DuSautoy

Acoustics and Ionising Radiation Formulation and Strategy. 13 November 2008 Alan DuSautoy Acoustics and Ionising Radiation Formulation and Strategy 13 November 2008 Alan DuSautoy Contents What is the future of Programme Formulation? What is Rolling Formulation? Programme Overview Roadmaps Future

More information

Detectors for the measurement of ionizing radiation

Detectors for the measurement of ionizing radiation For the measurement of radiation, the following reactions during the irradiation of matter are predominantly utilized: Ionization in gases (Ionization chamber, proportional flow counter, release counter)

More information

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies CHARACTERIZATION OF PHOSWICH WELL DETECTORS FOR RADIOXENON MONITORING Wolfgang Hennig 1, Hui Tan 1, William K. Warburton 1, Anthony Fallu-Labruyere 1, Konstantin Sabourov 1, Justin I. McIntyre 2, Matthew

More information

Radionuclide Imaging MII Detection of Nuclear Emission

Radionuclide Imaging MII Detection of Nuclear Emission Radionuclide Imaging MII 3073 Detection of Nuclear Emission Nuclear radiation detectors Detectors that are commonly used in nuclear medicine: 1. Gas-filled detectors 2. Scintillation detectors 3. Semiconductor

More information

GEMMA RAURET, J S MESTRES and J F GARCIA

GEMMA RAURET, J S MESTRES and J F GARCIA [RADIOCARBON, VOL31, No. 3, 1989, P 380-3861 OPTIMIZATION OF LIQUID SCINTILLATION COUNTING CONDITIONS WITH TWO KINDS OF VIALS AND DETECTOR SHIELDS FOR LOW-ACTIVITY RADIOCARBON MEASUREMENTS GEMMA RAURET,

More information

The Compton Effect. Martha Buckley MIT Department of Physics, Cambridge, MA (Dated: November 26, 2002)

The Compton Effect. Martha Buckley MIT Department of Physics, Cambridge, MA (Dated: November 26, 2002) The Compton Effect Martha Buckley MIT Department of Physics, Cambridge, MA 02139 marthab@mit.edu (Dated: November 26, 2002) We measured the angular dependence of the energies of 661.6 kev photons scattered

More information

Scintillation Detectors

Scintillation Detectors Scintillation Detectors J.L. Tain Jose.Luis.Tain@ific.uv.es http://ific.uv.es/gamma/ Instituto de Física Corpuscular C.S.I.C - Univ. Valencia Scintillation detector: SCINTILLATION MATERIAL LIGHT-GUIDE

More information

ARTICLE IN PRESS. Applied Radiation and Isotopes

ARTICLE IN PRESS. Applied Radiation and Isotopes Applied Radiation and Isotopes 68 (21) 1349 1353 Contents lists available at ScienceDirect Applied Radiation and Isotopes journal homepage: www.elsevier.com/locate/apradiso Standardization and measurement

More information