IMPROVED TECHNIQUES FOR THE ACTIVITY STANDARDIZATION OF 109 Cd BY MEANS OF LIQUID SCINTILLATION SPECTROMETRY

Size: px
Start display at page:

Download "IMPROVED TECHNIQUES FOR THE ACTIVITY STANDARDIZATION OF 109 Cd BY MEANS OF LIQUID SCINTILLATION SPECTROMETRY"

Transcription

1 IMPROVED TECHNIQUES FOR THE ACTIVITY STANDARDIZATION OF 109 Cd BY MEANS OF LIQUID SCINTILLATION SPECTROMETRY K Kossert 1 O Ott O Nähle Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, Braunschweig, Germany. ABSTRACT. Recently, we developed a simple method to determine the activity of 109 Cd by means of liquid scintillation spectrometry using commercial counters. The method is based on a spectrum analysis that allows determining the emission rate of conversion electrons. The results are in good agreement with the outcomes of other methods. However, the relative standard uncertainty was found to be 0.65% and is influenced by the peak area determination. In this paper, the results of further studies of the technique are presented. The main idea of these studies is to improve the counting efficiency, and thus to optimize the energy resolution of measured spectra. The studies comprise comparisons of various liquid scintillation vials, e.g. glass vials, glass vials covered with adhesive tape, etched glass vials, sandblasted glass vials, and polyethylene (PE) vials. We also tested promising liquid scintillation cocktails and mixtures. The measurements were carried out with 2 commercial spectrometers: a Wallac 1414 Guardian TM and a PerkinElmer Tri-Carb 2800 TR TM. A considerable reduction in the relative uncertainty has been achieved. INTRODUCTION The activity of 109 Cd solutions can easily be determined by means of conversion-electron counting of samples in a pressurized proportional counter (PPC). In a recent paper, it was shown that an analogous method can be applied for analyzing spectra of a liquid scintillation counter (Kossert et al. 2006). The activities determined with this new approach were used within the scope of an international comparison (Ratel et al. 2005), and results were found to be in good agreement with results obtained with a PPC. However, the relative standard uncertainty of the activity was considerably larger due to the relative low-energy resolution of LS spectra. In this paper, we present new studies aimed at an improvement in the energy resolution of LS spectra. The method is easily applicable and can be considered as an interesting alternative to the CIEMAT/NIST method, which now also provides good results in the case of 109 Cd (Kossert and Grau Carles 2008). METHOD The decay of 109 Cd starts with an electron-capture branch that leads to the metastable (T 1/2 = 39.6 s) 88-keV level of 109m Ag. The subsequent gamma transition mainly results in the ejection of conversion electrons. Figure 1 shows an LS spectrum of 109 Cd measured in a Wallac 1414 Guardian TM spectrometer with a quasi-logarithmic amplification. The rearrangement processes after the electron capture may lead to several X-rays and/or Auger and Coster-Kronig electrons, which are simultaneously ejected. The maximum energy deposition within an LS sample is lower than the binding energy of K electrons of the atomic shell of silver, i.e. lower than 25.6 kev. When an electron from an L-shell or from higher shells is captured, the maximum energy is even lower than 4 kev. Thus, these events form the 2 peaks in the low-energy region of the spectrum in Figure 1. 1 Corresponding author. Karsten.Kossert@ptb.de by the Arizona Board of Regents on behalf of the University of Arizona LSC 2008, Advances in Liquid Scintillation Spectrometry edited by J Eikenberg, M Jäggi, H Beer, H Baehrle, p

2 98 K Kossert et al. Figure 1 Pulse-height spectrum of 109 Cd measured in a Wallac Guardian TM LS spectrometer with logarithmic amplification. A background spectrum has been subtracted. The gamma transition can be considered as an independent decay, since the half-life of the isomer 109m Ag by far exceeds the coincidence and dead time of LS counters. The energy of conversion electrons E ce is given by the difference of the gamma-transition energy and the corresponding binding energy E b, i.e. E ce = 88 kev E b (1) The lowest energy is obtained for conversion electrons from the K atomic shell, which have an energy of about 62.5 kev. The vacancy created in the atomic shell again causes rearrangement processes, such that the total energy deposit within an LS sample due to conversion electron processes is between 62.5 and 88 kev. Conversion electrons are responsible for the large peak at high channel numbers in Figure 1. The goal of the method is to determine the emission rate of conversion electrons n ce. The activity A of the sample is then given by A = n ce /P ce, with P ce = (33) being the emission probability of conversion electrons taken from Kossert et al. (2006). The uncertainty of the activity mainly depends on the uncertainty of the counting rate n ce since the uncertainty of the emission probability is more or less negligible. In order to determine the counting rate n ce, we first determine the area of the conversion electron (ce) peak in the measured LS spectrum. The LS counting efficiency for conversion electrons with energies above 60 kev is unity provided that the samples are not quenched too much. This can be demonstrated using free parameter models (Grau Malonda 1999). Moreover, it can be shown that these conversion electrons produce a high number of scintillation photons yielding entries at high channel numbers. The shape of the peak stemming from conversion electrons has a low-energy tailing. This can be shown, for example, by means of measurements of the isomer 93m Nb. When determining the ce peak area, this tailing must be modeled.

3 Improved Techniques for the Activity Standardization of 109 Cd 99 The area assigned to conversion electrons is split into 2 parts as illustrated in Figure 2. The left part (A) below the minimum of the valley below the large ce peak corresponds to the tailing region and may overlap with the low-energy region due to K X-rays or K Auger electrons. The right part (B) is obtained by summing up all counts above the minimum. The tailing part is simply modeled as a triangle. The uncertainty of the peak area was conservatively estimated to be 100% of the triangle area. The activity concentration a of the solution is then given by a = n A k + n B m ε k tm γ P ce (2) where m is the mass of solution in the sample, ε = 1 the counting efficiency for conversion electrons and k tm = ( λt m ) ( 1 exp( λt m )) a factor with decay constant λ to correct for decays during a single counting period t m. The count rates n A and n B correspond to the 2 regions of the peak area, i.e. the counts in these areas divided by the duration (lifetime) of the measurement. The correction k γ is explained in the next paragraph. Figure 2 Part of a 109 Cd LS pulse-height spectrum of a sample with 15 UG AB in a PE vial measured with a Wallac 1414 spectrometer. The peak of the ce peak is split into 2 parts. The lowenergy part (A) is modeled as a triangle whose height corresponds to the minimum of the valley (position of vertical line). The peak area of the high-energy part (B) is obtained by summing up all channel contents above the vertical line. A background spectrum has been subtracted. The Correction k γ Photons from the 88-keV transition mainly interact via Compton scattering in the LS sample. For the rarely occurring photoelectric effect, the energy is transferred to a photo electron, which then has the total energy minus its former binding energy. For Compton scattering, the highest energy is transferred to an electron when the scattering angle is 180 (backscattering). For 88-keV photons, the energy transfer is about 22.5 kev. If the scattered photon escapes from the LS sample without

4 100 K Kossert et al. further interaction, the event would contribute to the low-energy part of the spectrum. However, the backscattered photon may interact again, and consequently, the total energy transferred to electrons within the sample can be larger. Figure 3 shows a spectrum of the total energy transfer to electrons within a typical LS sample. The spectrum has been created by means of Monte Carlo procedures, taking into account the photoelectric effect, Compton scattering, and Rayleigh (coherent) scattering. Also, the atomic composition and the density of the sample have been taken into account. About 8% of the events in Figure 3 are located above the Compton edge, i.e. above 23 kev. Assuming that all these events create an entry in region A or B, this yields In the following, we use k γ = ( P γ ) 1 = 1/1.003 (3) with a conservatively estimated relative standard uncertainty of 0.15%. EXPERIMENTAL Figure 3 Electron spectrum computed by means of Monte Carlo simulations of 88-keV photons in an LS sample. The energy corresponds to the total energy transferred to electrons, i.e. the interactions of scattered photons are taken into account. k γ = (4) The experiments described in this article were done with several 109 Cd solutions. The activity of the solutions can be traced back to activity determinations as described by Kossert et al. (2006). The nominal activity concentrations of the solutions used for LS samples were between 50 and 140 kbq/g. The solutions consisted of cadmium chloride in HCl of concentration 0.1 mol/l with a carrier concentration of Cd + ions of about 28 μg/g. The samples were prepared by depositing drops of the active solutions by means of a pycnometer. The masses of the drops were determined gravimetri-

5 Improved Techniques for the Activity Standardization of 109 Cd 101 cally using a Mettler AT 21 balance traceable to the German national mass standard. The solutions were also measured by means of γ-ray spectrometers to search for other radionuclides. No photonemitting impuritiy was detected. The liquid scintillation measurements were performed in 2 commercial LS counters: a Wallac 1414 Guardian TM and a PerkinElmer Tri-Carb 2800 TR. The guard detector of the Wallac counter has been disconnected to avoid any veto signal. Both systems work with 2 photomultiplier tubes in coincidence mode. Studies to Improve the Resolution of Spectra The energy resolution of LS spectra depends on the number of detected scintillation photons. If more photons are detected, peaks move towards higher channel numbers. In addition, a higher number of detected photons corresponds to lower relative deviations. In other words, better statistics reduce the full width at half maximum (FWHM) of peaks. In order to improve the resolution, the number of produced scintillation photons should be as large as possible and losses of photons should be reduced. In our first approach based on LS counting, we started with a sample with 15 ml Ultima Gold (UG) and 1 ml of aqueous solution in a glass vial. A considerable improvement has been observed when using polyethylene (PE) vials instead of glass containers. Further improvements could be achieved by reducing the amount of water or using UG AB instead of UG. In the following, we will present some further systematic studies. Sample Composition and Cocktail Selection Let us consider a sample with 15 ml UG and 1 ml of aqueous solution. The radioactive isotope will be in the aqueous phase, i.e. it is embedded in a micelle surrounded by an organic phase. Any energy deposit within a micelle does not create scintillation photons (only for high-energy beta emitters could the Cherenkov effect create some photons). Thus, a reduction of the amount of water increases the energy deposit in the organic phase and, consequently, it improves the energy resolution and the counting efficiency. There are further ingredients in an LS cocktail that do not create light. For example, the sample stability can be improved using complexing agents. The complexing agent HDEHP is part of UG but it is not included in UG AB. This explains the slight improvement when UG AB is used. The compatibility of aqueous and organic phases is achieved by means of an emulsifier, which is part of the cocktail and also does not produce light. The cocktail UG F, which is especially designed to measure dry filters or organic samples, does not contain any emulsifier. However, since we are measuring aqueous solutions we need at least a small amount of an emulsifier. Therefore, we tested several mixtures with UG AB and UG F. Figure 4 shows the region of interest (ROI) of various spectra measured in a Wallac spectrometer. For the sample with UG in a glass vial, the ce peak is broad. For UG AB in a PE vial, this peak is shifted to higher channel numbers and the events due to K conversion electrons are adumbrated as a left-hand shoulder of the ce peak. The energy resolution improves with increasing amounts of UG F. The best resolution has been obtained with a mixture of 13 ml UG F and 2 ml UG AB. A further increase in the F/AB ratio led to milky samples. The spectra of such samples were shifted to even higher channel numbers, but the resolution was poor and the counting rates were by far too low. Such samples cannot be used for the method. The energy resolution is considerably lower for an untreated glass vial. A systematic comparison of different vials will be presented in the next subsection.

6 102 K Kossert et al. Figure 4 ROI of 109 Cd spectra of different samples measured in a Wallac 1414 LS spectrometer. The best energy resolution was obtained with a mixture of 13 ml UG F and 2 ml UG AB in polyethylene (PE) vials. Background spectra have been subtracted. Light Propagation and Selection of Vials The scintillation light is isotropically emitted within the liquid part of a sample. Since the refractive index of the cocktail and glass is very similar (n 1.5), the transition from liquid to glass causes neither considerable loss of nor significant changes in the direction of photons. For the transition from glass to air, we have a considerable reduction in the refractive index from about 1.5 to 1. Consequently, total reflection causes loss of light. These losses can be reduced by changing the wall material or the outer surface of glass. An alternative wall material is polyethylene (PE). In this material, light is diffusively propagated. Consequently, a loss of photons due to total reflection is reduced. A well-known disadvantage of PE is the lower stability. Organic molecules can diffuse into the wall. This corresponds to a change in the scintillating volume and causes a change in the spectra shape as well as changes in measured quenching indicators. In fact, we observed worse resolution of PE vials when they were measured after a couple of days. The problem could be reduced when the inner walls are coated with Teflon. Also, the whole vial could be made of Teflon, but this also increases the costs. Another attempt to overcome the disadvantages of PE is to use glass vials that are treated on the outside. For this work, the following 20-mL vials were tested: glass vials, etched glass vials, glass vials roughened by sandblasting, glass vials covered with adhesive tape, and PE vials. For the etching process (Kaihola 1988), about 15 g of sodium fluoride (NaF), 10 g of ammonium sulphate ((NH 4 ) 2 SO 4 ), and 15 g of barium sulphate (BaSO 4 ) were ground in a marmoreal mortar. Afterwards, the mixture was placed in a plastic bottle, containing about 8 g of oxalic acid, 12 g of water, and 40 g of glycerine. Cleaned and dried glass vials were placed in this mixture and stored for several days. The intensity of the etching effect depends on the storage time in this bath. It is to be

7 Improved Techniques for the Activity Standardization of 109 Cd 103 noted that the ingredients are harmful and the procedure requires special care. The procedure could also be carried out with commercially available glass-etching cream. For sandblasting, we used various gritting materials with different grit size. The result depends on the time and strength of the treatment and utilized abrasive grit material used. Two types of adhesive tapes were used: tesa Film matt-unsichtbar (width: 19 mm, tesa AG, Germany) and Scotch Magic (width: 19 mm, 3M, France). The vials were wrapped with 2 parallel strips of the respective tapes. Figure 5 shows some spectra using different vials. All samples were prepared with 15 ml UG AB. When glass vials are covered with adhesive tape, the ce peak moves towards higher channel numbers and the resolution is considerably improved. The spectra of covered vials are comparable with those obtained with PE vials, which still give the best result. The spectra measured with Scotch tape were slightly better than those obtained with tesa tape. Figure 5 ROI of 109 Cd spectra of different samples measured in a Wallac 1414 LS spectrometer. All samples were prepared with 15 ml UG AB. The energy resolution can be improved by covering the outside of glass vials with adhesive tape. Background spectra have been subtracted. The spectra of etched vials (not shown in Figure 5) were slightly better than those with adhesive tape but still worse than PE vials. The spectra of samples with 10 ml UG F and 5 ml UG AB in sandblasted vials, glass vials with Scotch tape, and PE vials are compared in Figure 6. Again, PE vials yield the highest light output. See Nähle et al. (these proceedings) regarding systematic investigations of the light output of different luminescent vials. Application of the Method with a Tri-Carb Counter So far, we have discussed spectra measured using a Wallac counter with a logarithmic amplifier. Figure 7 shows a spectrum measured in a Tri-Carb 2800 TR with linear amplification. Although

8 104 K Kossert et al. Figure 6 ROI of 109 Cd spectra of different samples measured in a Wallac 1414 LS spectrometer. All samples were prepared with 10 ml UG F and 5 ml UG AB. Background spectra have been subtracted. the spectrum shape is different, the method can be applied in an analogous manner. The lower spectrum in Figure 7 shows the valley before the ce peak and the split into the 2 regions A and B as discussed in the Method section and in Figure 2. RESULTS AND DISCUSSION The presented analysis shows that the light output and the resolution depend very much on the sample composition and the vial. We obtain the following order for cocktails, starting with the best result: 13 ml UG F + 2 ml UG AB 15 ml UG AB 15 ml UG 15 ml UG + 1 ml water For the containers, we have the following ranking: PE vials etched vials glass vials with adhesive Scotch tape glass vials with adhesive tesa tape sandblasted glass vials glass vials without treatment The same order is also obtained for the corresponding quenching indicator (i.e. the SQP(E) or the tsie is a useful measure for the energy resolution) provided that the samples are transparent (not milky).

9 Improved Techniques for the Activity Standardization of 109 Cd 105 Figure 7 LS pulse-height spectrum of 109 Cd in 10 ml UG F and 5 ml UG AB in a polyethylene (PE) vial measured with Tri-Carb 2800 TR. The peak of the ce peak is again split into 2 parts and the low-energy tailing is again modeled as a triangle, as shown in the lower figure. A background spectrum has been subtracted. It should be noted that the results also depend on the geometry, in particular on the filling height, which is correlated with the position of the meniscus of the liquid. The meniscus is a region of large light output (see Nähle et al. 2009). We also intend to study the light output of vials with smaller volume (e.g. 7 ml). Also, the counter may have a large influence on the result. In particular, the optical chamber, which should reduce the loss of photons, is highly important. The results of the determined activity concentration of one 109 Cd solution are listed in Table 1. The measurements were done with different vials and in the 2 counters mentioned above. All results are in good agreement, which indicates that the method has a good reproducibility. Studies with other 109 Cd solutions also showed good agreement when etched vials or other cocktail compositions were used. The best resolution and, consequently, the lowest uncertainties were obtained with 13 ml UG F and 2 ml UG AB in PE vials. Table 2 compares the uncertainty budgets for 2 different vials. The uncertainty budget for the sample with 15 ml UG AB corresponds to the data that were previously presented by Kossert et al. (2006). For a sample with 13 ml UG F and 2 ml UG AB in a PE vial, the relative uncertainty assigned to the peak area determination can be below 0.3%, and thus, the combined relative standard uncertainty has been reduced from 0.65% to 0.39%. Although this uncertainty is still larger than it is for a PPC, it is sufficient for many purposes. At Physikalisch-Technische Bundesanstalt, the new method is now frequently used for activity determinations of 109 Cd solutions. The method is powerful for measurements of solutions with low activities or those with higher density due to higher acid concentration. For such solutions, measurements by means of ionization chambers may fail. Thus, the new method amends or sometimes even replaces secondary standardization measurements with the aid of calibrated ionization chambers.

10 106 K Kossert et al. Table 1 Results of various LS samples measured in a Tri-Carb (T) and a Wallac 1414 (W) spectrometer. All samples were prepared with 10 ml UG F and 5 ml UG AB. The activity concentration (a) has been corrected for decay and is given for the same reference date for all samples. The last column contains the deviation to the mean value of the activity of the 109 Cd solution as measured by LS counting. This value is 0.09% lower than the reference activity determined by means of a calibrated ionization chamber of the PTB. Counter Vial SUMMARY AND OUTLOOK n A (1/s) n B (1/s) m (mg) a (kbq/g) n A /(n A +n B ) (%) The method for the activity determination of 109 Cd solutions by means of ce LS counting has been improved considerably. The main improvement has been achieved by using a mixture of UG F and UG AB. The resolution obtained using glass vials with adhesive tape and etched glass vials is close Δ (%) T Sand-blasted T Sand-blasted T Sand-blasted T PE T PE T Scotch tape T Scotch tape W Sand-blasted W Sand-blasted W Sand-blasted W PE W PE W Scotch tape W Scotch tape Table 2 Standard uncertainty components of the activity concentration a of a 109 Cd solution measured by 4π (LS)ce counting using 2 different sample compositions (components with u(a)/a < 0.001% are not listed). u(a)/a (%) Component UG AB in PE vial UG AB + UG F in PE vial Counting statistics Weighing Time measurements (starting time and duration (lifetime)) Background Peak area (separation of ec and ce events in spectra) Counting efficiency Emission probability P ce Correction for events in ce region due to keV gamma interaction Radionuclidic impurities (no impurity <0.01 <0.01 detected) Square root of the sum of quadratic components

11 Improved Techniques for the Activity Standardization of 109 Cd 107 to the unmatched PE vials. Glass vials have the advantage of higher long-term sample stability, which may be important for low-activity measurements. Moreover, it was shown that the method can be applied with a Tri-Carb counter in a manner similar to that of a Wallac spectrometer. Further studies to investigate and improve the optical chamber are planned. Also, smaller vials and other cocktails will be tested. Preliminary studies indicate that similar procedures could also be applied to other radionuclides. For 139 Ce, we obtained good agreement with coincidence counting measurements, but the uncertainties are considerably larger. ACKNOWLEDGMENTS The authors wish to thank P Krause, M Ehrlich, M Ehlers, Ch Niedergesäß, and F Stephan for their valuable assistance during laboratory work. We are also indebted to Dr R Edler (PerkinElmer) for his useful advice and for providing a batch of UG F. REFERENCES Grau Malonda A Free Parameter Models in Liquid Scintillation Counting. Colección Documentos CIEMAT. CIEMAT (1999), ISBN Kaihola L Recipe for safe etching of glass. Private communication from Wallac Oy (unpublished). Also available on WG/icrmetching.htm. Kossert K, Grau Carles A Study of a Monte-Carlo rearrangement model for the activity determination of electron-capture nuclides by means of liquid scintillation counting. Applied Radiation and Isotopes 66: Kossert K, Janßen H, Klein R, Schneider M, Schrader H Standardization and nuclear decay data of 109 Cd. Applied Radiation and Isotopes 64: Nähle O, Kossert K, Brunzendorf J Study of light emission processes for the design of liquid scintillation counters. These proceedings. Ratel G, Michotte C, Janßen H, Kossert K, Lucas L, Karam L Activity measurements of the radionuclide 109 Cd for the PTB, Germany, and the NIST, USA, in the ongoing comparison BIPM.RI(II)- K1.Cd-109. Metrologia 42 (Technical Supplement):

Čerenkov counting and liquid scintillation counting of 36 Cl

Čerenkov counting and liquid scintillation counting of 36 Cl Čerenkov counting and liquid scintillation counting of 36 Cl Karsten Kossert, Ole Nähle Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany and Agustín Grau Carles Instituto de Física Fundamental

More information

Activity measurement of 55 Fe within the scope of the BIPM comparison 2006

Activity measurement of 55 Fe within the scope of the BIPM comparison 2006 Activity measurement of 55 Fe within the scope of the BIPM comparison 2006 Karsten Kossert PTB, Department 6.1 Radioactivity BIPM Workshop 2 on CCRI(II) Activity Uncertainties and Comparisons, 17-18 September

More information

Activity determination of 88 Y by means of 4πβ(LS)-γ coincidence counting

Activity determination of 88 Y by means of 4πβ(LS)-γ coincidence counting Activity determination of 88 Y by means of 4πβ(LS)-γ coincidence counting Justyna Marganiec-Galazka Ole J. Nähle Karsten Kossert Division 6 Ionizing Radiation Department 6.1 Radioactivity Working Group

More information

Fundamentals of Radionuclide Metrology

Fundamentals of Radionuclide Metrology Fundamentals of Radionuclide Metrology Brian E. Zimmerman, PhD Physical Measurement Laboratory National Institute of Standards and Technology Gaithersburg, MD USA SIM Metrology Workshop Buenos Aires, Argentina

More information

Basics of a/b Discrimination for Liquid Scintillation Counting

Basics of a/b Discrimination for Liquid Scintillation Counting application Note Liquid Scintillation Basics of a/b Discrimination for Liquid Scintillation Counting Author Ronald Edler, PhD and Chuck Passo PerkinElmer, Inc. 940 Winter Street Waltham, MA USA Introduction

More information

Primary Standardization of 152 Eu by 4πβ(LS) γ (NaI) coincidence counting and CIEMAT-NIST method

Primary Standardization of 152 Eu by 4πβ(LS) γ (NaI) coincidence counting and CIEMAT-NIST method Primary Standardization of 152 Eu by 4πβ(LS) γ (NaI) coincidence counting and CIEMAT-NIST method A Ruzzarin 1, P A L da Cruz 2, A L Ferreira Filho 2, A Iwahara 2 1 Laboratório de Instrumentação Nuclear/Programa

More information

BUREAU INTERNATIONAL DES POIDS ET MESURES

BUREAU INTERNATIONAL DES POIDS ET MESURES 1 BUREAU INTERNATIONAL DES POIDS ET MESURES International comparison of activity measurements of a solution of 3 H (January 2009) Participating laboratory: T ½ = (4 496.862 d; u = 9.131 d)* Ampoule number

More information

DETERMINING FUNDAMENTAL PARAMETERS OF A SINGLE-PHOTOTUBE LIQUID SCINTILLATION COUNTER

DETERMINING FUNDAMENTAL PARAMETERS OF A SINGLE-PHOTOTUBE LIQUID SCINTILLATION COUNTER DETERMINING FUNDAMENTAL PARAMETERS OF A SINGLE-PHOTOTUBE LIQUID SCINTILLATION COUNTER Pall Theodórsson Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavík, Iceland. Email: pth@raunvis.hi.is.

More information

Standardization of Tritium by CIEMAT/NIST Method and TDCR Method

Standardization of Tritium by CIEMAT/NIST Method and TDCR Method Standardization of Tritium by CIEMAT/NIST Method and TDCR Method Wu Yongle 1,3 ; Liu Haoran 1,2 ; Liang Juncheng 2 ; Liu Jiacheng 2 ; Yue Huiguo 3 ; Liu Senlin 1 ; Yang Yuandi 2 ; Yuan Daqing 1 ; 1.China

More information

The TDCR method in LSC. P. Cassette Laboratoire National Henri Becquerel CEA/LNE, France

The TDCR method in LSC. P. Cassette Laboratoire National Henri Becquerel CEA/LNE, France The TDCR method in LSC P. Cassette Laboratoire National Henri Becquerel CEA/LNE, France LIQUID SCINTILLATION USERS FORUM 2009 Summary I. Some information on LSC II. LSC in metrology: the free parameter

More information

APPLICATION OF A FREE PARAMETER MODEL TO PLASTIC SCINTILLATION SAMPLES

APPLICATION OF A FREE PARAMETER MODEL TO PLASTIC SCINTILLATION SAMPLES APPLICATION OF A FR PARAMTR MODL TO PLASTIC SCINTILLATION SAMPLS Alex Tarancón Sanz 1, Hector Bagan 1, Karsten Kossert 2, Ole Nähle 2 1 Departmento de Química Analitica de la Universidad de Barcelona.

More information

Adaptation of PTB s analytical modelling for TDCR-Cherenkov activity measurements at LNE-LNHB. LSC 2017, Copenhagen, 1-5 May 2017

Adaptation of PTB s analytical modelling for TDCR-Cherenkov activity measurements at LNE-LNHB. LSC 2017, Copenhagen, 1-5 May 2017 Adaptation of PTB s analytical modelling for TDCR-Cherenkov activity measurements at LNE-LNHB Cheick THIAM, Christophe BOBIN and Jacques BOUCHARD LSC 2017, Copenhagen, 1-5 May 2017 General introduction

More information

TDCR in a nutshell. P. Cassette, Laboratoire National Henri Becquerel, France

TDCR in a nutshell. P. Cassette, Laboratoire National Henri Becquerel, France TDCR in a nutshell P. Cassette, Laboratoire National Henri Becquerel, France Summary LSC in radionuclide metrology, free parameter model The TDCR model Examples of relations between efficiency and TDCR

More information

Primary Standardisation of I-125

Primary Standardisation of I-125 Primary Standardisation of S. Pommé, T. Altzitzoglou, R. Van Ammel, G. Sibbens Institute for Reference Materials and Measurements (IRMM) Geel, Belgium http://www.irmm.jrc.be http://www.jrc.cec.eu.int Stefaan

More information

Radiation Detection and Measurement

Radiation Detection and Measurement Radiation Detection and Measurement June 2008 Tom Lewellen Tkldog@u.washington.edu Types of radiation relevant to Nuclear Medicine Particle Symbol Mass (MeV/c 2 ) Charge Electron e-,! - 0.511-1 Positron

More information

Acronyms, Abbreviations, and Symbols Foreword to the First Edition Foreword to the Second Edition Preface to the First Edition Preface to the Second

Acronyms, Abbreviations, and Symbols Foreword to the First Edition Foreword to the Second Edition Preface to the First Edition Preface to the Second Contributors p. xxix Acronyms, Abbreviations, and Symbols p. xxxi Foreword to the First Edition p. xliii Foreword to the Second Edition p. xlv Preface to the First Edition p. xlvii Preface to the Second

More information

COMBINED LSC-BASED METHOD FOR RADON IN AIR MEASUREMENTS

COMBINED LSC-BASED METHOD FOR RADON IN AIR MEASUREMENTS COMBINED LSC-BASED METHOD FOR RADON IN AIR MEASUREMENTS Michael Buzinny The Marzeev Institute of Hygiene and Medical Ecology AMS of Ukraine, 50, Popudrenko str., Kiev 02094, Ukraine. Email:mbuz@ukr.net

More information

LSC-BASED APPROACH FOR RADON IN SOIL GAS MEASUREMENTS. The Marzeev Institute of Hygiene and Medical Ecology 50, Popudrenko str., Kiev 02094, Ukraine.

LSC-BASED APPROACH FOR RADON IN SOIL GAS MEASUREMENTS. The Marzeev Institute of Hygiene and Medical Ecology 50, Popudrenko str., Kiev 02094, Ukraine. LSC-BASED APPROACH FOR RADON IN SOIL GAS MEASUREMENTS Michael Buzinny 1 Victor Sakhno Maxim Romanchenko The Marzeev Institute of Hygiene and Medical Ecology 50, Popudrenko str., Kiev 02094, Ukraine. ABSTRACT.

More information

Disproof of solar influence on the decay rates of 90 Sr/ 90 Y

Disproof of solar influence on the decay rates of 90 Sr/ 90 Y Disproof of solar influence on the decay rates of 90 Sr/ 90 Y Karsten Kossert * and Ole J. Nähle Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany Abstract A custom-built

More information

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous?

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? 2. Briefly discuss dead time in a detector. What factors are important

More information

Validation of detection efficiency of alpha particles in commercial liquid scintillation counters

Validation of detection efficiency of alpha particles in commercial liquid scintillation counters Validation of detection efficiency of alpha particles in commercial liquid scintillation counters Liquid Scintillation Users' Forum 14th October 2008 Andy Pearce Radionuclide and Neutron Metrology Group

More information

A new neutron monitor for pulsed fields at high-energy accelerators

A new neutron monitor for pulsed fields at high-energy accelerators A new neutron monitor for pulsed fields at high-energy accelerators Marlies Luszik-Bhadra *, Eike Hohmann Physikalisch-Technische Bundesanstalt, Bundesallee 100, D-38116, Braunschweig, Germany. Abstract.

More information

1220 QUANTULUS The Ultra Low Level Liquid Scintillation Spectrometer

1220 QUANTULUS The Ultra Low Level Liquid Scintillation Spectrometer 1220 QUANTULUS The Ultra Low Level Liquid Scintillation Spectrometer PerkinElmer LAS (UK) Ltd, Chalfont Rd, Seer Green, Beaconsfield, Bucks HP9 2FX tel: 0800 896046 www.perkinelmer.com John Davies January

More information

19:00 21:30 Registration and reception at Hotel ETAP Altinel. Welcome

19:00 21:30 Registration and reception at Hotel ETAP Altinel. Welcome AGENDA FOR 5th VERMI YOUNG RESEARCHERS WORKSHOP ON STANDARDISATION OF S in the frame of IPA Turkey* 1 6 November 2009, TAEK, Ankara, Turkey Sunday, 1 November 2009 19:00 21:30 Registration and reception

More information

RADIOPHARMACEUTICAL 11 C ACTIVITY MEASUREMENTS BY MEANS OF THE TDCR-CERENKOV METHOD BASED ON A GEANT4 STOCHASTIC MODELING

RADIOPHARMACEUTICAL 11 C ACTIVITY MEASUREMENTS BY MEANS OF THE TDCR-CERENKOV METHOD BASED ON A GEANT4 STOCHASTIC MODELING C:\Documents and Settings\Mark McClure\Desktop\LSC2010\P-21- Thiam.fm printed: 27 July 2011 PAGE PROOF MM AUTHOR S PROOF Please check carefully and return any corrections via email as soon as possible

More information

Detection and measurement of gamma-radiation by gammaspectroscopy

Detection and measurement of gamma-radiation by gammaspectroscopy Detection and measurement of gamma-radiation by gammaspectroscopy Gamma-radiation is electromagnetic radiation having speed equal to the light in vacuum. As reaching a matter it interact with the different

More information

BALANCED WINDOW METHOD IN 14 C LIQUID SCINTILLATION COUNTING. P TheodÛrsson 1 S Ingvarsdottir G I Gudjonsson

BALANCED WINDOW METHOD IN 14 C LIQUID SCINTILLATION COUNTING. P TheodÛrsson 1 S Ingvarsdottir G I Gudjonsson RADIOCARBON, Vol 45, Nr 1, 2003, p 113 122 2003 by the Arizona Board of Regents on behalf of the University of Arizona BALANCED WINDOW METHOD IN 14 C LIQUID SCINTILLATION COUNTING P TheodÛrsson 1 S Ingvarsdottir

More information

Radionuclide Imaging MII Detection of Nuclear Emission

Radionuclide Imaging MII Detection of Nuclear Emission Radionuclide Imaging MII 3073 Detection of Nuclear Emission Nuclear radiation detectors Detectors that are commonly used in nuclear medicine: 1. Gas-filled detectors 2. Scintillation detectors 3. Semiconductor

More information

COMPARATIVE STUDY BETWEEN EXTERNAL STANDARD METHOD AND INTERNAL STANDARD METHOD FOR LOW-LEVEL TRITIUM MEASUREMENTS

COMPARATIVE STUDY BETWEEN EXTERNAL STANDARD METHOD AND INTERNAL STANDARD METHOD FOR LOW-LEVEL TRITIUM MEASUREMENTS International Conference Nuclear Energy in Central Europe 2001 Hoteli Bernardin, Portorož, Slovenia, September 10-13, 2001 www: http://www.drustvo-js.si/port2001/ e-mail: PORT2001@ijs.si tel.:+ 386 1 588

More information

Working Copy. P /ru /,6. 8-tt tt. EffectiveDate: I ^, Operation and Calibration of the Tri-Carb Liquid Sclntillation Counter QAM-RI.106.

Working Copy. P /ru /,6. 8-tt tt. EffectiveDate: I ^, Operation and Calibration of the Tri-Carb Liquid Sclntillation Counter QAM-RI.106. QAM-RI.106 Operation and Calibration of the Tri-Carb Liquid Sclntillation Counter Revision: 0 Laboratory Man ager/lqao/rso Date Date EffectiveDate: I ^, P /ru /,6 8-tt tt Renewal Date: lnitials: Texas

More information

Energy Calibration of Liquid Scintillation Counter to allow Semi-Qualitative Nuclide Identification in Water Samples

Energy Calibration of Liquid Scintillation Counter to allow Semi-Qualitative Nuclide Identification in Water Samples Energy Calibration of Liquid Scintillation Counter to allow Semi-Qualitative Nuclide Identification in Water Samples Mashaba, Machel. 1*, Kotze, Deon. 2, Tshivhase, Victor.M. 1, Faanhof, Arnaud. 1, 2 1

More information

Time-Resolved Liquid Scintillation Counting

Time-Resolved Liquid Scintillation Counting CHAPTER 44 Time-Resolved Liquid Scintillation Counting Norbert Roessler, Robert J. Valenta, and Stat van Cauter ABSTRACT A comparison is made between standard, two-tube coincidence liquid scintillation

More information

Gamma Spectroscopy. References: Objectives:

Gamma Spectroscopy. References: Objectives: Gamma Spectroscopy References: G.F. Knoll, Radiation Detection and Measurement (John Wiley & Sons, New York, 2000) W. R. Leo, Techniques for Nuclear and Particle Physics Experiments: A How-to Approach,

More information

Unit 2. Instrumentation. Experts Teaching from Practical Experience

Unit 2. Instrumentation. Experts Teaching from Practical Experience Unit 2 Instrumentation Experts Teaching from Practical Experience Gas-Filled Detectors Gas-filled detectors measure the charge released when radiation interacts with the gas Three types: Ion Chambers,

More information

A New Measurement Method For Tritium Rapid Detection by LSC. IM.CAEP Xu Qinghua

A New Measurement Method For Tritium Rapid Detection by LSC. IM.CAEP Xu Qinghua A New Measurement Method For Tritium Rapid Detection by LSC IM.CAEP Xu Qinghua xuqinghuawork@sina.com Outline Background Results and discussion Materials and methods Background FOM value for channel Sample

More information

Scintillation Detector

Scintillation Detector Scintillation Detector Introduction The detection of ionizing radiation by the scintillation light produced in certain materials is one of the oldest techniques on record. In Geiger and Marsden s famous

More information

Measurement of the 30 Si mole fraction in the new Avogadro silicon material by Neutron Activation and high resolution spectrometry

Measurement of the 30 Si mole fraction in the new Avogadro silicon material by Neutron Activation and high resolution spectrometry Measurement of the 30 Si mole fraction in the new Avogadro silicon material by Neutron Activation and high resolution spectrometry Marco Di Luzio 1,2, Attila Stopic 3, Giancarlo D Agostino 1, John W Bennett

More information

CIEMAT/NIST STANDARDIZATION METHOD EXTENDED TO ANODE OUTPUTS FOR BETA AND ELECTRON-CAPTURE NUCLIDES J. F. ORTIZ

CIEMAT/NIST STANDARDIZATION METHOD EXTENDED TO ANODE OUTPUTS FOR BETA AND ELECTRON-CAPTURE NUCLIDES J. F. ORTIZ CIEMAT/NIST STANDARDIZATION METHOD EXTENDED TO ANODE OUTPUTS FOR BETA AND ELECTRON-CAPTURE NUCLIDES J. F. ORTIZ Departmento de Mecanica, Escuela Tecnica Superior de Ingenieros Industriales (ETSII), Universidad

More information

Applied Nuclear Physics (Fall 2006) Lecture 21 (11/29/06) Detection of Nuclear Radiation: Pulse Height Spectra

Applied Nuclear Physics (Fall 2006) Lecture 21 (11/29/06) Detection of Nuclear Radiation: Pulse Height Spectra 22.101 Applied Nuclear Physics (Fall 2006) Lecture 21 (11/29/06) Detection of Nuclear Radiation: Pulse Height Spectra References: W. E. Meyerhof, Elements of Nuclear Physics (McGraw-Hill, New York, 1967),

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information

SLAC Radioanalysis Laboratory

SLAC Radioanalysis Laboratory SLAC Radioanalysis Laboratory Henry Brogonia Dosimetry and Radiological Protection Group (DREP) DOE Environmental Radiation Protection Program Review (July 23-24, 2007) Radioanalysis Laboratory Mission

More information

RESULTS YOU CAN COUNT ON

RESULTS YOU CAN COUNT ON RESULTS YOU CAN COUNT ON Liquid Scintillation Counting Principle and the Application in Biological Research 1 2009 PerkinElmer liquid scintillation counting β particle Tri-Carb family of liquid scintillation

More information

Basic physics Questions

Basic physics Questions Chapter1 Basic physics Questions S. Ilyas 1. Which of the following statements regarding protons are correct? a. They have a negative charge b. They are equal to the number of electrons in a non-ionized

More information

COSMIC BACKGROUND REDUCTION IN THE RADIOCARBON MEASUREMENTS BY LIQUID SCINTILLATION SPECTROMETRY AT THE UNDERGROUND LABORATORY OF GRAN SASSO

COSMIC BACKGROUND REDUCTION IN THE RADIOCARBON MEASUREMENTS BY LIQUID SCINTILLATION SPECTROMETRY AT THE UNDERGROUND LABORATORY OF GRAN SASSO COSMIC BACKGROUND REDUCTION IN THE RADIOCARBON MEASUREMENTS BY LIQUID SCINTILLATION SPECTROMETRY AT THE UNDERGROUND LABORATORY OF GRAN SASSO Wolfango Plastino Lauri Kaihola Paolo Bartolomei 3 Francesco

More information

Investigation of Uncertainty Sources in the Determination of Gamma Emitting Radionuclides in the WBC

Investigation of Uncertainty Sources in the Determination of Gamma Emitting Radionuclides in the WBC Investigation of Uncertainty Sources in the Determination of Gamma Emitting Radionuclides in the WBC A. Specification Whole body counting method is used to detect the gamma rays emitted by radio nuclides,

More information

Geometric Considerations in the

Geometric Considerations in the Geometric Considerations in the Calibration of Germanium Detectors for Analytics, Inc. examines geometric questions involved in calibrating and counting filter papers using germanium detector, gamma-ray

More information

THE COMPTON EFFECT Last Revised: January 5, 2007

THE COMPTON EFFECT Last Revised: January 5, 2007 B2-1 THE COMPTON EFFECT Last Revised: January 5, 2007 QUESTION TO BE INVESTIGATED: How does the energy of a scattered photon change after an interaction with an electron? INTRODUCTION: When a photon is

More information

Calibration & Use of a Capintec CAPTUS 3000 Portable Thyroid Uptake System for Iodine-125 Bioassay Measurements Todd W.

Calibration & Use of a Capintec CAPTUS 3000 Portable Thyroid Uptake System for Iodine-125 Bioassay Measurements Todd W. Calibration & Use of a Capintec CAPTUS 3000 Portable Thyroid Uptake System for Iodine-125 Bioassay Measurements Todd W. Baker, MSPH, CHP Photo image area measures 2 H x 6.93 W and can be masked by a collage

More information

QUIZ: Physics of Nuclear Medicine Atomic Structure, Radioactive Decay, Interaction of Ionizing Radiation with Matter

QUIZ: Physics of Nuclear Medicine Atomic Structure, Radioactive Decay, Interaction of Ionizing Radiation with Matter QUIZ: Physics of Nuclear Medicine Atomic Structure, Radioactive Decay, Interaction of Ionizing Radiation with Matter 1. An atomic nucleus contains 39 protons and 50 neutrons. Its mass number (A) is a)

More information

Radiation Dose, Biology & Risk

Radiation Dose, Biology & Risk ENGG 167 MEDICAL IMAGING Lecture 2: Sept. 27 Radiation Dosimetry & Risk References: The Essential Physics of Medical Imaging, Bushberg et al, 2 nd ed. Radiation Detection and Measurement, Knoll, 2 nd Ed.

More information

Liquid Scintillation at NPL: Practical Applications

Liquid Scintillation at NPL: Practical Applications 2003 LS User s Forum Liquid Scintillation at NPL: Practical Applications Andy Pearce CAIR, NPL 2 nd April 2003 Introduction Overview of applications Current projects Neutron-activated thioacetamide discs

More information

J. Keightley 1 P. Cassette 2, L. Johansson 1

J. Keightley 1 P. Cassette 2, L. Johansson 1 RADIONUCLIDE METROLOGY FOR NEW GENERATION NUCLEAR POWER PLANTS J. Keightley 1 P. Cassette 2, L. Johansson 1 1 NPL, Teddington, United Kingdom 2 CEA-LNHB, Saclay, France E-mail (corresponding author): john.keightley@npl.co.uk

More information

DETECTORS. I. Charged Particle Detectors

DETECTORS. I. Charged Particle Detectors DETECTORS I. Charged Particle Detectors A. Scintillators B. Gas Detectors 1. Ionization Chambers 2. Proportional Counters 3. Avalanche detectors 4. Geiger-Muller counters 5. Spark detectors C. Solid State

More information

SIMULTANEOUS DETERMINATION OF BETA NUCLIDES BY LIQUID SCINTILLATION SPECTROMETRY

SIMULTANEOUS DETERMINATION OF BETA NUCLIDES BY LIQUID SCINTILLATION SPECTROMETRY SIMULTANEOUS DETERMINATION OF BETA NUCLIDES BY LIQUID SCINTILLATION SPECTROMETRY Cordula Nebelung 1 Peggy Jähnigen Gert Bernhard Forschungszentrum Dresden-Rossendorf, Institute of Radiochemistry, Dresden,

More information

2100TR Liquid Scintillation Counter

2100TR Liquid Scintillation Counter 2100TR Liquid Scintillation Counter Description The Tri-Carb 2100TR liquid scintillation counter is computer-controlled, bench top liquid scintillation analyzer for detecting small amounts of alpha, beta

More information

The metrology of radioactivity. C. Michotte, BIPM

The metrology of radioactivity. C. Michotte, BIPM The metrology of radioactivity C. Michotte, BIPM SUMMARY Introduction Nuclear data of interest in activity measurements Activity measurement methods (primary and secondary) Monte Carlo simulations The

More information

Liquid Scintillation Counting Performance Using Glass Vials in the Wallac 1220 QuantulusTM

Liquid Scintillation Counting Performance Using Glass Vials in the Wallac 1220 QuantulusTM CHAPTER 43 Liquid Scintillation Counting Performance Using Glass Vials in the Wallac 1220 QuantulusTM Lauri Kaihola ABSTRACT Low-potassium glass vials can obtain reduced background count rates for beta

More information

Slides by: Prof. Abeer Alharbi

Slides by: Prof. Abeer Alharbi Slides by: Prof. Abeer Alharbi electromagnetic radiation of high energy. They are produced by sub-atomic particle interactions, such as electron-positron annihilation, neutral pion decay, radioactive decay,

More information

28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies DESIGN OF A PHOSWICH WELL DETECTOR FOR RADIOXENON MONITORING

28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies DESIGN OF A PHOSWICH WELL DETECTOR FOR RADIOXENON MONITORING DESIGN OF A PHOSWICH WELL DETECTOR FOR RADIOXENON MONITORING W. Hennig 1, H. Tan 1, A. Fallu-Labruyere 1, W. K. Warburton 1, J. I. McIntyre 2, A. Gleyzer 3 XIA, LLC 1, Pacific Northwest National Laboratory

More information

Activity measurements of the radionuclide 153 Sm for the ANSTO, Australia in the ongoing comparison BIPM.RI(II)-K1.Sm-153

Activity measurements of the radionuclide 153 Sm for the ANSTO, Australia in the ongoing comparison BIPM.RI(II)-K1.Sm-153 Activity measurements of the radionuclide 153 Sm for the ANSTO, Australia in the ongoing comparison BIPM.RI(II)-K1.Sm-153 G. Ratel*, C. Michotte*, M. Reinhard, D. Alexiev, L. Mo *BIPM, ANSTO, Australia

More information

Overview about the Work with Liquid Scintillators

Overview about the Work with Liquid Scintillators Overview about the Work with Liquid Scintillators Today: Experimental Setups to determine the properties of liquid scintillators Patrick Pfahler Research visit,rio de Janeiro 2007 Institute for astroparticle

More information

Determination of the activity of radionuclides

Determination of the activity of radionuclides BUREAU NATIONAL DE MÉTROLOGIE COMMISSARIAT À L'ÉNERGIE ATOMIQUE LABORATOIRE NATIONAL HENRI BECQUEREL Note technique LNHB/04-33 Determination of the activity of radionuclides contained in volume samples

More information

Interactive Web Accessible Gamma-Spectrum Generator & EasyMonteCarlo Tools

Interactive Web Accessible Gamma-Spectrum Generator & EasyMonteCarlo Tools 10th Nuclear Science Training Course with NUCLEONICA, Cesme, Turkey, 8-10 October, 2008 1 Interactive Web Accessible Gamma-Spectrum Generator & EasyMonteCarlo Tools A.N. Berlizov ITU - Institute for Transuranium

More information

SCINTILLATION DETECTORS AND PM TUBES

SCINTILLATION DETECTORS AND PM TUBES SCINTILLATION DETECTORS AND PM TUBES General Characteristics Introduction Luminescence Light emission without heat generation Scintillation Luminescence by radiation Scintillation detector Radiation detector

More information

Precise Measurement of the Absolute Yield of Fluorescence Photons in Atmospheric Gases

Precise Measurement of the Absolute Yield of Fluorescence Photons in Atmospheric Gases Precise Measurement of the Absolute Yield of Fluorescence Photons in Atmospheric Gases Paolo Privitera 5th Fluorescence Workshop 7 th Air Fluorescence El Escorial Workshop - Madrid, Spain September 22-24,

More information

ARTICLE IN PRESS. Applied Radiation and Isotopes

ARTICLE IN PRESS. Applied Radiation and Isotopes Applied Radiation and Isotopes 68 (21) 1349 1353 Contents lists available at ScienceDirect Applied Radiation and Isotopes journal homepage: www.elsevier.com/locate/apradiso Standardization and measurement

More information

Quality Assurance. Purity control. Polycrystalline Ingots

Quality Assurance. Purity control. Polycrystalline Ingots Quality Assurance Purity control Polycrystalline Ingots 1 Gamma Spectrometry Nuclide Identification Detection of Impurity Traces 1.1 Nuclides Notation: Atomic Mass Atomic Number Element Neutron Atomic

More information

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies CHARACTERIZATION OF PHOSWICH WELL DETECTORS FOR RADIOXENON MONITORING Wolfgang Hennig 1, Hui Tan 1, William K. Warburton 1, Anthony Fallu-Labruyere 1, Konstantin Sabourov 1, Justin I. McIntyre 2, Matthew

More information

Physics Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20852, USA.

Physics Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20852, USA. ON THE STANDARDIZATION OF 209 Po AND 210 Pb R Collé 1 L Laureano-Perez Physics Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20852, USA. ABSTRACT. This overview on

More information

TIME-RESOLVED LIQUID SCINTILLATION COUNTING

TIME-RESOLVED LIQUID SCINTILLATION COUNTING [RADOCARBON, VOL 32, No. 3, 1990, P 381-386] TME-RESOLVED LQUD SCNTLLATON COUNTNG MCHAEL KESSLER Packard nstrument Company, One State Street, Meriden, Connecticut 06450 ABSTRACT. Historically, scientists

More information

Radioactivity. Lecture 6 Detectors and Instrumentation

Radioactivity. Lecture 6 Detectors and Instrumentation Radioactivity Lecture 6 Detectors and Instrumentation The human organs Neither humans nor animals have an organ for detecting radiation from radioactive decay! We can not hear it, smell it, feel it or

More information

CHAPTER 2 RADIATION INTERACTIONS WITH MATTER HDR 112 RADIATION BIOLOGY AND RADIATION PROTECTION MR KAMARUL AMIN BIN ABDULLAH

CHAPTER 2 RADIATION INTERACTIONS WITH MATTER HDR 112 RADIATION BIOLOGY AND RADIATION PROTECTION MR KAMARUL AMIN BIN ABDULLAH HDR 112 RADIATION BIOLOGY AND RADIATION PROTECTION CHAPTER 2 RADIATION INTERACTIONS WITH MATTER PREPARED BY: MR KAMARUL AMIN BIN ABDULLAH SCHOOL OF MEDICAL IMAGING FACULTY OF HEALTH SCIENCE Interactions

More information

ISO Water quality Determination of carbon 14 activity Liquid scintillation counting method

ISO Water quality Determination of carbon 14 activity Liquid scintillation counting method INTERNATIONAL STANDARD ISO 13162 First edition 2011-11-01 Water quality Determination of carbon 14 activity Liquid scintillation counting method Qualité de l eau Détermination de l activité volumique du

More information

Copyright 2008, University of Chicago, Department of Physics. Experiment VI. Gamma Ray Spectroscopy

Copyright 2008, University of Chicago, Department of Physics. Experiment VI. Gamma Ray Spectroscopy Experiment VI Gamma Ray Spectroscopy 1. GAMMA RAY INTERACTIONS WITH MATTER In order for gammas to be detected, they must lose energy in the detector. Since gammas are electromagnetic radiation, we must

More information

Single Channel Beta-Gamma Coincidence Detection of Radioactive Xenon Using Digital Pulse Shape Analysis of Phoswich Detector Signals

Single Channel Beta-Gamma Coincidence Detection of Radioactive Xenon Using Digital Pulse Shape Analysis of Phoswich Detector Signals Single Channel Beta-Gamma Coincidence Detection of Radioactive Xenon Using Digital Pulse Shape Analysis of Phoswich Detector Signals Wolfgang Hennig, Hui Tan, William K Warburton, and Justin I McIntyre

More information

Chapter 4 Scintillation Detectors

Chapter 4 Scintillation Detectors Med Phys 4RA3, 4RB3/6R03 Radioisotopes and Radiation Methodology 4-1 4.1. Basic principle of the scintillator Chapter 4 Scintillation Detectors Scintillator Light sensor Ionizing radiation Light (visible,

More information

Radionuclide metrology using LSC. - Current status and limitations -

Radionuclide metrology using LSC. - Current status and limitations - - Current status and limitations - Karsten Kossert Physikalisch-Technische Bundesanstalt (PTB), Department 6.1 Radioactivity Advances in Liquid Scintillation Spectrometry LSC 2017 1-5 May 2017, Copenhagen,

More information

Basic physics of nuclear medicine

Basic physics of nuclear medicine Basic physics of nuclear medicine Nuclear structure Atomic number (Z): the number of protons in a nucleus; defines the position of an element in the periodic table. Mass number (A) is the number of nucleons

More information

PRODUCTS FOR EDUCATION AND TRAINING

PRODUCTS FOR EDUCATION AND TRAINING PRODUCTS FOR EDUCATION AND TRAINING This section gives detailed information about products to support training in radiation protection, applications of radioactivity and handling radioactive materials.

More information

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY ABSORBED DOSE: The amount of energy absorbed, as a result of radiation passing through a material, per unit mass of material. Measured in rads (1 rad

More information

DIGITAL PULSE SHAPE ANALYSIS WITH PHOSWICH DETECTORS TO SIMPLIFY COINCIDENCE MEASUREMENTS OF RADIOACTIVE XENON

DIGITAL PULSE SHAPE ANALYSIS WITH PHOSWICH DETECTORS TO SIMPLIFY COINCIDENCE MEASUREMENTS OF RADIOACTIVE XENON DIGITAL PULSE SHAPE ANALYSIS WITH PHOSWICH DETECTORS TO SIMPLIFY COINCIDENCE MEASUREMENTS OF RADIOACTIVE XENON W. Hennig 1, H. Tan 1, W.K. Warburton 1, and J.I. McIntyre 2 XIA LLC 1, Pacific Northwest

More information

Basic hands-on gamma calibration for low activity environmental levels

Basic hands-on gamma calibration for low activity environmental levels Basic hands-on gamma calibration for low activity environmental levels Iolanda Osvath Presented by Mats Eriksson Environment Laboratories Marine Environment Laboratories, Monaco Radiometrics Laboratory

More information

TDCR and CIEMAT/NIST Liquid Scintillation Methods applied to the Radionuclide Metrology

TDCR and CIEMAT/NIST Liquid Scintillation Methods applied to the Radionuclide Metrology TDCR and CIEMAT/NIST Liquid Scintillation Methods applied to the Radionuclide Metrology Paulo A. L. da Cruz 1, Carlos J. da Silva 1, Akira Iwahara 1, Jamir S. Loureiro 1, Antônio E. de Oliveira 1, Luiz

More information

Chapter Seven (Nuclear Detectors)

Chapter Seven (Nuclear Detectors) Al-Mustansiriyah University College of Science Physics Department Fourth Grade Nuclear Physics Dr. Ali A. Ridha Chapter Seven (Nuclear Detectors) Ionizing radiation is rarely detected directly. Instead,

More information

Sample Spectroscopy System Hardware

Sample Spectroscopy System Hardware Semiconductor Detectors vs. Scintillator+PMT Detectors Semiconductors are emerging technology - Scint.PMT systems relatively unchanged in 50 years. NaI(Tl) excellent for single-photon, new scintillation

More information

Particle Energy Loss in Matter

Particle Energy Loss in Matter Particle Energy Loss in Matter Charged particles loose energy when passing through material via atomic excitation and ionization These are protons, pions, muons, The energy loss can be described for moderately

More information

European Project Metrology for Radioactive Waste Management

European Project Metrology for Radioactive Waste Management European Project Metrology for Radioactive Waste Management Petr Kovar Czech Metrology Institute Okruzni 31 638 00, Brno, Czech republic pkovar@cmi.cz Jiri Suran Czech Metrology Institute Okruzni 31 638

More information

DETERMINATION OF CORRECTION FACTORS RELATED TO THE MANGANESE SULPHATE BATH TECHNIQUE

DETERMINATION OF CORRECTION FACTORS RELATED TO THE MANGANESE SULPHATE BATH TECHNIQUE DETERMINATION OF CORRECTION FACTORS RELATED TO THE MANGANESE SULPHATE BATH TECHNIQUE Ján Haščík, Branislav Vrban, Jakub Lüley, Štefan Čerba, Filip Osuský, Vladimír Nečas Slovak University of Technology

More information

GUIDE TO LABORATORY SURVEYS. Introduction

GUIDE TO LABORATORY SURVEYS. Introduction APPENDIX - V GUIDE TO LABORATORY SURVEYS Introduction Routine laboratory surveys are an important part of the overall radiation safety program in a laboratory. Surveys provide a direct measure of the presence

More information

Activity determination of a 201 Tl solution by 4πβ-γ and sum-peak coincidence methods

Activity determination of a 201 Tl solution by 4πβ-γ and sum-peak coincidence methods Journal of Physics: Conference Series PAPER OPEN ACCESS Activity determination of a 201 Tl solution by 4πβ-γ and sum-peak coincidence methods To cite this article: A Ruzzarin et al 2016 J. Phys.: Conf.

More information

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Module - 2 Radioisotopes Techniques Lecture - 3 GM Counting and

More information

Recent Activities on Neutron Standardization at the Electrotechnical Laboratory

Recent Activities on Neutron Standardization at the Electrotechnical Laboratory Recent Activities on Neutron Standardization at the Electrotechnical Laboratory K. Kudo, N. Takeda, S. Koshikawa and A. Uritani Quantum Radiation Division, National Metrology Institute of Japan (NMIJ)

More information

TECHNETIUM-99 IN WATER

TECHNETIUM-99 IN WATER Analytical Procedure TECHNETIUM-99 IN WATER (WITH VACUUM BOX SYSTEM) 1. SCOPE 1.1. This procedure describes a method to separate and measure technetium-99 in water. 1.2. This method does not address all

More information

Radiation Detectors. How do we detect ionizing radiation? What are these effects? Types of Ionizing Radiation Detectors

Radiation Detectors. How do we detect ionizing radiation? What are these effects? Types of Ionizing Radiation Detectors Radiation Detectors 1 How do we detect ionizing radiation? Indirectly, by its effects as it traverses matter? What are these effects? Ionization and excitation of the atoms and molecules Heat 2 Types of

More information

High-energy calibration data for neutron activation analysis

High-energy calibration data for neutron activation analysis Nuclear Analysis and Radiography Department High-energy calibration data for neutron activation analysis L. Szentmiklósi 1, Zs. Révay 2, B. Maróti 1, D. Párkányi 1, I. Harsányi 1 1 Nuclear Analysis and

More information

EFFICIENCY SIMULATION OF A HPGE DETECTOR FOR THE ENVIRONMENTAL RADIOACTIVITY LABORATORY/CDTN USING A MCNP-GAMMAVISION METHOD

EFFICIENCY SIMULATION OF A HPGE DETECTOR FOR THE ENVIRONMENTAL RADIOACTIVITY LABORATORY/CDTN USING A MCNP-GAMMAVISION METHOD 2011 International Nuclear Atlantic Conference - INAC 2011 Belo Horizonte,MG, Brazil, October 24-28, 2011 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-04-5 EFFICIENCY SIMULATION OF

More information

Chapter Four (Interaction of Radiation with Matter)

Chapter Four (Interaction of Radiation with Matter) Al-Mustansiriyah University College of Science Physics Department Fourth Grade Nuclear Physics Dr. Ali A. Ridha Chapter Four (Interaction of Radiation with Matter) Different types of radiation interact

More information

Setup for an in-situ measurement of the total light extinction of Liquid Argon in GERDA

Setup for an in-situ measurement of the total light extinction of Liquid Argon in GERDA Setup for an in-situ measurement of the total light extinction of Liquid Argon in GERDA Birgit Schneider Technische Universität Dresden Institut für Kern- und Teilchenphysik DPG-Frühjahrstagung Mainz 25th

More information

SCINTILLATION DETECTORS & GAMMA SPECTROSCOPY: AN INTRODUCTION

SCINTILLATION DETECTORS & GAMMA SPECTROSCOPY: AN INTRODUCTION SCINTILLATION DETECTORS & GAMMA SPECTROSCOPY: AN INTRODUCTION OBJECTIVE The primary objective of this experiment is to use an NaI(Tl) detector, photomultiplier tube and multichannel analyzer software system

More information

Determination of H-3 and C-14 in the frame of decommissioning projects at the Paul Scherrer Institute

Determination of H-3 and C-14 in the frame of decommissioning projects at the Paul Scherrer Institute Determination of H-3 and C-14 in the frame of decommissioning projects at the Paul Scherrer Institute Jost Eikenberg, Maya Jäggi, Max Rüthi Paul Scherrer Institute, CH-5232 Villigen, Switzerland Content

More information