Collaborative Place Models Supplement 2

Size: px
Start display at page:

Download "Collaborative Place Models Supplement 2"

Transcription

1 Collaborative Place Models Supplement Ber Kapicioglu Foursquare Labs Robert E Schapire Princeton University schapire@csprincetonedu David S Rosenberg YP Mobile Labs daviddavidr@gmailcom Tony Jebara Columbia University jebara@cscolumbiaedu Bayesian Gaussian Mixture Model (BGMM) In this section, we provide a formal description of BGMM and describe its generative process The model is depicted in Figure Figure : Graphical model representation of BGMM The geographic coordinates, denoted by `, are the only observed variables Let denote the normal distribution and IW denote the inverse-wishart distribution Let Dirichlet K ( ) denote a symmetric Dirichlet if its parameter is a scalar and a general Dirichlet if its parameter is a vector The generative process of BGMM is described in more formal terms below Further technical details about the distributions we use in our model can be found in the appendix Draw a place distribution Dirichlet K ( ) For each place, (a) Draw a place covariance IW (,v) (b) Draw a place mean µ, p

2 3 For each observation index n, Inference (a) Draw a place assignment z n Categorical( ) (b) Draw a location `n ( zn, zn ) In this section, we derive our inference algorithm, and we present our derivation in multiple steps First, we use a strategy popularized by Griffiths and Steyvers [], and derive a collapsed Gibbs sampler to sample from the posterior distribution of the categorical random variables conditioned on the observed geographic coordinates Second, we derive the conditional lielihood of the posterior samples, which we use to determine the sampler s convergence Finally, we derive formulas for approximating the posterior expectations of the non-categorical random variables conditioned on the posterior samples Collapsed Gibbs Sampler In Lemma, we derive the collapsed Gibbs sampler for variable z Given a vector x and an index, let x indicate all the entries of the vector excluding the one at index For Lemma, assume i denotes the index of the variable that will be sampled Lemma The unnormalized probability of z i conditioned on the observed location data and remaining categorical variables is p (z i z i, `) / tṽ `i µ, ( p + ) + m, p (ṽ ) The parameters ṽ, µ,, and p are defined in the proof t denotes the bivariate t-distribution and m, denotes counts, both of which are defined in the appendix Proof We decompose the probability into two components using Bayes theorem: p (z i z i, `) p (`i z i, z i, ` i) p (z i z i, ` i) p (`i z i, ` i) p (`i z i, z i, ` i) p (z i z i ) p (`i z i, ` i) / p (`i z i, z i, ` i) () p (z i z i ) () In the first part of the derivation, we operate on () We augment it with and : p (`i z i, z i, ` i) p `i z i, z i, ` i,, p, z i, z i, ` i d d p `i z i,, p, z i, z i, ` i d d `i, (3) p, z i, z i, ` i d d (4)

3 , We convert (4) into a more tractable form Let M be a set of indices, which we define in the appendix, and let ` M,, denote the subset of observations whose indices are in M In the derivation below, we treat all variables other than and as a constant: p, z i, z i, ` i p, z i, z i, ` M, p, z i, ` M, p ` M, / p Y 0 ` M, j Y 0 j Y j IW M, p, z i,, z i p ` M, z i,, z i p, p `j p `j `j,v,, z i A p,,,z j A p,, A µ, p Since the normal-inverse-wishart distribution is the conjugate prior of the multivariate normal distribution, the posterior is also a normal-inverse-wishart distribution, p, z i, z i, ` i µ, IW p, ṽ, (5) whose parameters are defined as p p + m,, ṽ + m, ` m, j j M,, X M, `j, µ p µ + m, `, p S X `j ` + S + `j ` T, p m, T ` p + m, µ ` µ 3

4 The posterior parameters depicted above are derived based on the conjugacy properties of Gaussian distributions, as described in [] We rewrite () by combining (3), (4), and (5) to obtain p (`i z i, z i, ` i) `i, p, z i, z i, ` i d d `i, µ, p IW, ṽ d d tṽ `i µ, ( p + ), (6) p (ṽ ) where t is the bivariate t-distribution (6) is derived by applying Equation 58 from [] ow, we move onto the second part of the derivation We operate on () and augment it with : p (z i z i ) p (z i z i, ) p ( z i )d p (z i ) (7) p ( z i )d (8) We convert (8) into a more tractable form As before, let M be a set of indices, which we define in the appendix, and let z M denote the subset of place assignments whose indices are in M In the derivation below, we treat all variables other than as a constant: p ( z i ) p z M p z M p ( ) p z M Y / p (z j ) p ( ) j j M Y M Categorical (z j ) Dirichlet K ( ) ) p ( z i ) Dirichlet K + m,,, + m K,, (9) where the last step follows because Dirichlet distribution is the conjugate prior of the categorical distribution We rewrite () by combining (7), (8), and (9): p (z i z i ) p (z i ) p ( z i )d Dirichlet K + m,,, + m K, d + m, K + m (0) The last step follows because it is the expected value of the Dirichlet distribution Finally, we combine (), (), (6), and (0) to obtain the unnormalized probability distribution: p (z i z i, `) / p (`i z i, z i, ` i) p (z i z i ) tṽ `i µ, ( p + ) p (ṽ ) + m, K + m 4

5 Lielihoods In this subsection, we derive the conditional lielihoods of the posterior samples conditioned on the observed geographical coordinates We use these conditional lielihoods to determine the sampler s convergence We present the derivations in multiple lemmas and combine them in a theorem at the end of the subsection Let denote the gamma function Lemma The marginal probability of the categorical random variable z is Q (K ) K + m, p (z) ( ) K K + m, where the counts m, and m are defined in the appendix Proof Below, we will augment the marginal probability with, and then factorize it based on the conditional independence assumptions made by our model: p (z) p (z ) p ( ) d 0 p ( ) p (z j ) A Y j K ( ) Y j Categorical (z j ) A d () ow, we substitute the probabilities in () with Dirichlet and categorical distributions, which are defined in more detail in the appendix: 0 p K ( ) Y Categorical (z j ) A d j B ( ) B ( ) +m, m, d B ( ) B + m,,, + m K, (K ) K Q ( ) K + m, K + m d For our final derivation, let denote the bivariate gamma function, and let denote the determinant Lemma 3 The conditional probability of the observed locations ` conditioned on z is v p p (` z) v p m, The parameters v,, and p are defined in the proof, and the counts m, are defined in the appendix 5

6 Proof We will factorize the probability using the conditional independence assumptions made by the model, and then simplify the resulting probabilities by integrating out the means and covariances associated with the place clusters: p (` z) p, `M z p, `M z, p u, u Y jm, `j, p, d d Y jm, µ, p p `j z j, IW, d d,v, d d We apply Equation 66 from [], which describes the conjugacy properties of Gaussian distributions, to reformulate () into its final form: p (` z) µ, Y IW,v `j, d d p m, v p v p The definitions for v,, and p are provided in (5) jm, Finally, we combine Lemmas and 3 to provide the log-lielihood of the samples z conditioned on the observations ` Lemma 4 The log-lielihood of the samples z conditioned on the observations ` is log p (z `) + KX log KX where C denotes the constant terms + m, v log m, log v log log p + C, Proof The result follows by multiplying the probabilities stated in Lemmas and 3, and applying the logarithm function 3 Parameter estimation In Subsection, we described a collapsed Gibbs sampler for sampling the posteriors of the categorical random variables Below, Lemmas 5 and 6 show how these samples, denoted as z, can be used to approximate the posterior expectations of,, and Lemma 5 The expectation of given the observed geographical coordinates and the posterior samples is E [ z, `] + m, K + m where the counts m, and m are defined in the appendix, () 6

7 Proof p ( z, `) p ( z) p (z ) p ( ) p (z) Q p (z j ) p ( ) j p (z) / Dirichlet K ( ) Y j Categorical (z j ) Dirichlet K + m,,, + m K, ) E [ z, `] + m, K + m Lemma 6 The expectations of posterior samples is and given the observed geographical coordinates and the h i u E u z, ` µ u and h i u E u z, ` u v u 3 Parameters µ u, u, and v u are defined in the proof of Lemma 7

8 Proof p, z, ` ) p, z, ` ) p z, ` ) h i E z, ` ) p z, ` ) h i E z, ` p, z, ` p, z,, `M p `M, Q jm, / tv p `j,, z p, `M z,, z p, `M µ, p IW p, z z p,,v p, `M z µ, IW,v p Q jm, µ, IW p, v µ, p (v ) µ IW u, v v 3 Y jm, `j `j,, 3 Appendix 3 Miscellaneous notation Throughout the paper, we use various notations to represent sets of indices and their cardinalities Vectors y and z denote the component and place assignments in CPM, respectively Each vector entry is identified by a tuple index (u, w, n), where u {,,U} is a user, w {,,W} is a weehour, and n {,, u,w } is an iteration index For the subsequent notations, we assume that the random variables y and z are already sampled We refer to a subset of indices using M 0,f0 u 0,w 0 {( u, ẇ, ṅ) z u,ẇ,ṅ 0,y u,ẇ,ṅ f 0, u u 0, ẇ w 0 }, where u 0 denotes the user, w 0 denotes the weehour, 0 denotes the place, and f 0 denotes the component If we want the subset of indices to be unrestricted with respect to a category, we use the placeholder For example, has no constraints with respect to places M,f0 u 0,w 0 {( u, ẇ, ṅ) y u,ẇ,ṅ f 0, u u 0, ẇ w 0 } 8

9 Given a subset of indices denoted by M, the lowercase m M denotes its cardinality For example, given a set of indices M u,f0 0, {( u, ẇ, ṅ) z u,ẇ,ṅ,y u,ẇ,ṅ f 0, u u 0, ẇ w 0 }, its cardinality is m,f0 u 0, M,f0 u 0, For the collapsed Gibbs sampler, the sets of indices and cardinalities used in the derivations exclude the index that will be sampled We use to modify sets or cardinalities for this exclusion Let (u, w, n) denote the index that will be sampled, then given an index set M, let M M {(u, w, n)} represent the excluding set and let m M represent the corresponding cardinality For example, and M,f0 u 0, M,f0 u 0, m,f0 u 0, {(u, w, n)},f0 M u 0, In the proof of Lemma, parameters ṽ u, µu, u, and p u are defined using cardinalities that exclude the current index (u, w, n) Similarly, in the proof of Lemma 6, parameters µ u, u, and v u are defined lie their wiggly versions, but the counts used in their definitions do not exclude the current index 3 Probability distributions Let denote a bivariate gamma function, defined as Y (a) a + j j Let >and let R be a positive definite scale matrix The inverse-wishart distribution, which is the conjugate prior to the multivariate normal distribution, is defined as IW (, ) 3 exp tr Let R be a positive definite covariance matrix and let µ R denote a mean vector The multivariate normal distribution is defined as (` µ, ) ( ) exp (` µ)t (` µ) Let >and let R, then the -dimensional t-distribution is defined as t v (x µ, ) + (x µ)t (x µ) + Let K>be the number of categories and let (,, K ) be the concentration parameters, where > 0 for all {,,K} Then, the K-dimensional Dirichlet distribution, which is the conjugate prior to the categorical distribution, is defined as Dirichlet K (x ) B ( ) x, where KQ ( ) B ( ) KP We abuse the Dirichlet notation slightly and use it to define the K-dimensional symmetric Dirichlet distribution as well Let >0 be a scalar concentration parameter Then, the symmetric Dirichlet distribution is defined as Dirichlet K (x )Dirichlet K (x,, K ), where for all {,,K} 9

10 References [] Thomas L Griffiths and Mar Steyvers Finding scientific topics Proceedings of the ational Academy of Sciences of the United States of America, 0(Suppl ):58 535, April 004 [] Kevin Murphy Conjugate bayesian analysis of the gaussian distribution October 007 0

Collaborative Place Models Supplement 1

Collaborative Place Models Supplement 1 Collaborative Place Models Sulement Ber Kaicioglu Foursquare Labs ber.aicioglu@gmail.com Robert E. Schaire Princeton University schaire@cs.rinceton.edu David S. Rosenberg P Mobile Labs david.davidr@gmail.com

More information

13: Variational inference II

13: Variational inference II 10-708: Probabilistic Graphical Models, Spring 2015 13: Variational inference II Lecturer: Eric P. Xing Scribes: Ronghuo Zheng, Zhiting Hu, Yuntian Deng 1 Introduction We started to talk about variational

More information

Bayesian Nonparametric Models

Bayesian Nonparametric Models Bayesian Nonparametric Models David M. Blei Columbia University December 15, 2015 Introduction We have been looking at models that posit latent structure in high dimensional data. We use the posterior

More information

Gentle Introduction to Infinite Gaussian Mixture Modeling

Gentle Introduction to Infinite Gaussian Mixture Modeling Gentle Introduction to Infinite Gaussian Mixture Modeling with an application in neuroscience By Frank Wood Rasmussen, NIPS 1999 Neuroscience Application: Spike Sorting Important in neuroscience and for

More information

Collaborative Place Models

Collaborative Place Models Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence IJCAI Berk Kapicioglu Foursquare Labs berk.kapicioglu@gmail.com Collaborative Place Models David S. Rosenberg

More information

CSC411 Fall 2018 Homework 5

CSC411 Fall 2018 Homework 5 Homework 5 Deadline: Wednesday, Nov. 4, at :59pm. Submission: You need to submit two files:. Your solutions to Questions and 2 as a PDF file, hw5_writeup.pdf, through MarkUs. (If you submit answers to

More information

Lecturer: David Blei Lecture #3 Scribes: Jordan Boyd-Graber and Francisco Pereira October 1, 2007

Lecturer: David Blei Lecture #3 Scribes: Jordan Boyd-Graber and Francisco Pereira October 1, 2007 COS 597C: Bayesian Nonparametrics Lecturer: David Blei Lecture # Scribes: Jordan Boyd-Graber and Francisco Pereira October, 7 Gibbs Sampling with a DP First, let s recapitulate the model that we re using.

More information

Lecture 13 : Variational Inference: Mean Field Approximation

Lecture 13 : Variational Inference: Mean Field Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2017 Lecture 13 : Variational Inference: Mean Field Approximation Lecturer: Willie Neiswanger Scribes: Xupeng Tong, Minxing Liu 1 Problem Setup 1.1

More information

Clustering using Mixture Models

Clustering using Mixture Models Clustering using Mixture Models The full posterior of the Gaussian Mixture Model is p(x, Z, µ,, ) =p(x Z, µ, )p(z )p( )p(µ, ) data likelihood (Gaussian) correspondence prob. (Multinomial) mixture prior

More information

Topic Modelling and Latent Dirichlet Allocation

Topic Modelling and Latent Dirichlet Allocation Topic Modelling and Latent Dirichlet Allocation Stephen Clark (with thanks to Mark Gales for some of the slides) Lent 2013 Machine Learning for Language Processing: Lecture 7 MPhil in Advanced Computer

More information

Curve Fitting Re-visited, Bishop1.2.5

Curve Fitting Re-visited, Bishop1.2.5 Curve Fitting Re-visited, Bishop1.2.5 Maximum Likelihood Bishop 1.2.5 Model Likelihood differentiation p(t x, w, β) = Maximum Likelihood N N ( t n y(x n, w), β 1). (1.61) n=1 As we did in the case of the

More information

Gaussian Mixture Model

Gaussian Mixture Model Case Study : Document Retrieval MAP EM, Latent Dirichlet Allocation, Gibbs Sampling Machine Learning/Statistics for Big Data CSE599C/STAT59, University of Washington Emily Fox 0 Emily Fox February 5 th,

More information

Bayesian Mixtures of Bernoulli Distributions

Bayesian Mixtures of Bernoulli Distributions Bayesian Mixtures of Bernoulli Distributions Laurens van der Maaten Department of Computer Science and Engineering University of California, San Diego Introduction The mixture of Bernoulli distributions

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

PROBABILITY DISTRIBUTIONS. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

PROBABILITY DISTRIBUTIONS. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception PROBABILITY DISTRIBUTIONS Credits 2 These slides were sourced and/or modified from: Christopher Bishop, Microsoft UK Parametric Distributions 3 Basic building blocks: Need to determine given Representation:

More information

Lecture 10. Announcement. Mixture Models II. Topics of This Lecture. This Lecture: Advanced Machine Learning. Recap: GMMs as Latent Variable Models

Lecture 10. Announcement. Mixture Models II. Topics of This Lecture. This Lecture: Advanced Machine Learning. Recap: GMMs as Latent Variable Models Advanced Machine Learning Lecture 10 Mixture Models II 30.11.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/ Announcement Exercise sheet 2 online Sampling Rejection Sampling Importance

More information

MULTILEVEL IMPUTATION 1

MULTILEVEL IMPUTATION 1 MULTILEVEL IMPUTATION 1 Supplement B: MCMC Sampling Steps and Distributions for Two-Level Imputation This document gives technical details of the full conditional distributions used to draw regression

More information

19 : Bayesian Nonparametrics: The Indian Buffet Process. 1 Latent Variable Models and the Indian Buffet Process

19 : Bayesian Nonparametrics: The Indian Buffet Process. 1 Latent Variable Models and the Indian Buffet Process 10-708: Probabilistic Graphical Models, Spring 2015 19 : Bayesian Nonparametrics: The Indian Buffet Process Lecturer: Avinava Dubey Scribes: Rishav Das, Adam Brodie, and Hemank Lamba 1 Latent Variable

More information

Information retrieval LSI, plsi and LDA. Jian-Yun Nie

Information retrieval LSI, plsi and LDA. Jian-Yun Nie Information retrieval LSI, plsi and LDA Jian-Yun Nie Basics: Eigenvector, Eigenvalue Ref: http://en.wikipedia.org/wiki/eigenvector For a square matrix A: Ax = λx where x is a vector (eigenvector), and

More information

An Introduction to Expectation-Maximization

An Introduction to Expectation-Maximization An Introduction to Expectation-Maximization Dahua Lin Abstract This notes reviews the basics about the Expectation-Maximization EM) algorithm, a popular approach to perform model estimation of the generative

More information

Collapsed Gibbs Sampler for Dirichlet Process Gaussian Mixture Models (DPGMM)

Collapsed Gibbs Sampler for Dirichlet Process Gaussian Mixture Models (DPGMM) Collapsed Gibbs Sampler for Dirichlet Process Gaussian Mixture Models (DPGMM) Rajarshi Das Language Technologies Institute School of Computer Science Carnegie Mellon University rajarshd@cs.cmu.edu Sunday

More information

Motivation Scale Mixutres of Normals Finite Gaussian Mixtures Skew-Normal Models. Mixture Models. Econ 690. Purdue University

Motivation Scale Mixutres of Normals Finite Gaussian Mixtures Skew-Normal Models. Mixture Models. Econ 690. Purdue University Econ 690 Purdue University In virtually all of the previous lectures, our models have made use of normality assumptions. From a computational point of view, the reason for this assumption is clear: combined

More information

19 : Slice Sampling and HMC

19 : Slice Sampling and HMC 10-708: Probabilistic Graphical Models 10-708, Spring 2018 19 : Slice Sampling and HMC Lecturer: Kayhan Batmanghelich Scribes: Boxiang Lyu 1 MCMC (Auxiliary Variables Methods) In inference, we are often

More information

Latent Variable Models Probabilistic Models in the Study of Language Day 4

Latent Variable Models Probabilistic Models in the Study of Language Day 4 Latent Variable Models Probabilistic Models in the Study of Language Day 4 Roger Levy UC San Diego Department of Linguistics Preamble: plate notation for graphical models Here is the kind of hierarchical

More information

Bayesian Nonparametrics: Dirichlet Process

Bayesian Nonparametrics: Dirichlet Process Bayesian Nonparametrics: Dirichlet Process Yee Whye Teh Gatsby Computational Neuroscience Unit, UCL http://www.gatsby.ucl.ac.uk/~ywteh/teaching/npbayes2012 Dirichlet Process Cornerstone of modern Bayesian

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

16 : Approximate Inference: Markov Chain Monte Carlo

16 : Approximate Inference: Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models 10-708, Spring 2017 16 : Approximate Inference: Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Yuan Yang, Chao-Ming Yen 1 Introduction As the target distribution

More information

Bayesian Inference. Chapter 9. Linear models and regression

Bayesian Inference. Chapter 9. Linear models and regression Bayesian Inference Chapter 9. Linear models and regression M. Concepcion Ausin Universidad Carlos III de Madrid Master in Business Administration and Quantitative Methods Master in Mathematical Engineering

More information

Bayesian data analysis in practice: Three simple examples

Bayesian data analysis in practice: Three simple examples Bayesian data analysis in practice: Three simple examples Martin P. Tingley Introduction These notes cover three examples I presented at Climatea on 5 October 0. Matlab code is available by request to

More information

Multivariate Normal & Wishart

Multivariate Normal & Wishart Multivariate Normal & Wishart Hoff Chapter 7 October 21, 2010 Reading Comprehesion Example Twenty-two children are given a reading comprehsion test before and after receiving a particular instruction method.

More information

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution Outline A short review on Bayesian analysis. Binomial, Multinomial, Normal, Beta, Dirichlet Posterior mean, MAP, credible interval, posterior distribution Gibbs sampling Revisit the Gaussian mixture model

More information

Bayesian Inference for the Multivariate Normal

Bayesian Inference for the Multivariate Normal Bayesian Inference for the Multivariate Normal Will Penny Wellcome Trust Centre for Neuroimaging, University College, London WC1N 3BG, UK. November 28, 2014 Abstract Bayesian inference for the multivariate

More information

Multivariate Bayesian Linear Regression MLAI Lecture 11

Multivariate Bayesian Linear Regression MLAI Lecture 11 Multivariate Bayesian Linear Regression MLAI Lecture 11 Neil D. Lawrence Department of Computer Science Sheffield University 21st October 2012 Outline Univariate Bayesian Linear Regression Multivariate

More information

Graphical Models for Collaborative Filtering

Graphical Models for Collaborative Filtering Graphical Models for Collaborative Filtering Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Sequence modeling HMM, Kalman Filter, etc.: Similarity: the same graphical model topology,

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Infinite Feature Models: The Indian Buffet Process Eric Xing Lecture 21, April 2, 214 Acknowledgement: slides first drafted by Sinead Williamson

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm 1/29 EM & Latent Variable Models Gaussian Mixture Models EM Theory The Expectation-Maximization Algorithm Mihaela van der Schaar Department of Engineering Science University of Oxford MLE for Latent Variable

More information

Outline. Clustering. Capturing Unobserved Heterogeneity in the Austrian Labor Market Using Finite Mixtures of Markov Chain Models

Outline. Clustering. Capturing Unobserved Heterogeneity in the Austrian Labor Market Using Finite Mixtures of Markov Chain Models Capturing Unobserved Heterogeneity in the Austrian Labor Market Using Finite Mixtures of Markov Chain Models Collaboration with Rudolf Winter-Ebmer, Department of Economics, Johannes Kepler University

More information

Introduction to Bayesian inference

Introduction to Bayesian inference Introduction to Bayesian inference Thomas Alexander Brouwer University of Cambridge tab43@cam.ac.uk 17 November 2015 Probabilistic models Describe how data was generated using probability distributions

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS Parametric Distributions Basic building blocks: Need to determine given Representation: or? Recall Curve Fitting Binary Variables

More information

Stochastic Processes, Kernel Regression, Infinite Mixture Models

Stochastic Processes, Kernel Regression, Infinite Mixture Models Stochastic Processes, Kernel Regression, Infinite Mixture Models Gabriel Huang (TA for Simon Lacoste-Julien) IFT 6269 : Probabilistic Graphical Models - Fall 2018 Stochastic Process = Random Function 2

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

Variational Mixture of Gaussians. Sargur Srihari

Variational Mixture of Gaussians. Sargur Srihari Variational Mixture of Gaussians Sargur srihari@cedar.buffalo.edu 1 Objective Apply variational inference machinery to Gaussian Mixture Models Demonstrates how Bayesian treatment elegantly resolves difficulties

More information

Bayesian nonparametric estimation of finite population quantities in absence of design information on nonsampled units

Bayesian nonparametric estimation of finite population quantities in absence of design information on nonsampled units Bayesian nonparametric estimation of finite population quantities in absence of design information on nonsampled units Sahar Z Zangeneh Robert W. Keener Roderick J.A. Little Abstract In Probability proportional

More information

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework HT5: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Maximum Likelihood Principle A generative model for

More information

Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (LDA) Latent Dirichlet Allocation (LDA) D. Blei, A. Ng, and M. Jordan. Journal of Machine Learning Research, 3:993-1022, January 2003. Following slides borrowed ant then heavily modified from: Jonathan Huang

More information

Lower Bounds for the Gibbs Sampler over Mixtures of Gaussians

Lower Bounds for the Gibbs Sampler over Mixtures of Gaussians Lower Bounds for the Gibbs Sampler over Mixtures of Gaussians Christopher Tosh CTOSH@CSUCSDEDU Sanjoy Dasgupta DASGUPTA@CSUCSDEDU Department of Computer Science and Engineering, UCSD, 95 Gilman Drive,

More information

Another Walkthrough of Variational Bayes. Bevan Jones Machine Learning Reading Group Macquarie University

Another Walkthrough of Variational Bayes. Bevan Jones Machine Learning Reading Group Macquarie University Another Walkthrough of Variational Bayes Bevan Jones Machine Learning Reading Group Macquarie University 2 Variational Bayes? Bayes Bayes Theorem But the integral is intractable! Sampling Gibbs, Metropolis

More information

Text Mining for Economics and Finance Latent Dirichlet Allocation

Text Mining for Economics and Finance Latent Dirichlet Allocation Text Mining for Economics and Finance Latent Dirichlet Allocation Stephen Hansen Text Mining Lecture 5 1 / 45 Introduction Recall we are interested in mixed-membership modeling, but that the plsi model

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

The Mixture Approach for Simulating New Families of Bivariate Distributions with Specified Correlations

The Mixture Approach for Simulating New Families of Bivariate Distributions with Specified Correlations The Mixture Approach for Simulating New Families of Bivariate Distributions with Specified Correlations John R. Michael, Significance, Inc. and William R. Schucany, Southern Methodist University The mixture

More information

Bayesian Approach 2. CSC412 Probabilistic Learning & Reasoning

Bayesian Approach 2. CSC412 Probabilistic Learning & Reasoning CSC412 Probabilistic Learning & Reasoning Lecture 12: Bayesian Parameter Estimation February 27, 2006 Sam Roweis Bayesian Approach 2 The Bayesian programme (after Rev. Thomas Bayes) treats all unnown quantities

More information

Conjugate Analysis for the Linear Model

Conjugate Analysis for the Linear Model Conjugate Analysis for the Linear Model If we have good prior knowledge that can help us specify priors for β and σ 2, we can use conjugate priors. Following the procedure in Christensen, Johnson, Branscum,

More information

ST 740: Linear Models and Multivariate Normal Inference

ST 740: Linear Models and Multivariate Normal Inference ST 740: Linear Models and Multivariate Normal Inference Alyson Wilson Department of Statistics North Carolina State University November 4, 2013 A. Wilson (NCSU STAT) Linear Models November 4, 2013 1 /

More information

Content-based Recommendation

Content-based Recommendation Content-based Recommendation Suthee Chaidaroon June 13, 2016 Contents 1 Introduction 1 1.1 Matrix Factorization......................... 2 2 slda 2 2.1 Model................................. 3 3 flda 3

More information

Machine Learning Techniques for Computer Vision

Machine Learning Techniques for Computer Vision Machine Learning Techniques for Computer Vision Part 2: Unsupervised Learning Microsoft Research Cambridge x 3 1 0.5 0.2 0 0.5 0.3 0 0.5 1 ECCV 2004, Prague x 2 x 1 Overview of Part 2 Mixture models EM

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

Bayesian Models in Machine Learning

Bayesian Models in Machine Learning Bayesian Models in Machine Learning Lukáš Burget Escuela de Ciencias Informáticas 2017 Buenos Aires, July 24-29 2017 Frequentist vs. Bayesian Frequentist point of view: Probability is the frequency of

More information

Multiparameter models (cont.)

Multiparameter models (cont.) Multiparameter models (cont.) Dr. Jarad Niemi STAT 544 - Iowa State University February 1, 2018 Jarad Niemi (STAT544@ISU) Multiparameter models (cont.) February 1, 2018 1 / 20 Outline Multinomial Multivariate

More information

ECE521 Tutorial 11. Topic Review. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides. ECE521 Tutorial 11 / 4

ECE521 Tutorial 11. Topic Review. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides. ECE521 Tutorial 11 / 4 ECE52 Tutorial Topic Review ECE52 Winter 206 Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides ECE52 Tutorial ECE52 Winter 206 Credits to Alireza / 4 Outline K-means, PCA 2 Bayesian

More information

The Multivariate Gaussian Distribution [DRAFT]

The Multivariate Gaussian Distribution [DRAFT] The Multivariate Gaussian Distribution DRAFT David S. Rosenberg Abstract This is a collection of a few key and standard results about multivariate Gaussian distributions. I have not included many proofs,

More information

Timevarying VARs. Wouter J. Den Haan London School of Economics. c Wouter J. Den Haan

Timevarying VARs. Wouter J. Den Haan London School of Economics. c Wouter J. Den Haan Timevarying VARs Wouter J. Den Haan London School of Economics c Wouter J. Den Haan Time-Varying VARs Gibbs-Sampler general idea probit regression application (Inverted Wishart distribution Drawing from

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Lecture 2: Priors and Conjugacy

Lecture 2: Priors and Conjugacy Lecture 2: Priors and Conjugacy Melih Kandemir melih.kandemir@iwr.uni-heidelberg.de May 6, 2014 Some nice courses Fred A. Hamprecht (Heidelberg U.) https://www.youtube.com/watch?v=j66rrnzzkow Michael I.

More information

The Wishart distribution Scaled Wishart. Wishart Priors. Patrick Breheny. March 28. Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/11

The Wishart distribution Scaled Wishart. Wishart Priors. Patrick Breheny. March 28. Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/11 Wishart Priors Patrick Breheny March 28 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/11 Introduction When more than two coefficients vary, it becomes difficult to directly model each element

More information

Efficient Bayesian Multivariate Surface Regression

Efficient Bayesian Multivariate Surface Regression Efficient Bayesian Multivariate Surface Regression Feng Li (joint with Mattias Villani) Department of Statistics, Stockholm University October, 211 Outline of the talk 1 Flexible regression models 2 The

More information

Exponential Families

Exponential Families Exponential Families David M. Blei 1 Introduction We discuss the exponential family, a very flexible family of distributions. Most distributions that you have heard of are in the exponential family. Bernoulli,

More information

A MCMC Approach for Learning the Structure of Gaussian Acyclic Directed Mixed Graphs

A MCMC Approach for Learning the Structure of Gaussian Acyclic Directed Mixed Graphs A MCMC Approach for Learning the Structure of Gaussian Acyclic Directed Mixed Graphs Ricardo Silva Abstract Graphical models are widely used to encode conditional independence constraints and causal assumptions,

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods Prof. Daniel Cremers 11. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

Bayesian Approaches Data Mining Selected Technique

Bayesian Approaches Data Mining Selected Technique Bayesian Approaches Data Mining Selected Technique Henry Xiao xiao@cs.queensu.ca School of Computing Queen s University Henry Xiao CISC 873 Data Mining p. 1/17 Probabilistic Bases Review the fundamentals

More information

Stochastic Variational Inference

Stochastic Variational Inference Stochastic Variational Inference David M. Blei Princeton University (DRAFT: DO NOT CITE) December 8, 2011 We derive a stochastic optimization algorithm for mean field variational inference, which we call

More information

A Fully Nonparametric Modeling Approach to. BNP Binary Regression

A Fully Nonparametric Modeling Approach to. BNP Binary Regression A Fully Nonparametric Modeling Approach to Binary Regression Maria Department of Applied Mathematics and Statistics University of California, Santa Cruz SBIES, April 27-28, 2012 Outline 1 2 3 Simulation

More information

CSCI 5822 Probabilistic Model of Human and Machine Learning. Mike Mozer University of Colorado

CSCI 5822 Probabilistic Model of Human and Machine Learning. Mike Mozer University of Colorado CSCI 5822 Probabilistic Model of Human and Machine Learning Mike Mozer University of Colorado Topics Language modeling Hierarchical processes Pitman-Yor processes Based on work of Teh (2006), A hierarchical

More information

Study Notes on the Latent Dirichlet Allocation

Study Notes on the Latent Dirichlet Allocation Study Notes on the Latent Dirichlet Allocation Xugang Ye 1. Model Framework A word is an element of dictionary {1,,}. A document is represented by a sequence of words: =(,, ), {1,,}. A corpus is a collection

More information

Katsuhiro Sugita Faculty of Law and Letters, University of the Ryukyus. Abstract

Katsuhiro Sugita Faculty of Law and Letters, University of the Ryukyus. Abstract Bayesian analysis of a vector autoregressive model with multiple structural breaks Katsuhiro Sugita Faculty of Law and Letters, University of the Ryukyus Abstract This paper develops a Bayesian approach

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Bayesian (conditionally) conjugate inference for discrete data models. Jon Forster (University of Southampton)

Bayesian (conditionally) conjugate inference for discrete data models. Jon Forster (University of Southampton) Bayesian (conditionally) conjugate inference for discrete data models Jon Forster (University of Southampton) with Mark Grigsby (Procter and Gamble?) Emily Webb (Institute of Cancer Research) Table 1:

More information

Spatial Normalized Gamma Process

Spatial Normalized Gamma Process Spatial Normalized Gamma Process Vinayak Rao Yee Whye Teh Presented at NIPS 2009 Discussion and Slides by Eric Wang June 23, 2010 Outline Introduction Motivation The Gamma Process Spatial Normalized Gamma

More information

Inference and estimation in probabilistic time series models

Inference and estimation in probabilistic time series models 1 Inference and estimation in probabilistic time series models David Barber, A Taylan Cemgil and Silvia Chiappa 11 Time series The term time series refers to data that can be represented as a sequence

More information

Collapsed Variational Bayesian Inference for Hidden Markov Models

Collapsed Variational Bayesian Inference for Hidden Markov Models Collapsed Variational Bayesian Inference for Hidden Markov Models Pengyu Wang, Phil Blunsom Department of Computer Science, University of Oxford International Conference on Artificial Intelligence and

More information

Contents. Part I: Fundamentals of Bayesian Inference 1

Contents. Part I: Fundamentals of Bayesian Inference 1 Contents Preface xiii Part I: Fundamentals of Bayesian Inference 1 1 Probability and inference 3 1.1 The three steps of Bayesian data analysis 3 1.2 General notation for statistical inference 4 1.3 Bayesian

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 2013-14 We know that X ~ B(n,p), but we do not know p. We get a random sample

More information

Latent Dirichlet Bayesian Co-Clustering

Latent Dirichlet Bayesian Co-Clustering Latent Dirichlet Bayesian Co-Clustering Pu Wang 1, Carlotta Domeniconi 1, and athryn Blackmond Laskey 1 Department of Computer Science Department of Systems Engineering and Operations Research George Mason

More information

November 2002 STA Random Effects Selection in Linear Mixed Models

November 2002 STA Random Effects Selection in Linear Mixed Models November 2002 STA216 1 Random Effects Selection in Linear Mixed Models November 2002 STA216 2 Introduction It is common practice in many applications to collect multiple measurements on a subject. Linear

More information

A Simple Proof of the Stick-Breaking Construction of the Dirichlet Process

A Simple Proof of the Stick-Breaking Construction of the Dirichlet Process A Simple Proof of the Stick-Breaking Construction of the Dirichlet Process John Paisley Department of Computer Science Princeton University, Princeton, NJ jpaisley@princeton.edu Abstract We give a simple

More information

Bayesian nonparametrics

Bayesian nonparametrics Bayesian nonparametrics 1 Some preliminaries 1.1 de Finetti s theorem We will start our discussion with this foundational theorem. We will assume throughout all variables are defined on the probability

More information

Expectation Maximization

Expectation Maximization Expectation Maximization Aaron C. Courville Université de Montréal Note: Material for the slides is taken directly from a presentation prepared by Christopher M. Bishop Learning in DAGs Two things could

More information

Topic Models. Brandon Malone. February 20, Latent Dirichlet Allocation Success Stories Wrap-up

Topic Models. Brandon Malone. February 20, Latent Dirichlet Allocation Success Stories Wrap-up Much of this material is adapted from Blei 2003. Many of the images were taken from the Internet February 20, 2014 Suppose we have a large number of books. Each is about several unknown topics. How can

More information

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California Texts in Statistical Science Bayesian Ideas and Data Analysis An Introduction for Scientists and Statisticians Ronald Christensen University of New Mexico Albuquerque, New Mexico Wesley Johnson University

More information

Bayesian Learning and Inference in Recurrent Switching Linear Dynamical Systems

Bayesian Learning and Inference in Recurrent Switching Linear Dynamical Systems Bayesian Learning and Inference in Recurrent Switching Linear Dynamical Systems Scott W. Linderman Matthew J. Johnson Andrew C. Miller Columbia University Harvard and Google Brain Harvard University Ryan

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

PMR Learning as Inference

PMR Learning as Inference Outline PMR Learning as Inference Probabilistic Modelling and Reasoning Amos Storkey Modelling 2 The Exponential Family 3 Bayesian Sets School of Informatics, University of Edinburgh Amos Storkey PMR Learning

More information

More Spectral Clustering and an Introduction to Conjugacy

More Spectral Clustering and an Introduction to Conjugacy CS8B/Stat4B: Advanced Topics in Learning & Decision Making More Spectral Clustering and an Introduction to Conjugacy Lecturer: Michael I. Jordan Scribe: Marco Barreno Monday, April 5, 004. Back to spectral

More information

Based on slides by Richard Zemel

Based on slides by Richard Zemel CSC 412/2506 Winter 2018 Probabilistic Learning and Reasoning Lecture 3: Directed Graphical Models and Latent Variables Based on slides by Richard Zemel Learning outcomes What aspects of a model can we

More information

Part 6: Multivariate Normal and Linear Models

Part 6: Multivariate Normal and Linear Models Part 6: Multivariate Normal and Linear Models 1 Multiple measurements Up until now all of our statistical models have been univariate models models for a single measurement on each member of a sample of

More information

Bayesian Nonparametric Regression for Diabetes Deaths

Bayesian Nonparametric Regression for Diabetes Deaths Bayesian Nonparametric Regression for Diabetes Deaths Brian M. Hartman PhD Student, 2010 Texas A&M University College Station, TX, USA David B. Dahl Assistant Professor Texas A&M University College Station,

More information

Mixtures of Gaussians. Sargur Srihari

Mixtures of Gaussians. Sargur Srihari Mixtures of Gaussians Sargur srihari@cedar.buffalo.edu 1 9. Mixture Models and EM 0. Mixture Models Overview 1. K-Means Clustering 2. Mixtures of Gaussians 3. An Alternative View of EM 4. The EM Algorithm

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

1 Data Arrays and Decompositions

1 Data Arrays and Decompositions 1 Data Arrays and Decompositions 1.1 Variance Matrices and Eigenstructure Consider a p p positive definite and symmetric matrix V - a model parameter or a sample variance matrix. The eigenstructure is

More information

Statistical Learning

Statistical Learning Statistical Learning Lecture 5: Bayesian Networks and Graphical Models Mário A. T. Figueiredo Instituto Superior Técnico & Instituto de Telecomunicações University of Lisbon, Portugal May 2018 Mário A.

More information