The Z, the W, and the Weak Neutral Current

Size: px
Start display at page:

Download "The Z, the W, and the Weak Neutral Current"

Transcription

1 The Z, the W, and the Weak Neutral Current g L Z = J µ Z 2 cos θ Z µ W J µ Z = r t 3 rl ψ 0 r γµ (1 γ 5 )ψ 0 r 2 sin2 θ W J µ Q t 3 ul = t3 dl = t3 νl = t3 el = 1 2, tan θ W = g /g L NC eff = G F 2 J µ Z J Zµ Primary prediction and test of electroweak unification WNC discovered 1973 (Gargamelle at CERN, HPW at FNAL) W, Z discovered directly 1983 (UA1, UA2) 90 s: Z pole (LEP, SLD), 0.1% P529 Spring,

2 νe νe L νe = G F 2 ν µ γ µ (1 γ 5 )ν µ ē γ µ (g νe V gνe A γ5 )e SM : g νe V sin2 θ W, g νe A 1 2 ν µ e e ν e ν e e Z W Z ν µ e ν e e ν e e P529 Spring,

3 Any gauge model (with lefthanded ν) some g νe V,A Need SM rad. corr. ν e : g νe V,A WCC gνe V,A + 1 Alternative models w. disjoint parameters and perturbations on SM Amplitude-squared (ν(p 1 )e (p 2 ) e (p 3 )ν(p 4 )) 1 2 [ M 2 = 16G 2 F (gv + g A ) 2 p 1 p 2 p 3 p 4 s 1 s 2 s 3 s 4 + (g V g A ) 2 p 1 p 3 p 2 p 4 (g 2 V g2 A )m2 e p ] 1 p 4 P529 Spring,

4 Cross section dσ νµ,ν µ dy = G2 F m ee ν 2π (g νe2 V [ (g νe V g νe2 A )y m e E ν ± gνe A )2 + (g νe V ] gνe A )2 (1 y) 2 where 0 y T e /E ν (1 + m e /2E ν ) 1 For E ν m e σ = G2 F m e E ν 2π [ (g νe V ± gνe A ) (gνe V ] gνe A )2 Flux uncertainties cancel in R σ νµ e/σ νµ e Most precise: CHARM II (CERN) P529 Spring,

5 g V Νe Ν Μ Ν Μ e Ν e e Ν e e A P529 Spring,

6 Deep Inelastic ν Scattering l(k) q l (k ) e ± p e ± X, µ ± p µ ± X, ( ) ν µ p µ X, ( ) ν µ p ( ) ν µ X at Q 2 Mp 2 (or p n, N) WCC: test of QCD, quark model p X Q 2 = q 2 > 0 }{{} lab ν = p q M p k k 2kk (1 cos θ) x = Q 2 2M p ν y = ν E k k k k P529 Spring,

7 ν µ µ ν µ µ ν µ ν µ W + d u W + ū d Z q q p X p X p X Charged current, ( ) ν µ p µ X (Q 2 M 2 W ) d σ ν, ν dk dω = G2 F k 32π 2 k Lµν ν, ν W ν, ν µν L µν ν = Tr [ γ µ (1 γ 5 ) k γ ν (1 γ 5 ) k ] Typeset by FoilTEX 1 = 8 k µ k ν + k µ k ν µν q2 + g 2 + iɛµρνσ k ρ k σ }{{} V A interference P529 Spring,

8 Hadronic tensor (different for e, ν, ν) [ W ν, ν µν = g µν + q ] µq ν W ν, ν ( q 2 1 Q 2, ν ) + 1 [ p M 2 µ p q ] [ q q 2 µ p ν p q q 2 F ν, ν 1 + iɛ µρνσ p ρ q σ 2M ( x, Q 2 ) = MW ν, ν 1 ν, ν 2W3 ( Q 2, ν ) ( Q 2, ν ), F ν, ν 2,3 q ν ] W ν, ν 2 ( Q 2, ν ) ( x, Q 2 ) = νw ν, ν 2,3 ( Q 2, ν ) Approximate scaling (up to QCD corrections): F ν, ν i ( x, Q 2 ) F ν, ν i (x) Cross section predicted to scale as E ν : ν, ν d2 σ cc dxdy = G2 F ME ν π [ xy 2 F ν, ν 1 (x) + (1 y)f ν, ν 2 (x) ± xy(1 y ] ν, ν )F3 (x) 2 P529 Spring,

9 σ ν, ν cc = 1 0 dx 1 0 ν, ν d2 σ cc dy dxdy s T /E n [10 Ð38 cm 2 /GeV] [1] NuTeV [5] CDHSW [9] GGM-PS n _ [13] CRS 0.2 [2] CCFR (96) [6] GGM-SPS [10] IHEP-JINR [14] ANL [3] CCFR (90) [7] BEBC WBB [11] IHEP-ITEP [15] BNL-7ft [4] CCFRR [8] GGM-PS n [12] SKAT [16] CHARM E n [GeV] P529 Spring,

10 Simple parton model (without mixing, heavy quarks) F ν 2 (x) = 2xF ν 1 (x) = 2x [d(x) + ū(x)], F ν 3 (x) = 2x [d(x) ū(x)] F ν 2 (x) = 2xF ν 1 (x) = 2x [ u(x) + d(x) ], F ν 3 (x) = 2x [ u(x) d(x) ] Isospin: W ν in W ν ip, W ν ip W ν in, W ν in = 1 2 [ ] W ν ip + W ν in W ν in 5/18 th rule: F 2N F ν 2N = 1 2 (F 2p + F 2n ) ( = F ν 2p + F2n) ν 1 2 ( ) 1 2 x ( u p + d p + ū p + d p) x ( d p + ū p + u p + d p) = 5 18 P529 Spring,

11 Include mixing, m c suppression factors ξ c : d 2 σ cc ν dxdy =2G2 F ME ν {xd [ ] [ ] V ud 2 + V cd 2 ξ c +xs Vus 2 + V π }{{} cs 2 ξ }{{ c } λ d λ s + x (ū + c) (1 y) 2} 2G2 F ME ν π [x (d + s) + x (ū + c) (1 y) 2] d 2 σ cc ν dxdy =2G2 F ME ν π 2G2 F ME ν π [x (u + c) (1 y) 2 + x dλ d + x sλ s ] [ x (u + c) (1 y) 2 + x d ] + x s P529 Spring,

12 Dimuons (extract V cd 2, S V cs 2, ξ c, where S = xs(x)dx): ν( ν)n µ X + c( c) from d, s c (s, d)µ + ν µ, c ( s, d)µ ν µ P529 Spring,

13 νq νq (Mainly Deep Inelastic) WNC: test of electroweak standard model L νhadron = G F 2 ν γ µ (1 γ 5 )ν i [ ɛl (i) q i γ µ (1 γ 5 )q i + ɛ R (i) q i γ µ (1 + γ 5 )q i ] Standard model ɛ L (u) sin2 θ W ɛ R (u) 2 3 sin2 θ W ɛ L (d) sin2 θ W ɛ R (d) 1 3 sin2 θ W P529 Spring,

14 Deep inelastic ( ) ν µ N ( ) ν µ X l(k) l (k ) d 2 σ NC νn dx dy = 2G2 F M pe ν { π [ ɛl (u) 2 + ɛ R (u) 2 (1 y) 2] (xu + xc ξ c ) p q X + [ ɛ L (d) 2 + ɛ R (d) 2 (1 y) 2] (xd + xs) + [ ɛ R (u) 2 + ɛ L (u) 2 (1 y) 2] (xū + x c ξ c ) + [ ɛ R (d) 2 + ɛ L (d) 2 (1 y) 2] (x d + x s)} (ɛ L (i) ɛ R (i) for ν) P529 Spring, Typeset by FoilTEX 1

15 WNN/WCC ratios measured to 1% or better by CDHS and CHARM (CERN) and CCFR (FNAL) (many strong interaction, ν flux, and systematic effects cancel) For isoscalar targer (N p = N n ); ignoring s, c and third family sea; ignoring c threshold correction (ξ c = 1) R ν σnc νn σνn CC R ν σnc νn σνn CC g 2 L + g2 R r g 2 L + g2 R r g 2 L ɛ L(u) 2 + ɛ L (d) sin2 θ W sin4 θ W g 2 R ɛ R(u) 2 + ɛ R (d) sin4 θ W r σνn CC/σCC νn measured (r 1/3 for q/q 0) P529 Spring,

16 ε L (d) (u) ε R (d) (u) ε L (u) ε R (u) P529 Spring,

17 Most precise sin 2 θ W before LEP/SLD: s 2 W ± (exp) ± (m c ) Must correct for N n N p ; s(x), c(x), ξ c, QCD, third family mixing, W/Z propagators, radiative corrections, experimental cuts Can separate ɛ i (u)/ɛ i (d) by p and n targets, e.g., bubble chamber (less precise) Error dominated by charm threshold (m c in ξ c ) Can reduce sensitivity using Paschos-Wolfenstein ratio R = σnc νn σnc νn σνn CC σcc νn g 2 L g2 R 1 2 sin2 θ W P529 Spring,

18 Weak-Electromagnetic Interference Low energy: Z exchange much smaller than Coulomb, but observe V A (parity-violating) and A A (parity conserving) effects High energy: γ and Z may be comparable (propagator effects) Observables Polarization (charge) asymmetries in ed ex (SLAC), µc µx (CERN); e e Møller (SLAC); low energy elastic or quasielastic (Mainz, Bates, CEBAF) Atomic parity violation in Cs (Boulder, Paris) and other atoms Cross sections and FB asymmetries in e + e l l, q q, b b (SPEAR, PEP, DORIS, TRISTAN, LEP II) FB asymmetries in pp e + e (CDF, D0) P529 Spring,

19 Parity-violating e-hadron L eq = G F 2 i [ C1i ē γ µ γ 5 e q i γ µ q i + C 2i ē γ µ e q i γ µ γ 5 q i ] Standard model C 1u sin2 θ W C 2u sin2 θ W C 1d sin2 θ W C 2d sin2 θ W P529 Spring,

20 Atomic parity violation Axial e, vector nucleon currents lead to potential V ( r e ) G F 4 2 Q W δ 3 ( r e ) σ e v e c + HC Weak charge Q W = 2 [C 1u (2Z + N) + C 1d (Z + 2N)] Z(1 4 sin 2 θ W ) N Measure in 6S 7S transition (S P wave mixing) Cs is very simple atom; radiative corrections now under control P529 Spring,

21 0.18 C1 u C1 d Mainz e Be Bates ec SLAC ed Q W Cs Q W Th PVES u 1 d P529 Spring,

22 A FB SPEAR MARK I PEP HRS MAC MARK II PETRA CELLO JADE MARK J PLUTO TASSO TRISTAN LEP AMY TOPAZ VENUS e + e! " µ + µ! #s [GeV] (J. Mnich, Phys. Rep. 271, 181) 10. Electroweak model and constraints on new physics 15!"$)!"$'% L3 e + e l + l, hadrons below/above Z-pole SLAC E158 Polarized Møller Asymmetry e e asymmetry, P 90% sin 2 θ eff (Q) = (13) W (Q 2 = GeV 2 ) *+, $ θ ' (µ)!"$'(!"$''!"$'$!"$'!"$&%!"$&( -. / /43 ν*+,- Future: Q W EAK (JLAB): polarized ep, s !"$&'!"$&$ CD556E -F4<G 5617# :4;<=>?,!"$&!"$$% 4@AB8 859!"!!!#!"!!#!"!#!"# # #! #!! #!!! #!!!! µ!"#$%& (Running ŝ 2 Z in MS scheme) P529 Spring,

23 as the ɛ R, are strongly correlated and non-gaussian, so that for implementations we recommend the parametrization using g 2 i and θ i = tan 1 [ɛ i (u)/ɛ i (d)], i = L or R. The analysis of more recent low energy experiments in polarized electron scattering performed in Ref. 123 is included by means of the two orthogonal constraints, cos γ C 1d sin γ C 1u =0.342 ± and sin γ C 1d + cos γ C 1u = ± , where tan γ In the SM predictions, the uncertainty is from M Z, M H, m t, m b, m c, α(m Z ), and α s. Quantity Value SM Correlation ɛ L (u) ± (1) ɛ L (d) ± (1) nonɛ R (u) (1) Gaussian ɛ R (d) g 2 L ± (2) g 2 R ± θ L 2.48 ± (1) 0.24 θ R gv νe ± (3) 0.05 ga νe ± (1) C 1u + C 1d ± (1) C 1u C 1d ± (3) C 2u + C 2d 0.21 ± C 2u C 2d ± (5) Q W (e) = 2 C 2e ± (5) defined in Eqs. (1.11) (1.14) are given in Table 1.9 along with the predictions of the P529 SM. The agreement is very good. (The ν-hadron results without the NuTeV data can be Spring, 2013 found in the 1998 edition of this Review, and the fits using the original NuTeV data in the edition.) The off Z pole e + e results are difficult to present in a model-independent

24 Input Parameters for Weak Neutral Current and Z-Pole Basic inputs SU(2) and U(1) gauge couplings g and g ν = 2 0 φ 0 0 (vacuum of theory) Higgs mass M H (value unknown) (enters radiative corrections) Heavy fermion masses, m t, m b, (phase space; radiative corrections) strong coupling α s (enters radiative corrections) Trade g, g, ν for precisely known quantities G F = 1 2ν 2 from τ µ (G F (5) 10 5 GeV 2 ) α = 1/ (51) (but must extrapolate to M Z ) M Z (or sin 2 θ W ) P529 Spring,

25 Definitions of sin 2 θ W Several equivalent expressions for sin 2 θ W at tree-level sin 2 θ W = 1 M 2 W sin 2 θ W cos 2 θ W = M 2 Z πα 2GF M 2 Z on shell Z mass sin 2 θ W = g 2 g 2 + g 2 MS g Ze+ e V = sin2 θ W effective Each can be basis of definition of renormalized sin 2 θ W related by calculable, m t M H dependent, corrections of O(α)) (others P529 Spring,

26 Radiative Corrections γ QED corrections to W or Z exchange γ No vacuum polarization or box diagrams Finite and gauge invariant Depend on kinematic variables and cuts calculate for each experiment γ P529 Typeset by FoilTEX Spring,

27 Electroweak at multiloop level (include W, Z, γ) self-energy vertex box (quadratic) m t and (logarithmic) M H dependence from W W, ZZ, Zγ self-energies (SU(2)-breaking); m t from Zb b vertex Z(γ) t(b) Z W t W b W b b t b t(b) b t t W W H H Typeset by FoilTEX 1 Z Z P529 Spring,

28 Z(γ) Z W G α s fromt(b) QCD vertices and mixed QCD-EW H b H H Mixed QCD-EW (e.g., self-energies and vertices, fermion masses) Awkward in on-shell G mixed Typeset by FoilTEX Typeset by FoilTEX 1 P529 Spring,

29 The W and Z Masses and Decays On-shell scheme, s 2 W 1 M 2 W /M 2 Z M W = A 0 s W (1 r) 1/2 M Z = M W c W c 2 W = 1 s2 W, A 0 = (πα/ 2G F ) 1/2 = (8) GeV r rad. corrections relating α, α(m Z ), G F, M W, and M Z r 1 α ρ t ˆα(M Z ) tan }{{} 2 + small }{{ θ W} (11) artificially large ρ t 3 G F m 2 ( t 8 = m t 2π GeV ) 2 P529 Spring,

30 Modified minimal subtraction (M S) scheme M W = A 0 ŝ Z (1 ˆr W ) 1/2 M Z = M W ˆρ 1/2 ĉ Z ˆr W 1 α + small ˆα(M Z ) }{{} (11) ˆρ G F m 2 t + small 8 2π 2 }{{} ρ t P529 Spring,

31 The W decay width Γ(W + e + ν e ) = G F M 3 W 6 2π ± 0.07 MeV Γ(W + u i d j ) = CG F MW 3 6 2π V ij 2 ( ± 0.22) V ij 2 MeV 1, leptons C = 3 }{{} color ( 1 + α s(m W ) π ) α2 s α3 π 2 s 80.0 α4 π 3 s, quarks π 4 Also, QED, mass; g 2 M W /4 2 G F M 3 W absorbs running α Γ W ± GeV (SM) Experiment (LEP,CDF, D0): Γ W = ± GeV P529 Spring,

Tests of the Electroweak Theory

Tests of the Electroweak Theory Tests of the Electroweak Theory History/introduction Weak charged current QED Weak neutral current Precision tests Rare processes CP violation and B decays Neutrino mass FNAL (December 6, 2005) Paul Langacker

More information

Electroweak Physics. Tests of the Standard Model and Beyond. Problems With the Standard Model

Electroweak Physics. Tests of the Standard Model and Beyond. Problems With the Standard Model Electroweak Physics Tests of the Standard Model and Beyond Problems With the Standard Model (Structure Of The Standard Model, hep-ph/0304186. Electroweak Review in W. M. Yao et al. Particle Data Group,

More information

Interactions... + similar terms for µ and τ Feynman rule: gauge-boson propagator: ig 2 2 γ λ(1 γ 5 ) = i(g µν k µ k ν /M 2 W ) k 2 M 2 W

Interactions... + similar terms for µ and τ Feynman rule: gauge-boson propagator: ig 2 2 γ λ(1 γ 5 ) = i(g µν k µ k ν /M 2 W ) k 2 M 2 W Interactions... L W-l = g [ νγµ (1 γ 5 )ew µ + +ēγ µ (1 γ 5 )νwµ ] + similar terms for µ and τ Feynman rule: e λ ig γ λ(1 γ 5 ) ν gauge-boson propagator: W = i(g µν k µ k ν /M W ) k M W. Chris Quigg Electroweak

More information

Electroweak Physics. Precision Experiments: Historical Perspective. LEP/SLC Physics. Probing the Standard Model. Beyond the Standard Model

Electroweak Physics. Precision Experiments: Historical Perspective. LEP/SLC Physics. Probing the Standard Model. Beyond the Standard Model Electroweak Physics Precision Experiments: Historical Perspective LEP/SLC Physics Probing the Standard Model Beyond the Standard Model The Z, the W, and the Weak Neutral Current Primary prediction and

More information

W + W - The Z pole. e + e hadrons SLC. Cross-section (pb) Centre-of-mass energy (GeV) P529 Spring,

W + W - The Z pole. e + e hadrons SLC. Cross-section (pb) Centre-of-mass energy (GeV) P529 Spring, The Z pole Cross-section (pb) 10 5 10 4 Z e + e hadrons 10 3 10 2 CESR DORIS PEP W + W - 10 KEKB PEP-II PETRA TRISTAN SLC LEP I LEP II 0 20 40 60 80 100 120 140 160 180 200 220 Centre-of-mass energy (GeV)

More information

Electroweak Theory, SSB, and the Higgs: Lecture 2

Electroweak Theory, SSB, and the Higgs: Lecture 2 1 Electroweak Theory, SSB, and the iggs: Lecture Spontaneous symmetry breaking (iggs mechanism) - Gauge invariance implies massless gauge bosons and fermions - Weak interactions short ranged spontaneous

More information

Electroweak Theory: 3

Electroweak Theory: 3 Electroweak Theory: 3 Introduction QED The Fermi theory The standard model Precision tests CP violation; K and B systems Higgs physics Prospectus STIAS January, 2011 Paul Langacker IAS 55 References Slides

More information

Electroweak Theory: 2

Electroweak Theory: 2 Electroweak Theory: 2 Introduction QED The Fermi theory The standard model Precision tests CP violation; K and B systems Higgs physics Prospectus STIAS (January, 2011) Paul Langacker (IAS) 31 References

More information

Electroweak Theory: 5

Electroweak Theory: 5 Electroweak Theory: 5 Introduction QED The Fermi theory The standard model Precision tests CP violation; K and B systems Higgs physics Prospectus STIAS (January, 2011) Paul Langacker (IAS) 162 References

More information

e e Collisions at ELIC

e e Collisions at ELIC Physics With Collisions at ELIC Collisions at ELIC E. Chudakov (JLab), June 26, 26 Opportunity to build a collider using the ELIC ring Physics motivation for a high luminosity, polarized collider Discussion

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 ecture: Standard Model of Particle Physics Heidelberg SS 013 (Weak) Neutral Currents 1 Contents Theoretical Motivation for Neutral Currents NC Processes Experimental Discovery Measurement of the Weinberg

More information

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.:

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.: The Development of Particle Physics Dr. Vitaly Kudryavtsev E45, Tel.: 0114 4531 v.kudryavtsev@sheffield.ac.uk The structure of the nucleon Electron - nucleon elastic scattering Rutherford, Mott cross-sections

More information

Precision Tests of the Standard Model. Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004

Precision Tests of the Standard Model. Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004 Precision Tests of the Standard Model Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004 Motivation Experiments (not covered by previous speakers ) Atomic Parity Violation Neutrino

More information

The Cabibbo-Kobayashi-Maskawa (CKM) matrix

The Cabibbo-Kobayashi-Maskawa (CKM) matrix The Cabibbo-Kobayashi-Maskawa (CKM) matrix Charge-raising current J µ W = ( ν e ν µ ν τ )γ µ (1 γ 5 ) V = A u L Ad L e µ τ + (ū c t)γ µ (1 γ 5 )V Mismatch between weak and quark masses, and between A u,d

More information

Particle Physics WS 2012/13 ( )

Particle Physics WS 2012/13 ( ) Particle Physics WS 01/13 (3.11.01) Stephanie Hansmann-Menzemer Physikalisches Institut, INF 6, 3.101 Content of Today Structure of the proton: Inelastic proton scattering can be described by elastic scattering

More information

Measurement Using Polarized e + /e Beams

Measurement Using Polarized e + /e Beams C 3q Measurement Using Polarized e + /e Beams Xiaochao Zheng Univ. of Virginia March 7, 009 Introduction Standard Model of Electroweak Interaction Neutral Weak Coupling Constants Test of the Standard Model

More information

Tests of the Electroweak Theory

Tests of the Electroweak Theory Tests of the Electroweak Theory History/introduction Weak charged current QED Weak neutral current Precision tests Rare processes CP violation and B decays Neutrino mass FNAL (December 13, 2005) Paul Langacker

More information

Electroweak Physics. Precision Experiments: Historical Perspective LEP/SLD Physics Probing the Standard Model Beyond the Standard Model

Electroweak Physics. Precision Experiments: Historical Perspective LEP/SLD Physics Probing the Standard Model Beyond the Standard Model Electroweak Physics Precision Experiments: Historical Perspective LEP/SLD Physics Probing the Standard Model Beyond the Standard Model P. Langacker Madrid 27/09/02 The Z, the W, and the Weak Neutral Current

More information

MSSM Radiative Corrections. to Neutrino-nucleon Deep-inelastic Scattering. Oliver Brein

MSSM Radiative Corrections. to Neutrino-nucleon Deep-inelastic Scattering. Oliver Brein MSSM Radiative Corrections to Neutrino-nucleon Deep-inelastic Scattering Oliver Brein Institute of Particle Physics Phenomenology, University of Durham in collaboration with olfgang Hollik and Benjamin

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 013 Weak Interactions II 1 Important Experiments Wu-Experiment (1957): radioactive decay of Co60 Goldhaber-Experiment (1958): radioactive decay

More information

QCD and Rescattering in Nuclear Targets Lecture 2

QCD and Rescattering in Nuclear Targets Lecture 2 QCD and Rescattering in Nuclear Targets Lecture Jianwei Qiu Iowa State University The 1 st Annual Hampton University Graduate Studies Program (HUGS 006) June 5-3, 006 Jefferson Lab, Newport News, Virginia

More information

Introduction to the Standard Model

Introduction to the Standard Model Introduction to the Standard Model Origins of the Electroweak Theory Gauge Theories The Standard Model Lagrangian Spontaneous Symmetry Breaking The Gauge Interactions Problems With the Standard Model (

More information

Supersymmetry, Dark Matter, and Neutrinos

Supersymmetry, Dark Matter, and Neutrinos Supersymmetry, Dark Matter, and Neutrinos The Standard Model and Supersymmetry Dark Matter Neutrino Physics and Astrophysics The Physics of Supersymmetry Gauge Theories Gauge symmetry requires existence

More information

Precision Electroweak Data: Phenomenological Analysis

Precision Electroweak Data: Phenomenological Analysis Precision Electroweak Data: Phenomenological Analysis Paul Langacker School of Natural Sciences, Institute for Advanced Study, Princeton The precision electroweak program, including weak neutral current

More information

Electroweak measurements at HERA

Electroweak measurements at HERA Electroweak measurements at HERA Alex Tapper DESY forum 1 th & 13 th September 006 Precision electroweak measurements: What can HERA contribute? Outline Introduction High Q physics at HERA Review of recent

More information

Beyond the Standard Model

Beyond the Standard Model Beyond the Standard Model The Standard Model Problems with the Standard Model New Physics Supersymmetry Extended Electroweak Symmetry Grand Unification References: 2008 TASI lectures: arxiv:0901.0241 [hep-ph]

More information

Deep Inelastic Scattering in Lepton-Hadron Collisions Probing the Parton Structure of the Nucleon with Leptons Basic Formalism (indep.

Deep Inelastic Scattering in Lepton-Hadron Collisions Probing the Parton Structure of the Nucleon with Leptons Basic Formalism (indep. Deep Inelastic Scattering in Lepton-Hadron Collisions Probing the Parton Structure of the Nucleon with Leptons Basic Formalism (indep. of strong dynamics and parton picture) Experimental Development Fixed

More information

The Electro-Weak Sector. Precision Experiments before LEP LEP Physics Probing the Standard Model Beyond the Standard Model

The Electro-Weak Sector. Precision Experiments before LEP LEP Physics Probing the Standard Model Beyond the Standard Model The Electro-Weak Sector Precision Experiments before LEP LEP Physics Probing the Standard Model Beyond the Standard Model P. Langacker CERN, LEP Fest 11 October, 2000 The Z, the W, and the Weak Neutral

More information

Strange Electromagnetic and Axial Nucleon Form Factors

Strange Electromagnetic and Axial Nucleon Form Factors Strange Electromagnetic and Axial Nucleon Form Factors A combined analysis of HAPPEx, G 0, and BNL E734 data Stephen Pate, Glen MacLachlan, David McKee, Vassili Papavassiliou New Mexico State University

More information

DIS-Parity: Physics Beyond the Standard Model with Parity NonConserving Deep Inelastic Scattering

DIS-Parity: Physics Beyond the Standard Model with Parity NonConserving Deep Inelastic Scattering DIS-Parity: Physics Beyond the Standard Model with Parity NonConserving Deep Inelastic Scattering Paul E. Reimer Argonne National Laboratory 10 January 2003 Introduction: Weinberg-Salam Model and sin 2

More information

High-energy neutrino interactions: first cross section measurements at TeV and above

High-energy neutrino interactions: first cross section measurements at TeV and above High-energy neutrino interactions: first cross section measurements at TeV and above Mauricio Bustamante TeVPA 2017 August 10, 2017 Two seemingly unrelated questions 1 Where are the most energetic particles

More information

Introduction to the Standard Model

Introduction to the Standard Model Introduction to the Standard Model Origins of the Electroweak Theory Gauge Theories The Standard Model References: 2008 TASI lectures: arxiv:0901.0241 [hep-ph] and The Standard Model and Beyond, CRC Press

More information

Precision sin 2 θ W (Q 2 ) & Electroweak Physics at The EIC (Electron-Ion Collider) Based on talks at: W&M, Rockefeller, BNL and U.

Precision sin 2 θ W (Q 2 ) & Electroweak Physics at The EIC (Electron-Ion Collider) Based on talks at: W&M, Rockefeller, BNL and U. Precision sin 2 θ W (Q 2 ) & Electroweak Physics at The EIC (Electron-Ion Collider) William J. Marciano (October 26, 2010) Based on talks at: W&M, Rockefeller, BNL and U. Washington Outline 1. General

More information

IX. Electroweak unification

IX. Electroweak unification IX. Electroweak unification The problem of divergence A theory of weak interactions only by means of W ± bosons leads to infinities e + e - γ W - W + e + W + ν e ν µ e - W - µ + µ Divergent integrals Figure

More information

Electroweak Physics and Searches for New Physics at HERA

Electroweak Physics and Searches for New Physics at HERA Electroweak Physics and Searches for New Physics at HERA Uwe Schneekloth DESY On behalf of the H1 and ZEUS Collaborations 14th Lomonosov Conference on Elementary Particle Physics 5.08.009 Outline Introduction

More information

Electroweak Measurements at NuTeV: A Departure from Prediction

Electroweak Measurements at NuTeV: A Departure from Prediction Electroweak Measurements at NuTeV: A Departure from Prediction Mike Shaevitz Fermilab and Columbia University for the NuTeV Collaboration WIN00 Conference Christchurch, New Zealand January, 00 Introduction

More information

Low Energy Tests of the Weak Interaction

Low Energy Tests of the Weak Interaction FT 2004 02 Low Energy Tests of the Weak Interaction arxiv:hep-ph/0404291v2 4 May 2005 J. Erler 1 and M.J. Ramsey-Musolf 2,3 1 Instituto de Física, Universidad Nacional Autónoma de México, México 2 Kellogg

More information

From Friday: Neutrino Summary. Three neutrinos in the Standard Model:!e,!µ,!" Only left-handed neutrinos and right-handed antineutrinos are observed.

From Friday: Neutrino Summary. Three neutrinos in the Standard Model:!e,!µ,! Only left-handed neutrinos and right-handed antineutrinos are observed. Particle Physics Dr Victoria Martin, Spring Semester 2012 ecture 17: Electroweak Theory! Weak Isospin and Hypercharge! SU(2) and U(1) symmetries! Weak Isospin and Hypercharge currents!w and Z bosons!z

More information

Electroweak Data Fits & the Higgs Boson Mass. Robert Clare UC Riverside

Electroweak Data Fits & the Higgs Boson Mass. Robert Clare UC Riverside Electroweak Data Fits & the Higgs Boson Mass Robert Clare UC Riverside Robert Clare UC Riverside LoopFest III Apr 1, 2004 2 Outline Electroweak corrections: definitions and strategies Experimental inputs

More information

Neutrino Interactions at Low and Medium Energies

Neutrino Interactions at Low and Medium Energies Neutrino Interactions at Low and Medium Energies E.A. Paschos a a Institut für Physik, Universität Dortmund D-44 Dortmund, Germany arxiv:hep-ph/438v Apr We discuss the calculations for several neutrino

More information

Introduction to particle physics Lecture 6

Introduction to particle physics Lecture 6 Introduction to particle physics Lecture 6 Frank Krauss IPPP Durham U Durham, Epiphany term 2009 Outline 1 Fermi s theory, once more 2 From effective to full theory: Weak gauge bosons 3 Massive gauge bosons:

More information

DESY, 12. September Precision Electroweak Measurements. Stefan Roth RWTH Aachen

DESY, 12. September Precision Electroweak Measurements. Stefan Roth RWTH Aachen DESY, 12. September 2006 Precision Electroweak Measurements Stefan Roth RWTH Aachen Outline 1. Theory of electroweak interaction 2. Precision measurements of electroweak processes 3. Global electroweak

More information

More on SM precision measurements. Marina Cobal University of Udine

More on SM precision measurements. Marina Cobal University of Udine More on SM precision measurements Marina Cobal University of Udine Processes described by the SM Charged current processes; @ low energy the theory coincides with Fermi s theory verified in experiments

More information

3.2 DIS in the quark parton model (QPM)

3.2 DIS in the quark parton model (QPM) Experimental studies of QCD 1. Elements of QCD 2. Tests of QCD in annihilation 3. Studies of QCD in DIS 4. QCD in collisions 3.2 DIS in the quark parton model (QPM) M W Elastic scattering: W = M only one

More information

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1 High Energy Physics Lecture 9 Deep Inelastic Scattering Scaling Violation HEP Lecture 9 1 Deep Inelastic Scattering: The reaction equation of DIS is written e+ p e+ X where X is a system of outgoing hadrons

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS 754 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS TRINITY TERM 04 Thursday, 9 June,.30 pm 5.45 pm 5 minutes

More information

Scattering at NuTeV. Kevin McFarland University of Rochester for the NuTeV Collaboration. Neutrinos and Implications for New Physics 11 October 2002

Scattering at NuTeV. Kevin McFarland University of Rochester for the NuTeV Collaboration. Neutrinos and Implications for New Physics 11 October 2002 sin 2 W from Neutrino Scattering at NuTeV Kevin McFarland University of Rochester for the NuTeV Collaboration Neutrinos and Implications for New Physics 11 October 2002 Outline 1. Why Study Electroweak

More information

Introduction to particle physics Lecture 7

Introduction to particle physics Lecture 7 Introduction to particle physics Lecture 7 Frank Krauss IPPP Durham U Durham, Epiphany term 2009 Outline 1 Deep-inelastic scattering and the structure of protons 2 Elastic scattering Scattering on extended

More information

SuperB EW Physics Update: Is there a strong EW case for polarisaton at the charm threshold?

SuperB EW Physics Update: Is there a strong EW case for polarisaton at the charm threshold? SuperB EW Physics Update: Is there a strong EW case for polarisaton at the charm threshold? Michael Roney University of Victoria 22 March 2011 LNF Outline Very Quick reminder of the EW programme Address

More information

The Standar Model of Particle Physics Lecture II

The Standar Model of Particle Physics Lecture II The Standar Model of Particle Physics Lecture II Radiative corrections, renormalization, and physical observables Laura Reina Maria Laach School, Bautzen, September 2011 Outline of Lectures II Radiative

More information

Symmetry Tests in Nuclear Physics

Symmetry Tests in Nuclear Physics Symmetry Tests in Nuclear Physics Krishna Kumar University of Massachusetts Editorial Board: Parity Violation: K. K, D. Mack, M. Ramsey-Musolf, P. Reimer, P. Souder Low Energy QCD: B. Bernstein, A. Gasparian,

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 2012 Experimental Tests of QED Part 2 1 Overview PART I Cross Sections and QED tests Accelerator Facilities + Experimental Results and Tests PART

More information

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia http://arxiv.org/pd/0705.464 The Standard Model Antonio Pich IFIC, CSIC Univ. Valencia Gauge Invariance: QED, QCD Electroweak Uniication: Symmetry reaking: Higgs Mechanism Electroweak Phenomenology Flavour

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering University HUGS - JLab - June 2010 June 2010 HUGS 1 k q k P P A generic scatter of a lepton off of some target. k µ and k µ are the 4-momenta of the lepton and P

More information

Antonio Pich. IFIC, CSIC Univ. Valencia.

Antonio Pich. IFIC, CSIC Univ. Valencia. Antonio Pich IFIC, CSIC Univ. alencia Antonio.Pich@cern.ch Fermion Masses Fermion Generations Quark Mixing Lepton Mixing Standard Model Parameters CP iolation Quarks Leptons Bosons up down electron neutrino

More information

8 The structure of the nucleon

8 The structure of the nucleon 8 The structure of the nucleon Elastic and deep inelastic scattering from nucleons, 1956 1973 Hadronic scattering experiments produced extensive and rich data revealing resonances and regularities of cross

More information

Physics at Hadron Colliders Partons and PDFs

Physics at Hadron Colliders Partons and PDFs Physics at Hadron Colliders Partons and PDFs Marina Cobal Thanks to D. Bettoni Università di Udine 1 2 How to probe the nucleon / quarks? Scatter high-energy lepton off a proton: Deep-Inelastic Scattering

More information

Lecture 11. Weak interactions

Lecture 11. Weak interactions Lecture 11 Weak interactions 1962-66: Formula/on of a Unified Electroweak Theory (Glashow, Salam, Weinberg) 4 intermediate spin 1 interaction carriers ( bosons ): the photon (γ) responsible for all electromagnetic

More information

Basics of Higgs Physics

Basics of Higgs Physics Basics of iggs Physics Sven einemeyer, IFCA (Santander) Karlsruhe, 07/2007 1. The iggs Boson in the SM 2. The iggs Boson in the MSSM Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007

More information

Standard Model Theory of Neutron Beta Decay

Standard Model Theory of Neutron Beta Decay Standard Model Theory of Neutron Beta Decay The Utility of a Δτ n/ τ n measurement to ±0.01%! (Electroweak Radiative Corrections) William J. Marciano November 9, 2012 Santa Fe, NM Neutron Decay Master

More information

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico&

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico& IGGS&AT&LC Electroweak&symmetry&breaking&and&iggs& Lecture&9& Shahram&Rahatlou Fisica&delle&Par,celle&Elementari,&Anno&Accademico&2014815 htt://www.roma1.infn.it/eole/rahatlou/articelle/ WO&NEEDS&IGGS?

More information

Tales From The Dark Side of Particle Physics (The Dark-Light Connection) William J. Marciano

Tales From The Dark Side of Particle Physics (The Dark-Light Connection) William J. Marciano Tales From The Dark Side of Particle Physics (The Dark-Light Connection) Based on H. Davoudiasl, H-S Lee &WJM Viewer Discretion Advised Beware the Ides of March! William J. Marciano The Best of Times or

More information

Hadronic events in e + e -

Hadronic events in e + e - Hadronic events in e + e - Hadronic cross-section, asymmetry (Very short on) Accelerators and detectors Events in the continuum; below, above and at the Z Event selection, ISR WW events Selection of heavy-uark

More information

Analysis of Electroweak Precision Data and Prospects for Future Improvements

Analysis of Electroweak Precision Data and Prospects for Future Improvements KEK-TH-512 DESY 96-192 hep-ph/9706331 January 21, 1998 Analysis of Electroweak Precision Data and Prospects for Future Improvements Kaoru Hagiwara 1,2,a, Dieter Haidt 3,b, Seiji Matsumoto 1,c 1 Theory

More information

Current Status of the NuTeV Experiment

Current Status of the NuTeV Experiment Current Status of the NuTeV Experiment Beyond the Standard Model?? QCD Effects?? NuTeV charged, neutral currents induced by neutrinos New measurement of Weinberg angle Possible New Physics beyond the Standard

More information

Inelastic scattering

Inelastic scattering Inelastic scattering When the scattering is not elastic (new particles are produced) the energy and direction of the scattered electron are independent variables, unlike the elastic scattering situation.

More information

Results on the proton structure from HERA

Results on the proton structure from HERA Results on the proton structure from HERA Shima Shimizu (CERN) 7/Jan/ @ KEK The world only e-p collider: HERA electron proton A unique collider at DESY, Hamburg H ZEUS Circumference: 6.3 km Operated since

More information

Deep Inelastic Scattering (DIS) Un-ki Yang Dept. of Physics and Astronomy Seoul National University Un-ki Yang - DIS

Deep Inelastic Scattering (DIS) Un-ki Yang Dept. of Physics and Astronomy Seoul National University Un-ki Yang - DIS Deep Inelastic Scattering (DIS) Un-ki Yang Dept. of Physics and Astronomy Seoul National University ukyang@snu.ac.kr Un-ki Yang - DIS 1 Elastic and Inelastic scattering Electron-Proton Scattering P Electron-proton

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

Quark-Hadron Duality in Structure Functions

Quark-Hadron Duality in Structure Functions Approaches to QCD, Oberwoelz, Austria September 10, 2008 Quark-Hadron Duality in Structure Functions Wally Melnitchouk Outline Bloom-Gilman duality Duality in QCD OPE & higher twists Resonances & local

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 13 Registration: https://uebungen.physik.uni-heidelberg.de/v/378 Experimental Tests of QED Part 1 1 Overview PART I Cross Sections and QED tests

More information

Finding the Higgs boson

Finding the Higgs boson Finding the Higgs boson Sally Dawson, BN XIII Mexican School of Particles and Fields ecture 1, Oct, 008 Properties of the Higgs boson Higgs production at the Tevatron and HC Discovery vs spectroscopy Collider

More information

Weak Interactions & Neutral Currents

Weak Interactions & Neutral Currents Weak Interactions & Neutral Currents Until the the mid-970 s all known weak interaction processes could be described by the exchange of a charged, spin boson, the W boson. Weak interactions mediated by

More information

PRECISION MEASUREMENTS

PRECISION MEASUREMENTS PRECISION MEASUREMENTS AT Z RESONANCE Asymmetries and Constraints on Standard Model Lecture 4 12 October 2012 Shahram Rahatlou Fisica Nucleare e Subnucleare III, Anno Accademico 2012-2013 http://www.roma1.infn.it/people/rahatlou/fns3/

More information

Introduction to Operator Product Expansion

Introduction to Operator Product Expansion Introduction to Operator Product Expansion (Effective Hamiltonians, Wilson coefficients and all that... ) Thorsten Feldmann Neckarzimmern, March 2008 Th. Feldmann (Uni Siegen) Introduction to OPE March

More information

arxiv:hep-ph/ v1 13 Oct 2004

arxiv:hep-ph/ v1 13 Oct 2004 arxiv:hep-ph/0410184v1 13 Oct 2004 σ DIS (νn), NLO Perturbative QCD and O(1 GeV) Mass Corrections S. Kretzer a and M. H. Reno b a Physics Department and RIKEN-BNL Research Center, Bldg. 510a, Brookhaven

More information

Current knowledge tells us that matter is made of fundamental particle called fermions,

Current knowledge tells us that matter is made of fundamental particle called fermions, Chapter 1 Particle Physics 1.1 Fundamental Particles Current knowledge tells us that matter is made of fundamental particle called fermions, which are spin 1 particles. Our world is composed of two kinds

More information

Some of the experimental origins of the Electroweak Theory. Peter Fisher MIT August 18, 2006

Some of the experimental origins of the Electroweak Theory. Peter Fisher MIT August 18, 2006 Some of the experimental origins of the Electroweak Theory Peter Fisher MIT August 18, 2006 Prelude: Parity violation in β decay Observing PV requires the measurement of a pseudoscalar observable: A =ψ

More information

arxiv:hep-ph/ v2 2 May 1997

arxiv:hep-ph/ v2 2 May 1997 PSEUDOSCALAR NEUTRAL HIGGS BOSON PRODUCTION IN POLARIZED γe COLLISIONS arxiv:hep-ph/961058v May 1997 M. SAVCI Physics Department, Middle East Technical University 06531 Ankara, Turkey Abstract We investigate

More information

Higgs-charm Couplings

Higgs-charm Couplings Higgs-charm Couplings Wai Kin Lai TUM December 21, 2017 MLL Colloquium, TUM OUTLINE Higgs physics at the LHC OUTLINE Higgs physics at the LHC H J/ψ + γ as a key channel to measure Hc c coupling CHRISTMAS

More information

Search for New Physics at HERA

Search for New Physics at HERA Search for New Physics at HERA Yongdok Ri (KEK) on behalf of the H and ZEUS collaborations Introduction of HERA Model dependent search Model independent search Summary LES RENCONTRES DE PHYSIQUE DE LA

More information

Lecture 10: Weak Interaction. 1

Lecture 10: Weak Interaction.   1 Lecture 10: Weak Interaction http://faculty.physics.tamu.edu/kamon/teaching/phys627/ 1 Standard Model Lagrangian http://pdg.lbl.gov/2017/reviews/rpp2017-rev-standard-model.pdf Standard Model Lagrangian

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

DEEP INELASTIC SCATTERING

DEEP INELASTIC SCATTERING DEEP INELASTIC SCATTERING Electron scattering off nucleons (Fig 7.1): 1) Elastic scattering: E = E (θ) 2) Inelastic scattering: No 1-to-1 relationship between E and θ Inelastic scattering: nucleon gets

More information

The Qweak experiment: a precision measurement of the proton s weak charge

The Qweak experiment: a precision measurement of the proton s weak charge The Qweak experiment: a precision measurement of the proton s weak charge R. D. Carlini Jefferson Lab, 1000 Jefferson Avenue, Newport News, Virginia 3606, USA Abstract. The Qweak experiment [1] will conduct

More information

Density Dependence of Parity Violation in Electron Quasi-elastic Scattering

Density Dependence of Parity Violation in Electron Quasi-elastic Scattering Journal of the Korean Physical Society, Vol. 66, No. 12, June 2015, pp. 1936 1941 Brief Reports Density Dependence of Parity Violation in Electron Quasi-elastic Scattering K. S. Kim School of Liberal Arts

More information

14 Top Quark. Completing the Third Generation

14 Top Quark. Completing the Third Generation 14 Top Quark Completing the Third Generation No one could doubt that there would be a sixth quark, the top or t, but it was equally certain that initially no one knew where it would be found. With the

More information

Non-local 1/m b corrections to B X s γ

Non-local 1/m b corrections to B X s γ Non-local 1/m b corrections to B X s γ Michael Benzke TU München September 16, 2010 In collaboration with S. J. Lee, M. Neubert, G. Paz Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München

More information

Interactions of Neutrinos. Kevin McFarland University of Rochester INSS 2013, Beijing 6-8 August 2013

Interactions of Neutrinos. Kevin McFarland University of Rochester INSS 2013, Beijing 6-8 August 2013 Interactions of Neutrinos Kevin McFarland University of Rochester INSS 013, Beijing 6-8 August 013 Outline Brief Motivation for and History of Measuring Interactions Key reactions and thresholds Weak interactions

More information

Results on the proton structure from HERA

Results on the proton structure from HERA Results on the proton structure from HERA Shima Shimizu (Univ. of Tokyo) Introduction HERA physics Proton structure The world only e-p collider: HERA electron proton A unique collider at DESY, Hamburg

More information

Standard Model of Particle Physics SS 2012

Standard Model of Particle Physics SS 2012 Lecture: Standard Model of Particle Physics Heidelberg SS 2012 Experimental Tests of QED Part 2 1 Overview PART I Cross Sections and QED tests Accelerator Facilities + Experimental Results and Tests PART

More information

Proton Structure Function Measurements from HERA

Proton Structure Function Measurements from HERA Proton Structure Function Measurements from HERA Jörg Gayler DESY, Notkestrasse 85, 2263 Hamburg, Germany E-mail: gayler@mail.desy.de Abstract. Measurements of proton structure functions made in neutral

More information

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1 6. QED Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 6. QED 1 In this section... Gauge invariance Allowed vertices + examples Scattering Experimental tests Running of alpha Dr. Tina Potter

More information

Introduction to Elementary Particle Physics I

Introduction to Elementary Particle Physics I Physics 56400 Introduction to Elementary Particle Physics I Lecture 16 Fall 018 Semester Prof. Matthew Jones Review of Lecture 15 When we introduced a (classical) electromagnetic field, the Dirac equation

More information

The electroweak fit at NNLO and prospects for LHC and ILC. Klaus Mönig

The electroweak fit at NNLO and prospects for LHC and ILC. Klaus Mönig The electroweak fit at NNLO and prospects for LHC and ILC Klaus Mönig The idea of electroweak fits Electroweak interactions are the puzzling part of the Standard Model: parity (and CP) violation non-trivial

More information

Precision EW measurements at Run 2 and beyond

Precision EW measurements at Run 2 and beyond Precision EW measurements at Run 2 and beyond 52 nd Rencontres de Moriond 2017 Session on Electroweak Interactions and Unified Theories Jens Erler (IF-UNAM) La Thuile Aosta Valley Italy March 18 25, 2017

More information

Soft Collinear Effective Theory: An Overview

Soft Collinear Effective Theory: An Overview Soft Collinear Effective Theory: An Overview Sean Fleming, University of Arizona EFT09, February 1-6, 2009, Valencia Spain Background Before SCET there was QCD Factorization Factorization: separation of

More information

Introduction to the Standard Model. 1. e+e- annihilation and QCD. M. E. Peskin PiTP Summer School July 2005

Introduction to the Standard Model. 1. e+e- annihilation and QCD. M. E. Peskin PiTP Summer School July 2005 Introduction to the Standard Model 1. e+e- annihilation and QCD M. E. Peskin PiTP Summer School July 2005 In these lectures, I will describe the phenomenology of the Standard Model of particle physics.

More information

Problems for SM/Higgs (I)

Problems for SM/Higgs (I) Problems for SM/Higgs (I) 1 Draw all possible Feynman diagrams (at the lowest level in perturbation theory) for the processes e + e µ + µ, ν e ν e, γγ, ZZ, W + W. Likewise, draw all possible Feynman diagrams

More information

Particle Physics WS 2012/13 ( )

Particle Physics WS 2012/13 ( ) Particle Physics WS 2012/13 (13.11.2012) Stephanie Hansmann-Menzemer Physikalisches Institut, INF 226, 3.101 Content of Today Up to now: first order non-resonant e+e- cross-section dσ e.g. (e + e μ + μ

More information