MSSM Radiative Corrections. to Neutrino-nucleon Deep-inelastic Scattering. Oliver Brein

Size: px
Start display at page:

Download "MSSM Radiative Corrections. to Neutrino-nucleon Deep-inelastic Scattering. Oliver Brein"

Transcription

1 MSSM Radiative Corrections to Neutrino-nucleon Deep-inelastic Scattering Oliver Brein Institute of Particle Physics Phenomenology, University of Durham in collaboration with olfgang Hollik and Benjamin Koch

2 outline : Introduction deep inelastic νn scattering at NuTeV possible explanations MSSM radiative corrections to N DIS definition of δr ν, ν = R ν, ν MSSM Rν, ν SM superpartner loop corrections MSSM-SM Higgs loop difference Results for δr ν, δr ν how to scan over MSSM parameters? MSSM parameter scan

3 Introduction deep inelastic νn scattering at NuTeV In the SM neutral (NC) and charged current (CC) neutrino nucleon scattering are described in LO by t-channel and exchange. µ d, ū s, c q u, d c, s u, d, s, c q u, d, s, c At NuTeV and beams of a mean energy of 25 GeV were scattered off a target detector and the ratios were measured. R ν = σν NC σ ν CC, R ν = σ ν NC σ ν CC

4 [ Introduction, νn NuTeV ] NuTeV measured also the weak mixing angle [NuTeV 02]. sin 2 θ on-shell w = ± ± This is about 3σ below the SM prediction! But the measurement is indirect, using the measurements of R ν, R ν making use of the Paschos-olfenstein relation and R = Rν rr ν r = 2 sin2 θ w +, r = σ ν CC σ ν CC 2.

5 [ Introduction, νn NuTeV ] More precisely, ratios of counting rates R ν exp = # of NC-like ν events # of CC-like ν events Rν, R ν exp are measured. = # of NC-like ν events # of CC-like ν events R ν R ν exp, R ν exp can be related to Rν, R ν by a detailed MC physics simulation. The deviation from the SM in terms of Rexp, ν R ν exp are [NuTeV 02]: R ν = Rexp ν Rexp(SM) ν = ± 0.003, R ν = R ν exp R ν exp(sm) = ± R ν, ν : simple starting point for studying MSSM radiative corrections

6 [ Introduction ] possible explanations statistical fluctuation, errors underestimated? re-analyses of E rad. corr. [Diener, Dittmaier, Hollik 03 & 05; Arbuzov, Bardin, Kalinovskaya 03] relevant SM effects neglected? asymmetry of strange sea-quarks in the nucleon (s s) isospin violation (u p d n ) nuclear effects etc.... new physics? modified gauge boson interactions (e.g. in extra dimensions) non-renormalizable operators (suppressed by powers of Λ new physics ) leptoquarks (e.g. R parity violating SUSY) SUSY loop effects (e.g. in MSSM) etc....

7 [ Introduction, possible explanations ] Although the NuTeV anomaly is far from being settled, it is interesting, if the MSSM could account for such an effect. Earlier Studies: Davidson et al. [ 02] rough study in terms of oblique corrections (i.e. momentum transfer q = 0) no Parton Distribution Functions (PDFs) used Kurylov, Ramsey-Musolf, Su [ 04] : detailed parameter dependence studied momentum transfer q = 0 approximation no PDFs used results so far: MSSM not responsible (size ok, but wrong sign) our calculation: try to include kinematic effects [OBr, Koch, Hollik] full q 2 -dependence use PDFs use NuTeV cuts on hadronic Energy in final state use mean neutrino beam energy (25 GeV)

8 MSSM radiative corrections to N DIS definition of δr ν, ν = R ν, ν MSSM Rν, ν SM The difference between MSSM and SM prediction, δr n = RMSSM n Rn SM with R n = σnc n /σn CC (n = ν, ν), using (σ n NC ) NLO = (σ n NC ) LO + δσ n NC (σ n CC ) NLO = (σ n CC ) LO + δσ n CC (n = ν, ν) (n = ν, ν) can be expanded in δσnc n and δσn CC ( ) ( δr n σ n = NC (δσ n NC ) MSSM (δσ σcc n NC n ) SM (σ LO NC n ) LO (δσn CC ) MSSM (δσcc n ) ) SM (σcc n ). LO Only differences between MSSM and SM radiative corrections and LO cross sections appear in δr n.

9 [ MSSM radiative corrections to N DIS, definition of δr ν, ν ] Because of R parity conservation in the MSSM: Born cross section : SM = MSSM (very good approx.) real photon emission corrections : SM = MSSM (very good approx.) SM = MSSM for SM-like -loop graphs without virtual Higgs Thus: δσ MSSM δσ SM = const. ( [superpartner loops] + [Higgs graphs MSSM Higgs graphs SM] ).

10 [ MSSM radiative corrections to N DIS ] superpartner loop corrections CC self energy insertions d µ u f χ i ν i ẽ s i ũ s i d t i CC vertex corrections d χ i µ ũ s u µ s χ 0 i χ i d s ũ t d s ũ t χ 0 χ i i χ i d s g µ s CC box corrections µs µ χ i d ũ t χ0 i u χ i d s ũ s d t χ i χ0 i µ s χ i

11 NC self energy insertions [ MSSM radiative corrections to N DIS, SP loop corrections ] q γ q f c f c f c χ i χ i γ γ f f f χ 0 j χ i χ j NC vertex corrections χ 0 j χ i χ j ũ s ũ t d s d t ũ s ũ t u ũ s u d s χ i g µ s χ i µ s χ i χ i χ i µ s µ s χ γ γ 0 i χ 0 j χ i χ j µ s µ t NC box corrections χ0 ν j χ 0 µ j χ j µ s χ i u ũ s u ũ s d t

12 [ MSSM radiative corrections to N DIS ] MSSM-SM Higgs loop difference + CC MSSM Higgs loops + NC MSSM Higgs loops d u h 0, H 0, A 0 h 0, H 0, A 0, H µ H d γ d H γ H H h 0, H 0, A 0, H h 0, H 0 G h 0, H 0 h 0, H 0 A 0 H H h 0, H 0 G 0 h 0, H 0 CC SM Higgs loops d u µ H SM H SM G H SM NC SM Higgs loops d d H SM H SM G 0 H SM

13 [ MSSM radiative corrections to N DIS, Higgs loop difference ] The partonic processes were calculated using FeynArts/FormCalc. [Küblbeck, Böhm, Denner 90], [Eck 95], [Hahn, Perez-Victoria 99], [Hahn 0], [Hahn, Schappacher 02] see :

14 Results for δr ν, δr ν how to scan over MSSM parameters? goal : find regions of parameter space, where the MSSM might explain the NuTeV anomaly. difficult, large dimensionality of MSSM parameter space scanning strategy : adaptive scan [OBr 04]: exploit adaptive integration by importance sampling method: calculate an approximation to the integral I = M max M min dm d tan β max d tan β min d tan β F ( δr ν( ν) (M,..., tan β), M,..., tan β ) with VEGAS and store the sampled parameter points. automatically, the sample points will be enriched in the regions where F ( δr ν( ν) (M,..., tan β), M,..., tan β ) is large.

15 [ Results for δr ν, δr ν, how to scan? ] some sample choices of F: F = if parameters (M,..., tan β) not excluded 0 elsewhere enrich points in allowed region F = δr ν( ν) (M,..., tan β) if parameters (M,..., tan β) not excluded 0 elsewhere enrich points where δr ν( ν) is large in allowed region F = (δr ν (...)) 2 + (δr ν (...)) 2 if δr ν and δr ν < 0 0 elsewhere enrich points where δr ν, δr ν < 0 and... is large

16 [ Results for δr ν, δr ν ] MSSM parameter scan restrictions taken into account: mass exclusion limits for Higgs bosons and superpartners ρ-constraint on sfermion mixing quantities varied: M, M 2, M gluino : GeV µ : GeV M Sf. : GeV A b, A t, A τ : GeV m A 0 : GeV tan β :... 50

17 [ Results for δr ν, δr ν, MSSM parameter scan ] Scan for large values of δr ν and δr ν with parameter restrictions δr ν 2 X t [TeV] δr ν M Sf. [GeV] δr ν( ν) > M Sf. [GeV]

18 [ Results for δr ν, δr ν, MSSM parameter scan ] δr ν Scan for negative values of δr ν without parameter restrictions δr ν > m χ 0 [GeV] m χ ± [GeV]

19 [ Results for δr ν, δr ν, MSSM parameter scan ] δr ν 00 Scan for negative values of δr ν without parameter restrictions excluded excluded m χ ± [GeV] m χ 0 [GeV] δr ν > 0 3 m χ ± > 94GeV m χ 0 > 46GeV all interesting regions excluded

20 [ Results for δr ν, δr ν, MSSM parameter scan ] δr ν 00 Scan for negative values of δr ν without parameter restrictions excluded excluded m χ ± [GeV] m χ 0 [GeV] δr ν > 0 3 m χ ± > 94GeV m χ 0 > 46GeV all interesting regions excluded

21 [ Results for δr ν, δr ν, MSSM parameter scan ] R ν ents no restrictions restrictions NUTEV (+/- 2 sigma) R ν

22 Summary The NuTeV measurement of sin 2 θ w is intriguing but has to be further established (especially confirmation by other experiment(s) is desirable). Loop effects in the MSSM are not capable of explaining the NuTeV anomaly. (size can be right, but sign is wrong). If the anomaly was established, the MSSM would be in trouble. Our result can be easily combined with the one-loop SM result. The complete MSSM one-loop prediction for νn scattering is available for future analyses.

Current Status of the NuTeV Experiment

Current Status of the NuTeV Experiment Current Status of the NuTeV Experiment Beyond the Standard Model?? QCD Effects?? NuTeV charged, neutral currents induced by neutrinos New measurement of Weinberg angle Possible New Physics beyond the Standard

More information

Precision Tests of the Standard Model. Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004

Precision Tests of the Standard Model. Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004 Precision Tests of the Standard Model Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004 Motivation Experiments (not covered by previous speakers ) Atomic Parity Violation Neutrino

More information

Electroweak Physics and Searches for New Physics at HERA

Electroweak Physics and Searches for New Physics at HERA Electroweak Physics and Searches for New Physics at HERA Uwe Schneekloth DESY On behalf of the H1 and ZEUS Collaborations 14th Lomonosov Conference on Elementary Particle Physics 5.08.009 Outline Introduction

More information

DIS-Parity: Physics Beyond the Standard Model with Parity NonConserving Deep Inelastic Scattering

DIS-Parity: Physics Beyond the Standard Model with Parity NonConserving Deep Inelastic Scattering DIS-Parity: Physics Beyond the Standard Model with Parity NonConserving Deep Inelastic Scattering Paul E. Reimer Argonne National Laboratory 10 January 2003 Introduction: Weinberg-Salam Model and sin 2

More information

Higgs + Jet angular and p T distributions : MSSM versus SM

Higgs + Jet angular and p T distributions : MSSM versus SM Higgs + Jet angular and p T distributions : MSSM versus SM Oliver Brein ( Institute for Particle Physics Phenomenology, Durham, UK ) in collaboration with Wolfgang Hollik e-mail: oliver.brein@durham.ac.uk

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

Symmetry Tests in Nuclear Physics

Symmetry Tests in Nuclear Physics Symmetry Tests in Nuclear Physics Krishna Kumar University of Massachusetts Editorial Board: Parity Violation: K. K, D. Mack, M. Ramsey-Musolf, P. Reimer, P. Souder Low Energy QCD: B. Bernstein, A. Gasparian,

More information

Electroweak Physics. Precision Experiments: Historical Perspective. LEP/SLC Physics. Probing the Standard Model. Beyond the Standard Model

Electroweak Physics. Precision Experiments: Historical Perspective. LEP/SLC Physics. Probing the Standard Model. Beyond the Standard Model Electroweak Physics Precision Experiments: Historical Perspective LEP/SLC Physics Probing the Standard Model Beyond the Standard Model The Z, the W, and the Weak Neutral Current Primary prediction and

More information

arxiv:hep-ex/ v3 25 Mar 2003

arxiv:hep-ex/ v3 25 Mar 2003 A Precise Determination of Electroweak Parameters in Neutrino-Nucleon Scattering arxiv:hep-ex/0110059 v3 25 Mar 2003 G. P. Zeller 5, K. S. McFarland 8,3, T. Adams 4, A. Alton 4, S. Avvakumov 8, L. de Barbaro

More information

Electroweak Measurements at NuTeV: A Departure from Prediction

Electroweak Measurements at NuTeV: A Departure from Prediction Electroweak Measurements at NuTeV: A Departure from Prediction Mike Shaevitz Fermilab and Columbia University for the NuTeV Collaboration WIN00 Conference Christchurch, New Zealand January, 00 Introduction

More information

LHC Collider Phenomenology

LHC Collider Phenomenology LHC Collider Phenomenology Theorist! You are a theorist working in the CMS experimental collaboration You work on LHC Collider Phenomenology related to CMS By working in the experimental collaboration

More information

Electroweak Data Fits & the Higgs Boson Mass. Robert Clare UC Riverside

Electroweak Data Fits & the Higgs Boson Mass. Robert Clare UC Riverside Electroweak Data Fits & the Higgs Boson Mass Robert Clare UC Riverside Robert Clare UC Riverside LoopFest III Apr 1, 2004 2 Outline Electroweak corrections: definitions and strategies Experimental inputs

More information

e e Collisions at ELIC

e e Collisions at ELIC Physics With Collisions at ELIC Collisions at ELIC E. Chudakov (JLab), June 26, 26 Opportunity to build a collider using the ELIC ring Physics motivation for a high luminosity, polarized collider Discussion

More information

Tests of the Electroweak Theory

Tests of the Electroweak Theory Tests of the Electroweak Theory History/introduction Weak charged current QED Weak neutral current Precision tests Rare processes CP violation and B decays Neutrino mass FNAL (December 6, 2005) Paul Langacker

More information

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1 High Energy Physics Lecture 9 Deep Inelastic Scattering Scaling Violation HEP Lecture 9 1 Deep Inelastic Scattering: The reaction equation of DIS is written e+ p e+ X where X is a system of outgoing hadrons

More information

Precision Calculations for Collider Physics

Precision Calculations for Collider Physics SFB Arbeitstreffen März 2005 Precision Calculations for Collider Physics Michael Krämer (RWTH Aachen) Radiative corrections to Higgs and gauge boson production Combining NLO calculations with parton showers

More information

Electroweak measurements at HERA

Electroweak measurements at HERA Electroweak measurements at HERA Alex Tapper DESY forum 1 th & 13 th September 006 Precision electroweak measurements: What can HERA contribute? Outline Introduction High Q physics at HERA Review of recent

More information

Search for Supersymmetry at LHC

Search for Supersymmetry at LHC Horváth Dezső: SUSY Search at LHC PBAR-11, Matsue, 2011.11.29 p. 1/40 Search for Supersymmetry at LHC PBAR-11, Matsue, 2011.11.29 Dezső Horváth KFKI Research Institute for Particle and Nuclear Physics,

More information

U(1) Gauge Extensions of the Standard Model

U(1) Gauge Extensions of the Standard Model U(1) Gauge Extensions of the Standard Model Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA U(1) Gauge Extensions of the Standard Model (int08) back to start

More information

The MSSM confronts the precision electroweak data and muon g 2. Daisuke Nomura

The MSSM confronts the precision electroweak data and muon g 2. Daisuke Nomura The MSSM confronts the precision electroweak data and muon g 2 (KEK, JSPS Research Fellow) I. Overview/Introduction II. Muon g 2 vs MSSM III. EW data vs MSSM IV. Summary Based on K. Hagiwara, A.D. Martin,

More information

Structure Functions at Very High Q 2 From HERA

Structure Functions at Very High Q 2 From HERA Structure Functions at Very High Q 2 From HERA Christopher M. Cormack For the H1 and ZEUS Collaborations Rutherford Appleton Laboratory, Chilton, Didcot, Oxford, OX11 0QX, United Kingdom Abstract. Measurements

More information

Electroweak accuracy in V-pair production at the LHC

Electroweak accuracy in V-pair production at the LHC Electroweak accuracy in V-pair production at the LHC Anastasiya Bierweiler Karlsruhe Institute of Technology (KIT), Institut für Theoretische Teilchenphysik, D-7628 Karlsruhe, Germany E-mail: nastya@particle.uni-karlsruhe.de

More information

Lecture #4 a) Comments on effective ββ decay operators b) The role of measured orbit occupancies c) The ββ decay with heavy particle exchange d)

Lecture #4 a) Comments on effective ββ decay operators b) The role of measured orbit occupancies c) The ββ decay with heavy particle exchange d) Lecture #4 a) Comments on effective ββ decay operators b) The role of measured orbit occupancies c) The ββ decay with heavy particle exchange d) Neutrino magnetic moment and Majorana vs. Dirac neutrinos

More information

The NuTeV Anomaly: A hint of New Physics? or. Train Wreck of the Mundane? Kevin McFarland. University of Rochester

The NuTeV Anomaly: A hint of New Physics? or. Train Wreck of the Mundane? Kevin McFarland. University of Rochester The NuTeV Anomaly: A hint of New Physics? or Train Wreck of the Mundane? Kevin McFarland University of Rochester University of Durham IPPP 3 March 2003 NuTeV Collaboration Cincinnati 1, Columbia 2, Fermilab

More information

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1 Physics 662 Particle Physics Phenomenology February 21, 2002 Physics 662, lecture 13 1 Physics Beyond the Standard Model Supersymmetry Grand Unified Theories: the SU(5) GUT Unification energy and weak

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 013 Weak Interactions II 1 Important Experiments Wu-Experiment (1957): radioactive decay of Co60 Goldhaber-Experiment (1958): radioactive decay

More information

Standard Model of Particle Physics SS 2012

Standard Model of Particle Physics SS 2012 Lecture: Standard Model of Particle Physics Heidelberg SS 2012 W- and Z-Bosons 1 2 Contents Discovery of real W- and Z-bosons Intermezzo: QCD at Hadron Colliders LEP + Detectors W- and Z- Physics at LEP

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 2012 Experimental Tests of QED Part 2 1 Overview PART I Cross Sections and QED tests Accelerator Facilities + Experimental Results and Tests PART

More information

Probing SUSY Contributions to Muon g-2 at LHC and ILC

Probing SUSY Contributions to Muon g-2 at LHC and ILC Probing SUSY Contributions to Muon g-2 at LHC and ILC Motoi Endo (Tokyo) Based on papers in collaborations with ME, Hamaguchi, Iwamoto, Yoshinaga ME, Hamaguchi, Kitahara, Yoshinaga ME, Hamaguchi, Iwamoto,

More information

The Z, the W, and the Weak Neutral Current

The Z, the W, and the Weak Neutral Current The Z, the W, and the Weak Neutral Current g L Z = J µ Z 2 cos θ Z µ W J µ Z = r t 3 rl ψ 0 r γµ (1 γ 5 )ψ 0 r 2 sin2 θ W J µ Q t 3 ul = t3 dl = t3 νl = t3 el = 1 2, tan θ W = g /g L NC eff = G F 2 J µ

More information

Lectures on Standard Model Effective Field Theory

Lectures on Standard Model Effective Field Theory Lectures on Standard Model Effective Field Theory Yi Liao Nankai Univ SYS Univ, July 24-28, 2017 Page 1 Outline 1 Lecture 4: Standard Model EFT: Dimension-six Operators SYS Univ, July 24-28, 2017 Page

More information

Ricerca di nuova fisica a HERA

Ricerca di nuova fisica a HERA Ricerca di nuova fisica a HERA Incontro sulla Fisica delle Alte Energie, Lecce 23-26 aprile 2003 S.Dusini, INFN Padova 1 Overview Introduction to Hera Results from HERA I Contact Interaction: Compositness,

More information

NuSOnG. Neutrinos Scattering On Glass. Let s consider each of these (though not in this order) William Seligman, 30-Jun-08.

NuSOnG. Neutrinos Scattering On Glass. Let s consider each of these (though not in this order) William Seligman, 30-Jun-08. NuSOnG Neutrinos Scattering On Glass Let s consider each of these (though not in this order) William Seligman, 30-Jun-08 Page 1 of 46 NuSOnG Neutrinos Scattering On Glass Page 2 of 46 Obtaining a neutrino

More information

Search for Higgs Bosons at LEP. Haijun Yang University of Michigan, Ann Arbor

Search for Higgs Bosons at LEP. Haijun Yang University of Michigan, Ann Arbor Search for Higgs Bosons at LEP Haijun Yang University of Michigan, Ann Arbor L3 On behalf of the L3 Collaboration American Physical Society Meeting(APS03), Philadelphia April 5-8, 2003 OUTLINE Introduction

More information

SUSY-Yukawa Sum Rule at the LHC

SUSY-Yukawa Sum Rule at the LHC SUSY-Yukawa Sum Rule at the LHC David Curtin bla arxiv:1004.5350, arxiv:xxxx.xxxx In Collaboration with Maxim Perelstein, Monika Blanke bla Cornell Institute for High Energy Phenomenology SUSY 2010 Parallel

More information

DESY, 12. September Precision Electroweak Measurements. Stefan Roth RWTH Aachen

DESY, 12. September Precision Electroweak Measurements. Stefan Roth RWTH Aachen DESY, 12. September 2006 Precision Electroweak Measurements Stefan Roth RWTH Aachen Outline 1. Theory of electroweak interaction 2. Precision measurements of electroweak processes 3. Global electroweak

More information

Strange Electromagnetic and Axial Nucleon Form Factors

Strange Electromagnetic and Axial Nucleon Form Factors Strange Electromagnetic and Axial Nucleon Form Factors A combined analysis of HAPPEx, G 0, and BNL E734 data Stephen Pate, Glen MacLachlan, David McKee, Vassili Papavassiliou New Mexico State University

More information

Phenomenology of new neutral gauge bosons in an extended MSSM

Phenomenology of new neutral gauge bosons in an extended MSSM Phenomenology of new neutral gauge bosons in an extended MSSM Gennaro Corcella 1, Simonetta Gentile 2 1. Laboratori Nazionali di Frascati, INFN 2. Università di oma, La Sapienza, INFN Outline Motivation

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 ecture: Standard Model of Particle Physics Heidelberg SS 013 (Weak) Neutral Currents 1 Contents Theoretical Motivation for Neutral Currents NC Processes Experimental Discovery Measurement of the Weinberg

More information

Early SUSY Searches in Events with Leptons with the ATLAS-Detector

Early SUSY Searches in Events with Leptons with the ATLAS-Detector Early SUSY Searches in Events with Leptons with the ATLAS-Detector Timo Müller Johannes Gutenberg-Universität Mainz 2010-29-09 EMG Annual Retreat 2010 Timo Müller (Universität Mainz) Early SUSY Searches

More information

Particle Physics: Problem Sheet 5

Particle Physics: Problem Sheet 5 2010 Subatomic: Particle Physics 1 Particle Physics: Problem Sheet 5 Weak, electroweak and LHC Physics 1. Draw a quark level Feynman diagram for the decay K + π + π 0. This is a weak decay. K + has strange

More information

SHiP: a new facility with a dedicated detector for neutrino physics

SHiP: a new facility with a dedicated detector for neutrino physics SHiP: a new facility with a dedicated detector for neutrino physics Università "Federico II" and INFN, Naples, Italy E-mail: giovanni.de.lellis@cern.ch The SHiP facility recently proposed at CERN copiously

More information

Searches for (non-susy) Exotics at HERA

Searches for (non-susy) Exotics at HERA Searches for (non-susy) Exotics at HERA Linus Lindfeld, University of Zürich UNIVERSITAS TURICENSIS MDCCC III Int. Conference on Supersymmetry and the Unification of Fundamental Interactions Irvine, California,

More information

EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA

EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA In collaboration with F. del Águila and M. Pérez-Victoria Phys. Rev. D78: 013010, 2008 Depto. de Física Teórica y del Cosmos Universidad de Granada

More information

Study of Inclusive Jets Production in ep Interactions at HERA

Study of Inclusive Jets Production in ep Interactions at HERA HEP 003 Europhysics Conference in Aachen, Germany Study of Inclusive Jets Production in ep Interactions at HERA Mónica Luisa Vázquez Acosta Universidad Autónoma de Madrid On behalf of the ZEUS & H1 Collaborations

More information

Contents. Preface to the First Edition Preface to the Second Edition

Contents. Preface to the First Edition Preface to the Second Edition Contents Preface to the First Edition Preface to the Second Edition Notes xiii xv xvii 1 Basic Concepts 1 1.1 History 1 1.1.1 The Origins of Nuclear Physics 1 1.1.2 The Emergence of Particle Physics: the

More information

Searches for new Physics at HERA

Searches for new Physics at HERA Peter Schleper, Hamburg University LHC 2008 Searches at HERA 1 Searches for new Physics at HERA HERA data & experiments Model independent Search Single top & lepton + P T,miss Supersymmetry Contact Interactions

More information

Introduction to particle physics Lecture 7

Introduction to particle physics Lecture 7 Introduction to particle physics Lecture 7 Frank Krauss IPPP Durham U Durham, Epiphany term 2009 Outline 1 Deep-inelastic scattering and the structure of protons 2 Elastic scattering Scattering on extended

More information

A High Resolution Neutrino Experiment in a Magnetic Field for Project-X at Fermilab

A High Resolution Neutrino Experiment in a Magnetic Field for Project-X at Fermilab A High Resolution Neutrino Experiment in a Magnetic Field for Project-X at Fermilab SANJIB R. MISHRA Department of Physics and Astronomy, University of South Carolina, Columbia SC 29208, USA E-mail: sanjib@sc.edu

More information

Low Energy Tests of the Weak Interaction

Low Energy Tests of the Weak Interaction FT 2004 02 Low Energy Tests of the Weak Interaction arxiv:hep-ph/0404291v2 4 May 2005 J. Erler 1 and M.J. Ramsey-Musolf 2,3 1 Instituto de Física, Universidad Nacional Autónoma de México, México 2 Kellogg

More information

SEARCHES FOR THE NEUTRAL HIGGS BOSONS OF THE MSSM

SEARCHES FOR THE NEUTRAL HIGGS BOSONS OF THE MSSM SEARCHES FOR THE NEUTRAL HIGGS BOSONS OF THE MSSM USING LEP DATA Elizabeth Locci SPP/DAPNIA Saclay Representing LEP Collaborations 1 Outline LEP performance Theoretical framework Search for neutral Higgs

More information

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction FYS 3510 Subatomic physics with applications in astrophysics Nuclear and Particle Physics: An Introduction Nuclear and Particle Physics: An Introduction, 2nd Edition Professor Brian Martin ISBN: 978-0-470-74275-4

More information

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March EW Naturalness in Light of the LHC Data Maxim Perelstein, Cornell U. ACP Winter Conference, March 3 SM Higgs: Lagrangian and Physical Parameters The SM Higgs potential has two terms two parameters: Higgs

More information

Name : Physics 490. Practice Final (closed book; calculator, one notecard OK)

Name : Physics 490. Practice Final (closed book; calculator, one notecard OK) Name : Physics 490. Practice Final (closed book; calculator, one notecard OK) Problem I: (a) Give an example of experimental evidence that the partons in the nucleon (i) are fractionally charged. How can

More information

Computing of Charged Current DIS at three loops

Computing of Charged Current DIS at three loops Computing of Charged Current DIS at three loops Mikhail Rogal Mikhail.Rogal@desy.de DESY, Zeuthen, Germany ACAT 2007, Amsterdam, Netherlands, April 23-28, 2007 Computing of Charged CurrentDIS at three

More information

Precision sin 2 θ W (Q 2 ) & Electroweak Physics at The EIC (Electron-Ion Collider) Based on talks at: W&M, Rockefeller, BNL and U.

Precision sin 2 θ W (Q 2 ) & Electroweak Physics at The EIC (Electron-Ion Collider) Based on talks at: W&M, Rockefeller, BNL and U. Precision sin 2 θ W (Q 2 ) & Electroweak Physics at The EIC (Electron-Ion Collider) William J. Marciano (October 26, 2010) Based on talks at: W&M, Rockefeller, BNL and U. Washington Outline 1. General

More information

W + W - The Z pole. e + e hadrons SLC. Cross-section (pb) Centre-of-mass energy (GeV) P529 Spring,

W + W - The Z pole. e + e hadrons SLC. Cross-section (pb) Centre-of-mass energy (GeV) P529 Spring, The Z pole Cross-section (pb) 10 5 10 4 Z e + e hadrons 10 3 10 2 CESR DORIS PEP W + W - 10 KEKB PEP-II PETRA TRISTAN SLC LEP I LEP II 0 20 40 60 80 100 120 140 160 180 200 220 Centre-of-mass energy (GeV)

More information

Latest Results from the OPERA Experiment (and new Charge Reconstruction)

Latest Results from the OPERA Experiment (and new Charge Reconstruction) Latest Results from the OPERA Experiment (and new Charge Reconstruction) on behalf of the OPERA Collaboration University of Hamburg Institute for Experimental Physics Overview The OPERA Experiment Oscillation

More information

Deep Inelastic Scattering in Lepton-Hadron Collisions Probing the Parton Structure of the Nucleon with Leptons Basic Formalism (indep.

Deep Inelastic Scattering in Lepton-Hadron Collisions Probing the Parton Structure of the Nucleon with Leptons Basic Formalism (indep. Deep Inelastic Scattering in Lepton-Hadron Collisions Probing the Parton Structure of the Nucleon with Leptons Basic Formalism (indep. of strong dynamics and parton picture) Experimental Development Fixed

More information

Tutorial 8: Discovery of the Higgs boson

Tutorial 8: Discovery of the Higgs boson Tutorial 8: Discovery of the Higgs boson Dr. M Flowerdew May 6, 2014 1 Introduction From its inception in the 1960 s, the Standard Model was quickly established, but it took about 50 years for all of the

More information

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov Minimal Extension of the Standard Model of Particle Physics Dmitry Gorbunov Institute for Nuclear Research, Moscow, Russia 14th Lomonosov Conference on Elementary Paticle Physics, Moscow, MSU, 21.08.2009

More information

Effective Field Theory and EDMs

Effective Field Theory and EDMs ACFI EDM School November 2016 Effective Field Theory and EDMs Vincenzo Cirigliano Los Alamos National Laboratory 1 Lecture III outline EFT approach to physics beyond the Standard Model Standard Model EFT

More information

Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn. Tuesday group seminar 17/03/15 University of Liverpool

Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn. Tuesday group seminar 17/03/15 University of Liverpool Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn Tuesday group seminar 17/03/15 University of Liverpool 1 Introduction Outline The SM & SUSY Flavour Problem. Solving it by imposing a

More information

EVIDENCE FOR A PROTOPHOBIC FIFTH FORCE

EVIDENCE FOR A PROTOPHOBIC FIFTH FORCE EVIDENCE FOR A PROTOPHOBIC FIFTH FORCE Mitchell Workshop on Collider, Dark Matter, and Neutrino Physics Texas A&M Jonathan Feng, UC Irvine 23 May 2016 23 May 2016 Feng 1 COLLABORATORS Jonathan Feng Bart

More information

Search for physics beyond the Standard Model at LEP 2

Search for physics beyond the Standard Model at LEP 2 Search for physics beyond the Standard Model at LEP 2 Theodora D. Papadopoulou NTU Athens DESY Seminar 28/10/03 1 Outline Introduction about LEP Alternatives to the Higgs mechanism Technicolor Contact

More information

Physics at HERA. Summer Student Lectures August Katja Krüger Kirchhoff Institut für Physik H1 Collaboration

Physics at HERA. Summer Student Lectures August Katja Krüger Kirchhoff Institut für Physik H1 Collaboration Physics at HERA Summer Student Lectures 18 + 19 August 28 Kirchhoff Institut für Physik H1 Collaboration email: katja.krueger@desy.de Overview Part 2 Exotics Jet Physics Cross Sections Strong Coupling

More information

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea mued mass spectrum Figure 3.2: (Taken from [46]). The full spectrum of the UED model at the first KK level,

More information

HADRONIC B DECAYS. My Ph.D. work. Maxime Imbeault. Université de Montréal 24/04/2009

HADRONIC B DECAYS. My Ph.D. work. Maxime Imbeault. Université de Montréal 24/04/2009 HADRONIC B DECAYS My Ph.D. work Maxime Imbeault Université de Montréal 24/04/2009 Outline Description of my Ph.D. work : 4 research projects Wick contractions and hadronic decays Extraction of CKM angle

More information

arxiv:hep-ph/ v1 17 Apr 2000

arxiv:hep-ph/ v1 17 Apr 2000 SEARCH FOR NEW PHYSICS WITH ATLAS AT THE LHC arxiv:hep-ph/0004161v1 17 Apr 2000 V.A. MITSOU CERN, EP Division, CH-1211 Geneva 23, Switzerland and University of Athens, Physics Department, Nuclear and Particle

More information

A M Cooper-Sarkar on behalf of ZEUS and H1 collaborations

A M Cooper-Sarkar on behalf of ZEUS and H1 collaborations α s (M Z ) and charm quark mass determination from HERA data International Workshop Determining the Fundamental Parameters of QCD IAS Singapore March 2013 A M Cooper-Sarkar on behalf of ZEUS and H1 collaborations

More information

Standard Model of Particle Physics SS 2012

Standard Model of Particle Physics SS 2012 Lecture: Standard Model of Particle Physics Heidelberg SS 2012 Experimental Tests of QED Part 2 1 Overview PART I Cross Sections and QED tests Accelerator Facilities + Experimental Results and Tests PART

More information

Charged current DIS with polarised e ± beams at HERA. Alex Tapper

Charged current DIS with polarised e ± beams at HERA. Alex Tapper Charged current DIS with polarised e ± beams at HRA Alex Tapper The HRA accelerator e± p 27.5 GeV 920 GeV s=320 GeV Page 2 Longitudinal polarisation at HRA Longitudinal polarisation of the lepton beam

More information

DEEP INELASTIC SCATTERING

DEEP INELASTIC SCATTERING DEEP INELASTIC SCATTERING Electron scattering off nucleons (Fig 7.1): 1) Elastic scattering: E = E (θ) 2) Inelastic scattering: No 1-to-1 relationship between E and θ Inelastic scattering: nucleon gets

More information

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

SUSY and Exotics. UK HEP ForumFrom the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1 SUSY and Exotics Standard Model and the Origin of Mass Puzzles of Standard Model and Cosmology Bottom-up and top-down motivation Extra dimensions Supersymmetry - MSSM -NMSSM -E 6 SSM and its exotics UK

More information

Neutral Current Cross Sections With Polarised Lepton Beam At ZEUS

Neutral Current Cross Sections With Polarised Lepton Beam At ZEUS Neutral Current Cross Sections With Polarised Lepton Beam At Syed Umer Noor York University, Canada On Behalf of the Collaboration DIS 6, - 4 April 6, Tsukuba, Japan Syed Umer Noor (York University) NC

More information

Full electroweak one loop corrections to

Full electroweak one loop corrections to Full electroweak one loop corrections to f i fj Christian Weber, Helmut Eberl, and Walter Majerotto Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften A 1050 Vienna, Austria

More information

Outline: Introduction Search for new Physics Model driven Signature based General searches. Search for new Physics at CDF

Outline: Introduction Search for new Physics Model driven Signature based General searches. Search for new Physics at CDF PE SU Outline: Introduction Search for new Physics Model driven Signature based General searches R Search for new Physics at CDF SUperSYmmetry Standard Model is theoretically incomplete SUSY: spin-based

More information

High-energy neutrino interactions: first cross section measurements at TeV and above

High-energy neutrino interactions: first cross section measurements at TeV and above High-energy neutrino interactions: first cross section measurements at TeV and above Mauricio Bustamante TeVPA 2017 August 10, 2017 Two seemingly unrelated questions 1 Where are the most energetic particles

More information

Testing QCD at the LHC and the Implications of HERA DIS 2004

Testing QCD at the LHC and the Implications of HERA DIS 2004 Testing QCD at the LHC and the Implications of HERA DIS 2004 Jon Butterworth Impact of the LHC on QCD Impact of QCD (and HERA data) at the LHC Impact of the LHC on QCD The LHC will have something to say

More information

Searching for Extra Space Dimensions at the LHC. M.A.Parker Cavendish Laboratory Cambridge

Searching for Extra Space Dimensions at the LHC. M.A.Parker Cavendish Laboratory Cambridge Searching for Extra Space Dimensions at the LHC M.A.Parker Cavendish Laboratory Cambridge I shall use ATLAS to illustrate LHC physics, because it is the experiment I know best. Both general purpose detectors

More information

Probing New Physics Through B s Mixing

Probing New Physics Through B s Mixing Probing New Physics Through B s Mixing Patricia Ball IPPP, Durham Moriond EW, Mar 12 2007 Phenomenology of B s Mixing B 0 = (b s) and B 0 = (s b) with definite flavour content, but not mass eigenstates

More information

Physics at the LHC: from Standard Model to new discoveries

Physics at the LHC: from Standard Model to new discoveries Physics at the LHC: from Standard Model to new discoveries Kirill Melnikov University of Hawaii May 2006 Sendai, June 2006 Physics at the LHC: from Standard Model to new discoveries p. 1/22 Outline Standard

More information

Low Energy Precision Tests of Supersymmetry

Low Energy Precision Tests of Supersymmetry Low Energy Precision Tests of Supersymmetry M.J. Ramsey-Musolf Caltech Wisconsin-Madison M.R-M & S. Su, hep-ph/0612057 J. Erler & M.R-M, PPNP 54, 351 (2005) Outline I. Motivation: Why New Symmetries? Why

More information

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004 Searches at LEP Moriond Electroweak 2004 Ivo van Vulpen CERN On behalf of the LEP collaborations LEP and the LEP data LEP: e + e - collider at s m Z (LEP1) and s = 130-209 GeV (LEP2) Most results (95%

More information

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN)

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN) Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN) Rutgers University, December 8, 2009 Preview Found a SUSY model, where: Weird higgs decays

More information

Jet reconstruction in LHCb searching for Higgs-like particles

Jet reconstruction in LHCb searching for Higgs-like particles Jet reconstruction in LHCb searching for Higgs-like particles Alessandro Camboni (on behalf of LHCb Collaboration) DISCRETE'08 Valencia Dec 12th, 2008 Motivation Jet reconstruction is important for searches

More information

Testing the Standard Model and Search for New Physics with CMS at LHC

Testing the Standard Model and Search for New Physics with CMS at LHC Dezső Horváth: Search for New Physics with CMS FFK2017, Warsaw, Poland p. 1 Testing the Standard Model and Search for New Physics with CMS at LHC FFK-2017: International Conference on Precision Physics

More information

Higgs physics at the ILC

Higgs physics at the ILC Higgs physics at the ILC Klaus Desch University of Bonn Second Linear Collider Physics School Ambleside,UK, 15/09/06 Disclaimers + Announcements Focus will be on experimental possibilities + studies with

More information

arxiv: v1 [hep-ex] 10 Aug 2011

arxiv: v1 [hep-ex] 10 Aug 2011 The Physics Potential of SuperB F. F. Wilson 1 on behalf of the SuperB Collaboration STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, UK arxiv:1108.2178v1 [hep-ex] 10 Aug 2011 SuperB

More information

Flavor Asymmetry of the Nucleon Sea and W-Boson Production*

Flavor Asymmetry of the Nucleon Sea and W-Boson Production* Flavor Asymmetry of the Nucleon Sea and W-Boson Production* Department of Physics University of Illinois 7 December 2012 *R. Yang, J.C. Peng, M. Grosse-Perdekamp, Phys. Lett. B 680 (2009) 231-234 What

More information

Events with High P T Leptons and Missing P T and Anomalous Top at HERA

Events with High P T Leptons and Missing P T and Anomalous Top at HERA with High Leptons and Missing and Anomalous Top at HERA David South (DESY) On Behalf of the H Collaboration IIth International Workshop on Deep Inelastic Scattering (DIS 24) Štrbské Pleso, High Tatras,

More information

Sho IWAMOTO. 7 Nov HEP phenomenology joint Cavendish DAMTP U. Cambridge

Sho IWAMOTO. 7 Nov HEP phenomenology joint Cavendish DAMTP U. Cambridge MSSM scenario Sho IWAMOTO 7 Nov. 2016 HEP phenomenology joint Cavendish DAMTP seminar @ U. Cambridge Based on [1608.00283] in collaboration with M. Abdullah, J. L. Feng, and B. Lillard (UC Irvine) The

More information

3.2 DIS in the quark parton model (QPM)

3.2 DIS in the quark parton model (QPM) Experimental studies of QCD 1. Elements of QCD 2. Tests of QCD in annihilation 3. Studies of QCD in DIS 4. QCD in collisions 3.2 DIS in the quark parton model (QPM) M W Elastic scattering: W = M only one

More information

BSM physics at the LHC. Akimasa Ishikawa (Kobe University)

BSM physics at the LHC. Akimasa Ishikawa (Kobe University) BSM physics at the LHC Akimasa Ishikawa (Kobe University) 7 Jan. 2011 If SM Higgs exists Why BSM? To solve the hierarchy and naturalness problems O(1 TeV) Quadratic divergence of Higgs mass If SM Higgs

More information

Scattering at NuTeV. Kevin McFarland University of Rochester for the NuTeV Collaboration. Neutrinos and Implications for New Physics 11 October 2002

Scattering at NuTeV. Kevin McFarland University of Rochester for the NuTeV Collaboration. Neutrinos and Implications for New Physics 11 October 2002 sin 2 W from Neutrino Scattering at NuTeV Kevin McFarland University of Rochester for the NuTeV Collaboration Neutrinos and Implications for New Physics 11 October 2002 Outline 1. Why Study Electroweak

More information

Quark-Hadron Duality in Structure Functions

Quark-Hadron Duality in Structure Functions Approaches to QCD, Oberwoelz, Austria September 10, 2008 Quark-Hadron Duality in Structure Functions Wally Melnitchouk Outline Bloom-Gilman duality Duality in QCD OPE & higher twists Resonances & local

More information

Exotic scalars. Stefania Gori. Second MCTP Spring Symposium on Higgs Boson Physics. The University of Chicago & Argonne National Laboratory

Exotic scalars. Stefania Gori. Second MCTP Spring Symposium on Higgs Boson Physics. The University of Chicago & Argonne National Laboratory Exotic Exotic scalars scalars and and the the Higgs Higgs to to gamma gamma -- gamma gamma rate rate Stefania Gori The University of Chicago & Argonne National Laboratory Second MCTP Spring Symposium on

More information

Beyond the Standard Model

Beyond the Standard Model Beyond the Standard Model The Standard Model Problems with the Standard Model New Physics Supersymmetry Extended Electroweak Symmetry Grand Unification References: 2008 TASI lectures: arxiv:0901.0241 [hep-ph]

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -017/130 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH11 GENEVA 3, Switzerland 08 May 017 (v3, 11 May 017) Searches for

More information

Determination of Electroweak Parameters

Determination of Electroweak Parameters Determination of Electroweak Parameters Seminar Particle Physics at the LHC Proceedings R. Gugel Freiburg, 27.05.2014 Contents 1 Motivation 1 2 Template Method 4 3 Mass of the W Boson 5 3.1 Measurement

More information