Philips Research Reports':

Size: px
Start display at page:

Download "Philips Research Reports':"

Transcription

1 VOL.6 R 2 APRIL 1951 Philips Research Reports': EDITED BY THE RESEARCH LABORATORY OF. V. PHILIPS' GLOEILAlIIPEFABRIEKE, EIDHOVE, ETHERLADS R 160 Philips Res. Rep. 6, 81-85, 1951 THE DISCHARGE OF A SERIES OF EQUAL CODESERS HAVIG ARBITRARY RESISTACES COECTED I PARALLEL by H. BREMMER : Summary This paper concerns the discharge of a series of condensers through a ballistic', galvanometer if a variable resistance is connected in parallel to each condeneer. The flow of current through the galvanometer is calculated with the aid of the operational calculus. Résumé eet article traite de la décharge par un galvanomètre balistique d'une série de condensateurs avec une résistance variable montée en parallèle sur chacun d'eux. On détermine le courant qui traverse Ie galvanomètre à l'aide du calcul symbolique. Zusammenfassung Dieser Artikel behandelt die Entladung einer Reihe Kondensatoren durch ein ballistisches Galvanometer, wenn ein veränderlicher Widerstand zu jedem Kondensator parallelgeschaltet ist. Der Stromdurchgang durch das Galvanometer wird mit Hilfe der Operatorenrechnung ermittelt. 1. Introduetion A recent paper by Van Geel and Scholte I) deals with the electrical properties of a layer of' aluminium oxide which was deposited on, an aluminium background by means of anodic oxidation. The behaviour of such a layer could be described with the aid of a model consisting of a series of increasing resistances RI' R 2,..., R' across each of which a condenser of capacity LIe is connected in parallel (see fig. 1). In. the experiments of Van Geel and Scholte measurements were made, amongst others, after charging the capacitive system first and then discharging it through the galvanometer. The dependence of this charge' on LIe and the resistances is discussed in this paper with the aid of the operational calculus. The method developed may be of some interest because it can also be applied to other, similar, problems.

2 82 H.BREMMER 2. Derivation of the differential equations of the network We introduce the following symbols: in and in fot the currents through Rn and the condenser parallel to it, respectively, io for the current through the terminals at A and B, Ro for the internal resistance of the ballistic galvanometer, V for the d.c. voltage used for charging the system. Moreover, we indicate by t = 0 the moment of switching off the voltage V. The current io at the terminals then flows through the voltage source (supposed to have a negligible internal resistance) for t <0, and through the galvanometer for t>o. 7i h 73 R Fig. 1. The network considered in thi~ paper. The continuity of charge at the junctions hetwèen the nth and the (n + 1)th circuit requires in + in = in+! +in+!, while, moreover, io = i 1 +il' We therefore obtain: (n = 1,2,..., ). (1) FUrther, the potential difference across the nth condenser being given by Rnin, we get the following current tluough this condenser:. din Ln = LlCRn- dt (n = 1, 2,, ) (2) An additional relation for io has to he considered separately. The difference of the potentials at B and A amounts to V for t<o, and to -ioro for t >0. This petenrial difference can be interpreted, at any time, as the sum of the following two contributions: (1). the amount VU(-t),.arising from the electromotive -force applied at t<o. The unit function U(x) is defined here by 1 for x>o and by o for x<o;

3 DISCHARGE OF A SERIES OF CODESERS ----_._---_. 83 (2) the amount - Roio * if io* represents the difference of the actual current io and the direct current produced by V, viz. V io* = io U(-t). ~s; n~l The-first contribution vanishes for t>o, the second contribution for t<o. The potential difference between B and A also equals ~ Rnin; heuce: ~ Rnin = VU(-t) - Roio *. n=l ~ The set of the (2 + 1) equations (1), (2) and (4) suffices for a determination of the unknown functions il,i2,... ; i' il' i2'... -i» and io, if io has been replaced by io* according to (3). 3. Operational determination of the current io With a view to the calculation of the charge Q flowing through the galvanometer, we are particularly interested in the c1?'rent io. We first eliminate the functions il'...,i» by differentiating (1) and (4) while applying (2) and (3)2). With regard to the differentiation of (3) and (4) we recall the relation d d~ U(-x) = -<5(-x) = -<5(x), 1 (3) (4) <5(x)being Dirac's impulse function. The evaluation of the differentiations of (1) and (4) then finally leads to din in dio* V -+--=----<5(t) dt LlCRn dt s; ' n=l 1. dio* - ~ Ln = -Ro--- V<5(t)..dC n=l dt (n = 1, 2,..., ) (5) The functions i l,..., t» can be eliminated with the aid of-the operational method. The functions io*, i l,..., i all' vanish for t < 0 as well as for t-* + 00 and therefore have operational images for Re p >0 according to co io*(t).:!;= go(p) = p fe-f' io*(t) dt, - -co co in(t) ~~ gn(p) = p fe-pi in(t) dt. -ce (n'= 1,2,..., ) (6)

4 84 11.DREMMER The operational transposition of (5) can be performed by an application of the- differentiation rule, viz. and of the operational The result becomes relation b(t) '. p. (p + LI~RJ gn = pgo --:-p V, (n = 1,2,..., ) ~ Rn n=1 1 - ~ gn= LlC n=1 -Ropgo-pV. A substitution of the values of gl'..., g according to the former equation into the latter yields a relation containing go only. The final result for go then proves to be 1 ~ -~ n; n=il1cp + I/Rn n=1 1 :s +Ro n=il1cp + I/Rn 1 in which ~ represents the total impedance between A and B n=il1cp+l/rn for the frequency (J) = p/i. The charge flowing through the ballistic galvanometer, viz. co Q = I io*(t) dt, -co can be computed at once from the formula Q = lim go(p), p~o p as follows from (6). We obtain ~ Rn 2 - Q = V LIC,,=1. ~. Rn (Ro + ~ Rn) n=l n==l The elementary formula for a single resistance R parallel to the condeuser LIC corresponds to the special-case = 1, yielding R -Q= V LlC. Ro+R (7)

5 DISCHARGE OF A SERIES OF CODESERS 85 Formula (7) gives also information about the beginning of the discharge if we develop the p-function into a series of p-l. According to Heaviside's first expansion theorem the corresponding series of io is obtained by replacing each term p-b by t"in!. We get Vc (I I) io*(t)=-->l t+ Ro ( LlC n; ~ s; I + 2(Ll C)2 (~o+ ~IR) (:: +~l;jt ~, which series describes the gradual decreasing of io* after the jump -- VIRo at t = o. The duration of appreciable values of io* should be short compared to the vibration period of the ballistic galvanometer in order to get a reliable measurement of Q. Eindhoven, September 1950 n=1 REFERECES 1) W. Ch. van Geel and J. W. A. Scholte, Capacitë et pertes diëlectriques d'une couche d'oxyde dëposeë par oxydation anodique sur de l'aluminium, Philips Res. Rep. 6, 54-74, ) The method applied in this section is discussedin Chapters VIn and IX of Bal th. van der Pol and H. Bremmer, "Operational calculus based on the two-sided Laplace integral", Cambridge, University Press, 1950.

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Circuit Analysis Simple electric circuits may contain batteries, resistors, and capacitors in various combinations. For some circuits, analysis may consist of combining

More information

HIGH-FREQUENCY DIODE ADMITTANCE WITH,RETARDING DIRECT-CURRENT FIELD

HIGH-FREQUENCY DIODE ADMITTANCE WITH,RETARDING DIRECT-CURRENT FIELD , R 194 Philips Res. Rep. 7, 251-258, 1952 HIGH-FREQUENCY DIODE ADMITTANCE WITH,RETARDING DIRECT-CURRENT FIELD by K. S. KNOL and G. DIEMER 621.385.2.011.21 Summary A linear-field theory is given of the

More information

Chapter 7 Direct-Current Circuits

Chapter 7 Direct-Current Circuits Chapter 7 Direct-Current Circuits 7. Introduction... 7. Electromotive Force... 7.3 Resistors in Series and in Parallel... 4 7.4 Kirchhoff s Circuit Rules... 6 7.5 Voltage-Current Measurements... 8 7.6

More information

Direct-Current Circuits

Direct-Current Circuits Direct-Current Circuits A'.3/.". 39 '- )232.-/ 32,+/" 7+3(5-.)232.-/ 7 3244)'03,.5B )*+,"- &'&./( 0-1*234 35-2567+- *7 2829*4-& )"< 35- )*+,"-= 9-4-- 3563 A0.5.C2/'-231).D')232.')2-1 < /633-">&@5-:836+-0"1464-625"-4*43"

More information

Circuits. David J. Starling Penn State Hazleton PHYS 212

Circuits. David J. Starling Penn State Hazleton PHYS 212 Invention is the most important product of man s creative brain. The ultimate purpose is the complete mastery of mind over the material world, the harnessing of human nature to human needs. - Nikola Tesla

More information

Chapter 28 Solutions

Chapter 28 Solutions Chapter 8 Solutions 8.1 (a) P ( V) R becomes 0.0 W (11.6 V) R so R 6.73 Ω (b) V IR so 11.6 V I (6.73 Ω) and I 1.7 A ε IR + Ir so 15.0 V 11.6 V + (1.7 A)r r 1.97 Ω Figure for Goal Solution Goal Solution

More information

Electricity & Magnetism

Electricity & Magnetism Electricity & Magnetism D.C. Circuits Marline Kurishingal Note : This chapter includes only D.C. In AS syllabus A.C is not included. Recap... Electrical Circuit Symbols : Draw and interpret circuit diagrams

More information

PH 222-2C Fall Circuits. Lectures Chapter 27 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-2C Fall Circuits. Lectures Chapter 27 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-2C Fall 2012 Circuits Lectures 11-12 Chapter 27 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 27 Circuits In this chapter we will cover the following topics: -Electromotive

More information

Title Study on Surface Electricity. (XVI) effectii(continued) Author(s) Watanabe, Akira; Tsuji, Fukuju; Nis Shizuo Citation Bulletin of the Institute for Chemi University (1953), 31(4): 249-253 Issue Date

More information

Physics 220: Worksheet 7

Physics 220: Worksheet 7 (1 A resistor R 1 =10 is connected in series with a resistor R 2 =100. A current I=0.1 A is present through the circuit. What is the power radiated in each resistor and also in the total circuit? (2 A

More information

Chapter 27. Circuits

Chapter 27. Circuits Chapter 27 Circuits 1 1. Pumping Chagres We need to establish a potential difference between the ends of a device to make charge carriers follow through the device. To generate a steady flow of charges,

More information

April 24, 2012 (Tue) Lecture 19: Impulse Function and its Laplace Transform ( 6.5)

April 24, 2012 (Tue) Lecture 19: Impulse Function and its Laplace Transform ( 6.5) Lecture 19: Impulse Function and its Laplace Transform ( 6.5) April 24, 2012 (Tue) Impulse Phenomena of an impulsive nature, such as the action of very large forces (or voltages) over very short intervals

More information

r (p) = p J e- pf h (t) dt,

r (p) = p J e- pf h (t) dt, Mathematics. - Modern operational calculus based on the two-sided Laplace integral. I. By BALTH. VAN DER POL and H. BREMMER. (Laboratorium voor Wetenschappelijk Onderzoek, N.V. Philips' Gloeilampenfabrieken,

More information

D5.2 Type. Draw wire mechanics with incremental encoder. Measuring length max. 2 m. Compact and simple. Order code draw wire encoder

D5.2 Type. Draw wire mechanics with incremental encoder. Measuring length max. 2 m. Compact and simple. Order code draw wire encoder with incremental encoder Draw wire encoder A40 Traverse speed max. 0.8 m/s The draw wire system A40 with incremental encoder excels with its compact construction. RoHS Compact and simple Measuring length

More information

Chapter 4 Transients. Chapter 4 Transients

Chapter 4 Transients. Chapter 4 Transients Chapter 4 Transients Chapter 4 Transients 1. Solve first-order RC or RL circuits. 2. Understand the concepts of transient response and steady-state response. 1 3. Relate the transient response of first-order

More information

Physics 115. General Physics II. Session 24 Circuits Series and parallel R Meters Kirchoff s Rules

Physics 115. General Physics II. Session 24 Circuits Series and parallel R Meters Kirchoff s Rules Physics 115 General Physics II Session 24 Circuits Series and parallel R Meters Kirchoff s Rules R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 5/15/14 Phys

More information

Electric Currents. Resistors (Chapters 27-28)

Electric Currents. Resistors (Chapters 27-28) Electric Currents. Resistors (Chapters 27-28) Electric current I Resistance R and resistors Relation between current and resistance: Ohm s Law Resistivity ρ Energy dissipated by current. Electric power

More information

Electrical Circuits (2)

Electrical Circuits (2) Electrical Circuits (2) Lecture 7 Transient Analysis Dr.Eng. Basem ElHalawany Extra Reference for this Lecture Chapter 16 Schaum's Outline Of Theory And Problems Of Electric Circuits https://archive.org/details/theoryandproblemsofelectriccircuits

More information

Networks and Systems Prof. V. G. K. Murti Department of Electrical Engineering Indian Institute of Technology, Madras

Networks and Systems Prof. V. G. K. Murti Department of Electrical Engineering Indian Institute of Technology, Madras Networks and Systems Prof. V. G. K. Murti Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 34 Network Theorems (1) Superposition Theorem Substitution Theorem The next

More information

Funkentstör-Kondensatoren der Klasse X2

Funkentstör-Kondensatoren der Klasse X2 STÖRSCHUTZ-KONDENSATOREN Funkentstör-Kondensatoren der Klasse X2 TECHNICAL TERMS EXPLANATION Rated capacitance Capacitance referred to 1 khz, 20 +-1ºC, 65+-2% of relative humidity and 96+- 10 kpa. In case

More information

AP Physics C - E & M

AP Physics C - E & M AP Physics C - E & M Current and Circuits 2017-07-12 www.njctl.org Electric Current Resistance and Resistivity Electromotive Force (EMF) Energy and Power Resistors in Series and in Parallel Kirchoff's

More information

THE RELATIVE INTENSITY OF HARMONICS OF A LECHER SYSTEM. (THEORETICAL). By F. C. BLAKE.

THE RELATIVE INTENSITY OF HARMONICS OF A LECHER SYSTEM. (THEORETICAL). By F. C. BLAKE. THE RELATIVE INTENSITY OF HARMONICS OF A LECHER SYSTEM. (THEORETICAL). By F. C. BLAKE. In the previous paper Blake and Jackson have shown the dependence of tone-intensity upon the edge-on distance between

More information

4N25/ 4N26/ 4N27/ 4N28. Optocoupler with Phototransistor Output. Vishay Telefunken. Description. Applications. Features.

4N25/ 4N26/ 4N27/ 4N28. Optocoupler with Phototransistor Output. Vishay Telefunken. Description. Applications. Features. Optocoupler with Phototransistor Output Description The 4N25/ 4N26/ 4N27/ 4N28 consist of a phototransistor optically coupled to a gallium arsenide infrared-emitting diode in a 6-lead plastic dual-inline

More information

Electromotive Force. The electromotive force (emf), ε, of a battery is the maximum possible voltage that the battery can provide between its terminals

Electromotive Force. The electromotive force (emf), ε, of a battery is the maximum possible voltage that the battery can provide between its terminals Direct Current When the current in a circuit has a constant magnitude and direction, the current is called direct current Because the potential difference between the terminals of a battery is constant,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.044 Statistical Physics I Spring Term 2013 Problem 1: The Big Bang Problem Set #9 Due in hand-in box by 4;00 PM, Friday, April 19 Early in the

More information

4N35/ 4N36/ 4N37. Optocoupler with Phototransistor Output. Vishay Telefunken. Description. Applications. Features.

4N35/ 4N36/ 4N37. Optocoupler with Phototransistor Output. Vishay Telefunken. Description. Applications. Features. Optocoupler with Phototransistor Output Description The 4N35/ 4N36/ 4N37 consist of a phototransistor optically coupled to a gallium arsenide infraredemitting diode in a 6-lead plastic dual inline package.

More information

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits EECE25 Circuit Analysis I Set 4: Capacitors, Inductors, and First-Order Linear Circuits Shahriar Mirabbasi Department of Electrical and Computer Engineering University of British Columbia shahriar@ece.ubc.ca

More information

Science Olympiad Circuit Lab

Science Olympiad Circuit Lab Science Olympiad Circuit Lab Key Concepts Circuit Lab Overview Circuit Elements & Tools Basic Relationships (I, V, R, P) Resistor Network Configurations (Series & Parallel) Kirchhoff s Laws Examples Glossary

More information

Laplace Transforms Chapter 3

Laplace Transforms Chapter 3 Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first. Laplace transforms play a key role in important

More information

SOME USEFUL NETWORK THEOREMS

SOME USEFUL NETWORK THEOREMS APPENDIX D SOME USEFUL NETWORK THEOREMS Introduction In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin s theorem Norton s theorem

More information

Chapter 26 Direct-Current Circuits

Chapter 26 Direct-Current Circuits Chapter 26 Direct-Current Circuits 1 Resistors in Series and Parallel In this chapter we introduce the reduction of resistor networks into an equivalent resistor R eq. We also develop a method for analyzing

More information

Chapter 6. Second order differential equations

Chapter 6. Second order differential equations Chapter 6. Second order differential equations A second order differential equation is of the form y = f(t, y, y ) where y = y(t). We shall often think of t as parametrizing time, y position. In this case

More information

Multichannel Optocoupler with Phototransistor Output

Multichannel Optocoupler with Phototransistor Output CNY74 2H/ CNY74 4H Multichannel Optocoupler with Phototransistor Output Description The CNY74-2H and CNY74-4H consist of a phototransistor optically coupled to a gallium arsenide infrared-emitting diode

More information

PHYS 3900 Homework Set #02

PHYS 3900 Homework Set #02 PHYS 3900 Homework Set #02 Part = HWP 2.0, 2.02, 2.03. Due: Mon. Jan. 22, 208, 4:00pm Part 2 = HWP 2.04, 2.05, 2.06. Due: Fri. Jan. 26, 208, 4:00pm All textbook problems assigned, unless otherwise stated,

More information

Besides resistors, capacitors are one of the most common electronic components that you will encounter. Sometimes capacitors are components that one

Besides resistors, capacitors are one of the most common electronic components that you will encounter. Sometimes capacitors are components that one 1 Besides resistors, capacitors are one of the most common electronic components that you will encounter. Sometimes capacitors are components that one would deliberately add to a circuit. Other times,

More information

Capacitance, Resistance, DC Circuits

Capacitance, Resistance, DC Circuits This test covers capacitance, electrical current, resistance, emf, electrical power, Ohm s Law, Kirchhoff s Rules, and RC Circuits, with some problems requiring a knowledge of basic calculus. Part I. Multiple

More information

Superconductors A class of materials and compounds whose resistances fall to virtually zero below a certain temperature, T C T C is called the critical temperature The graph is the same as a normal metal

More information

The RC Circuit: An Approach with Fourier Transforms

The RC Circuit: An Approach with Fourier Transforms The RC Circuit: An Approach with Fourier Transforms In this article we shall mathematically analyse the Resistor- Capacitor RC) circuit with the help of Fourier transforms FT). This very general technique

More information

1 Review of di erential calculus

1 Review of di erential calculus Review of di erential calculus This chapter presents the main elements of di erential calculus needed in probability theory. Often, students taking a course on probability theory have problems with concepts

More information

Chapter 6 DIRECT CURRENT CIRCUITS. Recommended Problems: 6,9,11,13,14,15,16,19,20,21,24,25,26,28,29,30,31,33,37,68,71.

Chapter 6 DIRECT CURRENT CIRCUITS. Recommended Problems: 6,9,11,13,14,15,16,19,20,21,24,25,26,28,29,30,31,33,37,68,71. Chapter 6 DRECT CURRENT CRCUTS Recommended Problems: 6,9,,3,4,5,6,9,0,,4,5,6,8,9,30,3,33,37,68,7. RESSTORS N SERES AND N PARALLEL - N SERES When two resistors are connected together as shown we said that

More information

RC Circuits (32.9) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 1

RC Circuits (32.9) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 1 (32.9) We have only been discussing DC circuits so far. However, using a capacitor we can create an RC circuit. In this example, a capacitor is charged but the switch is open, meaning no current flows.

More information

Werner Strunz, Zahner-elektrik.

Werner Strunz, Zahner-elektrik. Werner Strunz, Zahner-elektrik www.zahner.de Overview Experimental Challenges for Battery-Measurements Magnetical Artefacts Time-Drift From Single Cell to Multi-Cell (Stack) Set-Up for High Power Handling

More information

THE DISTRIBUTION OF IMPURITY IN A SEMI-INFiNITE SOLIDIFIED MELT

THE DISTRIBUTION OF IMPURITY IN A SEMI-INFiNITE SOLIDIFIED MELT R 294 Philips Res. Rep. 11, 183-189, 1956 THE DISTRIBUTION OF IMPURITY IN A SEMI-INFiNITE SOLIDIFIED MELT by O. W. MEMELINK 532.73:532.78 Summary The transient distribution of impurity in a solidifying

More information

ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE

ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE ALEX BIJLSMA A note on elliptic functions approximation by algebraic numbers of bounded degree Annales de la faculté des sciences de Toulouse 5 e série, tome

More information

Existence Theory: Green s Functions

Existence Theory: Green s Functions Chapter 5 Existence Theory: Green s Functions In this chapter we describe a method for constructing a Green s Function The method outlined is formal (not rigorous) When we find a solution to a PDE by constructing

More information

An Optimised High Current Impulse Source

An Optimised High Current Impulse Source An Optimised High Current Impulse Source S. Kempen, D. Peier Institute of High Voltage Engineering, University of Dortmund, Germany Abstract Starting from a predefined 8/0 µs impulse current, the design

More information

CNY17 Series. Optocoupler with Phototransistor Output. Vishay Telefunken. Description. Applications. VDE Standards.

CNY17 Series. Optocoupler with Phototransistor Output. Vishay Telefunken. Description. Applications. VDE Standards. Optocoupler with Phototransistor Output Description The CNY7 series consists of a phototransistor optically coupled to a gallium arsenide infrared-emitting diode in a 6-lead plastic dual inline package.

More information

PHYSICS 171. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm).

PHYSICS 171. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm). PHYSICS 171 Experiment 3 Kirchhoff's Laws Equipment: Supplies: Digital Multimeter, Power Supply (0-20 V.). Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm). A. Kirchhoff's Loop Law Suppose that

More information

Chapter 3: Electric Current and Direct-Current Circuit

Chapter 3: Electric Current and Direct-Current Circuit Chapter 3: Electric Current and Direct-Current Circuit n this chapter, we are going to discuss both the microscopic aspect and macroscopic aspect of electric current. Direct-current is current that flows

More information

Electronics. Basics & Applications. group talk Daniel Biesinger

Electronics. Basics & Applications. group talk Daniel Biesinger Electronics Basics & Applications group talk 23.7.2010 by Daniel Biesinger 1 2 Contents Contents Basics Simple applications Equivalent circuit Impedance & Reactance More advanced applications - RC circuits

More information

Chapter 3: Electric Current And Direct-Current Circuits

Chapter 3: Electric Current And Direct-Current Circuits Chapter 3: Electric Current And Direct-Current Circuits 3.1 Electric Conduction 3.1.1 Describe the microscopic model of current Mechanism of Electric Conduction in Metals Before applying electric field

More information

In addition to resistors that we have considered to date, there are two other basic electronic components that can be found everywhere: the capacitor

In addition to resistors that we have considered to date, there are two other basic electronic components that can be found everywhere: the capacitor In addition to resistors that we have considered to date, there are two other basic electronic components that can be found everywhere: the capacitor and the inductor. We will consider these two types

More information

handbook, 050/052 4 columns smaller

handbook, 050/052 4 columns smaller 4/5 PED-ST FEATURES Polarized aluminium electrolytic capacitors, non-solid Large types, cylindrical aluminium case, insulated with a blue sleeve Also available in bolt version (PED-STB) Pressure relief

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Lights, sound systems, microwave ovens, and computers are all connected by wires to a battery or an electrical outlet. How and why does electric current flow through a wire? Chapter Goal: To learn how

More information

Refinements to Incremental Transistor Model

Refinements to Incremental Transistor Model Refinements to Incremental Transistor Model This section presents modifications to the incremental models that account for non-ideal transistor behavior Incremental output port resistance Incremental changes

More information

M. C. Escher: Waterfall. 18/9/2015 [tsl425 1/29]

M. C. Escher: Waterfall. 18/9/2015 [tsl425 1/29] M. C. Escher: Waterfall 18/9/2015 [tsl425 1/29] Direct Current Circuit Consider a wire with resistance R = ρl/a connected to a battery. Resistor rule: In the direction of I across a resistor with resistance

More information

Power lines. Why do birds sitting on a high-voltage power line survive?

Power lines. Why do birds sitting on a high-voltage power line survive? Power lines At large distances, the resistance of power lines becomes significant. To transmit maximum power, is it better to transmit high V, low I or high I, low V? (a) high V, low I (b) low V, high

More information

Ch 28-DC Circuits! 1.) EMF & Terminal Voltage! 9.0 V 8.7 V 8.7 V. V =! " Ir. Terminal Open circuit internal! voltage voltage (emf) resistance" 2.

Ch 28-DC Circuits! 1.) EMF & Terminal Voltage! 9.0 V 8.7 V 8.7 V. V =!  Ir. Terminal Open circuit internal! voltage voltage (emf) resistance 2. Ch 28-DC Circuits! 1.) EMF & Terminal Voltage! 9.0 V 8.7 V 8.7 V V =! " Ir Terminal Open circuit internal! voltage voltage (emf) resistance" 2.) Resistors in series! One of the bits of nastiness about

More information

Lecture 19: WED 07 OCT

Lecture 19: WED 07 OCT b Physics 2113 a Jonathan Dowling Lecture 19: WED 07 OCT Circuits I 27.2: Pumping Charges: In order to produce a steady flow of charge through a resistor, one needs a charge pump, a device that by doing

More information

Modeling of Transmission Line and Substation for Insulation Coordination Studies

Modeling of Transmission Line and Substation for Insulation Coordination Studies TRAINING DUBROVNIK, CROATIA - APRIL, 27-29 2009 SIMULATION & ANALYSIS OF POWER SYSTEM TRANSIENTS WITH EMTP-RV Modeling of Transmission Line and Substation for Insulation Coordination Studies Prof. Ivo

More information

REVIEW EXERCISES. 2. What is the resulting action if switch (S) is opened after the capacitor (C) is fully charged? Se figure 4.27.

REVIEW EXERCISES. 2. What is the resulting action if switch (S) is opened after the capacitor (C) is fully charged? Se figure 4.27. REVIEW EXERCISES Circle the letter of the correct answer to each question. 1. What is the current and voltage relationship immediately after the switch is closed in the circuit in figure 4-27, which shows

More information

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations 1 CAPACITANCE AND INDUCTANCE Introduces two passive, energy storing devices: Capacitors

More information

ELECTRIC CURRENT IN CONDUCTORS CHAPTER - 32

ELECTRIC CURRENT IN CONDUCTORS CHAPTER - 32 1. Q(t) t + Bt + c a) t Q Q 'T ' T t T b) Bt Q B Q 'T' t T c) C [Q] C T ELECTRIC CURRENT IN CONDUCTORS CHPTER - 3 1 1 d) Current t dq d t Bt C dt dt t + B 5 5 + 3 53.. No. of electrons per second 16 electrons

More information

Chapter 26 & 27. Electric Current and Direct- Current Circuits

Chapter 26 & 27. Electric Current and Direct- Current Circuits Chapter 26 & 27 Electric Current and Direct- Current Circuits Electric Current and Direct- Current Circuits Current and Motion of Charges Resistance and Ohm s Law Energy in Electric Circuits Combination

More information

POWER B. Terms: EMF, terminal voltage, internal resistance, load resistance. How to add up resistors in series and parallel: light bulb problems.

POWER B. Terms: EMF, terminal voltage, internal resistance, load resistance. How to add up resistors in series and parallel: light bulb problems. iclicker Quiz (1) I have completed at least 50% of the reading and study-guide assignments associated with the lecture, as indicated on the course schedule. A. True B. False Hint: this is a good time to

More information

Physics 115. AC: RL vs RC circuits Phase relationships RLC circuits. General Physics II. Session 33

Physics 115. AC: RL vs RC circuits Phase relationships RLC circuits. General Physics II. Session 33 Session 33 Physics 115 General Physics II AC: RL vs RC circuits Phase relationships RLC circuits R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 6/2/14 1

More information

Author(s) Watanabe, Akira; Tsuji, Fukuju; Nis.

Author(s) Watanabe, Akira; Tsuji, Fukuju; Nis. Title Study on Surface Electricity. (XVII Interfaces Author(s) Watanabe, Akira; Tsuji, Fukuju; Nis Citation Bulletin of the Institute for Chemi University (1954), 32(2): 62-69 Issue Date 1954-03-31 URL

More information

APPENDIX: TRANSMISSION LINE MODELLING AND PORT-BASED CIRCUITS

APPENDIX: TRANSMISSION LINE MODELLING AND PORT-BASED CIRCUITS APPENDIX: TRANSMISSION LINE MODELLING AND PORT-BASED CIRCUITS A. MODELLING TRANSMISSION LINES THROUGH CIRCUITS In Chapter 5 we introduced the so-called basic rule for modelling circuital systems through

More information

Direct Current (DC) Circuits

Direct Current (DC) Circuits Direct Current (DC) Circuits NOTE: There are short answer analysis questions in the Participation section the informal lab report. emember to include these answers in your lab notebook as they will be

More information

AC vs. DC Circuits. Constant voltage circuits. The voltage from an outlet is alternating voltage

AC vs. DC Circuits. Constant voltage circuits. The voltage from an outlet is alternating voltage Circuits AC vs. DC Circuits Constant voltage circuits Typically referred to as direct current or DC Computers, logic circuits, and battery operated devices are examples of DC circuits The voltage from

More information

Lecture 23: NorCal 40A Power Amplifier. Thermal Modeling.

Lecture 23: NorCal 40A Power Amplifier. Thermal Modeling. Whites, EE 322 Lecture 23 Page 1 of 13 Lecture 23: NorCal 40A Power Amplifier. Thermal Modeling. Recall from the last lecture that the NorCal 40A uses a Class C power amplifier. From Fig. 10.3(b) the collector

More information

Version 001 CIRCUITS holland (1290) 1

Version 001 CIRCUITS holland (1290) 1 Version CIRCUITS holland (9) This print-out should have questions Multiple-choice questions may continue on the next column or page find all choices before answering AP M 99 MC points The power dissipated

More information

IMPEDANCE OF DIELECTRIC LAYERS

IMPEDANCE OF DIELECTRIC LAYERS R 353 Philips Res., Repts 13, 489 498, 1958 IMPEDANCE OF DIELECTRIC LAYERS Summary by P. WINKEL and D. G. de GROOT 537.226: 537.311.6 It is shown that, according to a theory on amorphous dielectrics as

More information

ALUMINUM ELECTROLYTIC CAPACITORS Capacitor Life

ALUMINUM ELECTROLYTIC CAPACITORS Capacitor Life 1 of 8 5/12/2008 10:23 PM Home About Us Products Contact Us Info Other Links Aluminum Part # Search ALUMINUM ELECTROLYTIC CAPACITORS Capacitor Life Table of Contents Capacitor Life The life of aluminum

More information

SINEAX VK 626 Programmable Temperature Transmitter for RTD and TC inputs, with HART protocol

SINEAX VK 626 Programmable Temperature Transmitter for RTD and TC inputs, with HART protocol SINEAX VK 66 for RTD and TC inputs, with HART procol for installation in the terminal head of a temperature sensor DIN 79, shape B Application II () G SINEAX VK 66 is a two-wire head-mounted transmitter.

More information

An Integrating Circuit for Measurement of the Areas of the Waves in the

An Integrating Circuit for Measurement of the Areas of the Waves in the An Integrating Circuit for Measurement of the Areas of the Waves in the Electrocardiogram By FRANKLIN D. JOHNSTON, M. D., RICHARD McFEE, M. S., AND J. MARION BRYANT, M. D. An electronic circuit capable

More information

Lecture 4: Dynamics of Equivalent Circuits

Lecture 4: Dynamics of Equivalent Circuits Lecture 4: Dynamics of Equivalent Circuits MIT Student (and MZB) 1. Simple Equivalent Circuit for a Battery Batteries have a finite charge capacity Q max. So the open circuit voltage is dependent upon

More information

1 2 U CV. K dq I dt J nqv d J V IR P VI

1 2 U CV. K dq I dt J nqv d J V IR P VI o 5 o T C T F 3 9 T K T o C 73.5 L L T V VT Q mct nct Q F V ml F V dq A H k TH TC L pv nrt 3 Ktr nrt 3 CV R ideal monatomic gas 5 CV R ideal diatomic gas w/o vibration V W pdv V U Q W W Q e Q Q e Carnot

More information

CNY64/ CNY65/ CNY66. Optocoupler with Phototransistor Output. Vishay Telefunken. Description. Applications. VDE Standards

CNY64/ CNY65/ CNY66. Optocoupler with Phototransistor Output. Vishay Telefunken. Description. Applications. VDE Standards Optocoupler with Phototransistor Output Description The CNY64/ CNY65/ CNY66 consist of a phototransistor optically coupled to a gallium arsenide infrared-emitting diode in a 4-lead plastic package. The

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Circuit Analysis Simple electric circuits may contain batteries, resistors, and capacitors in various combinations. For some circuits, analysis may consist of combining

More information

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery Capacitance The ratio C = Q/V is a conductor s self capacitance Units of capacitance: Coulomb/Volt = Farad A capacitor is made of two conductors with equal but opposite charge Capacitance depends on shape

More information

Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526)

Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526) NCEA Level 3 Physics (91526) 2015 page 1 of 6 Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526) Evidence Q Evidence Achievement Achievement with Merit Achievement

More information

DC Circuits. Electromotive Force Resistor Circuits. Kirchoff s Rules. RC Circuits. Connections in parallel and series. Complex circuits made easy

DC Circuits. Electromotive Force Resistor Circuits. Kirchoff s Rules. RC Circuits. Connections in parallel and series. Complex circuits made easy DC Circuits Electromotive Force esistor Circuits Connections in parallel and series Kirchoff s ules Complex circuits made easy C Circuits Charging and discharging Electromotive Force (EMF) EMF, E, is the

More information

An Innovative Simple Test Circuit for Single-Phase Short Circuit Making Test of High-Voltage Switching Devices

An Innovative Simple Test Circuit for Single-Phase Short Circuit Making Test of High-Voltage Switching Devices An Innovative Simple Test Circuit for Single-Phase Short Circuit Making Test of High-Voltage Switching Devices Downloaded from jiaeee.com at 2:32 +33 on Sunday November 4th 28 Abstract: N. Nikpour K. Niayesh

More information

TCET110.(G) up to TCET4100. Optocoupler with Phototransistor Output. Vishay Telefunken. Description. Applications. VDE Standards

TCET110.(G) up to TCET4100. Optocoupler with Phototransistor Output. Vishay Telefunken. Description. Applications. VDE Standards Optocoupler with Phototransistor Output Description The TCET11./ TCET2/ TCET4 consists of a phototransistor optically coupled to a gallium arsenide infrared-emitting diode in a 4-lead up to 16-lead plastic

More information

MODULE I. Transient Response:

MODULE I. Transient Response: Transient Response: MODULE I The Transient Response (also known as the Natural Response) is the way the circuit responds to energies stored in storage elements, such as capacitors and inductors. If a capacitor

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Electromotive Force An electromotive force device, or emf device, is a source of constant potential. The emf describes the work done per unit charge and has units of

More information

Insulated Gate Bipolar Transistor (IGBT)

Insulated Gate Bipolar Transistor (IGBT) BUK856-8A GENERAL DESCRIPTION QUICK REFERENCE DATA Fast-switching N-channel insulated SYMBOL PARAMETER MAX. UNIT gate bipolar power transistor in a plastic envelope. V CE Collector-emitter voltage 8 V

More information

Exercise 1: Capacitors

Exercise 1: Capacitors Capacitance AC 1 Fundamentals Exercise 1: Capacitors EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe the effect a capacitor has on dc and ac circuits by using measured

More information

Dynamic operation 20

Dynamic operation 20 Dynamic operation 20 A simple model for the propagation delay Symmetric inverter (rise and fall delays are identical) otal capacitance is linear t p Minimum length devices R W C L t = 0.69R C = p W L 0.69

More information

Control Systems Engineering (Chapter 2. Modeling in the Frequency Domain) Prof. Kwang-Chun Ho Tel: Fax:

Control Systems Engineering (Chapter 2. Modeling in the Frequency Domain) Prof. Kwang-Chun Ho Tel: Fax: Control Systems Engineering (Chapter 2. Modeling in the Frequency Domain) Prof. Kwang-Chun Ho kwangho@hansung.ac.kr Tel: 02-760-4253 Fax:02-760-4435 Overview Review on Laplace transform Learn about transfer

More information

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying

More information

Figure 1. (a) An alternating current power supply provides a current that keeps switching direction.

Figure 1. (a) An alternating current power supply provides a current that keeps switching direction. 1 Figure 1 shows the output from the terminals of a power supply labelled d.c. (direct current). Voltage / V 6 4 2 0 2 0 5 10 15 20 25 Time/ms 30 35 40 45 50 Figure 1 (a) An alternating current power supply

More information

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations Op-Amp Integrator and Op-Amp Differentiator 1 CAPACITANCE AND INDUCTANCE Introduces

More information

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1 5.0 CMOS Inverter W.Kucewicz VLSICirciuit Design 1 Properties Switching Threshold Dynamic Behaviour Capacitance Propagation Delay nmos/pmos Ratio Power Consumption Contents W.Kucewicz VLSICirciuit Design

More information

Unit 2 Electrical Quantities and Ohm s Law

Unit 2 Electrical Quantities and Ohm s Law Electrical Quantities and Ohm s Law Objectives: Define a coulomb. Define an ampere. Define a volt. Define an ohm. Define a watt. Objectives: Compute electrical values using Ohm s law. Discuss basic types

More information

Electric Circuits I FINAL EXAMINATION

Electric Circuits I FINAL EXAMINATION EECS:300, Electric Circuits I s6fs_elci7.fm - Electric Circuits I FINAL EXAMINATION Problems Points.. 3. 0 Total 34 Was the exam fair? yes no 5//6 EECS:300, Electric Circuits I s6fs_elci7.fm - Problem

More information

Topic 5.2 Heating Effect of Electric Currents

Topic 5.2 Heating Effect of Electric Currents Topic 5.2 Heating Effect of Electric Currents Kari Eloranta 2017 Jyväskylän Lyseon lukio International Baccalaureate February 14, 2017 Topic 5.2 Heating Effect of Electric Currents In subtopic 5.2 we study

More information

Current. I = ei e = en e Av d. The current, which is Coulomb s per second, is simply

Current. I = ei e = en e Av d. The current, which is Coulomb s per second, is simply Current The current, which is Coulomb s per second, is simply I = ei e = en e Av d e is the charge is the electron! ne is the density of electrons! A is the cross sectional area of the wire! vd is the

More information

CIRCUIT ELEMENT: CAPACITOR

CIRCUIT ELEMENT: CAPACITOR CIRCUIT ELEMENT: CAPACITOR PROF. SIRIPONG POTISUK ELEC 308 Types of Circuit Elements Two broad types of circuit elements Ati Active elements -capable of generating electric energy from nonelectric energy

More information