Electronics. Basics & Applications. group talk Daniel Biesinger

Size: px
Start display at page:

Download "Electronics. Basics & Applications. group talk Daniel Biesinger"

Transcription

1 Electronics Basics & Applications group talk by Daniel Biesinger 1

2 2 Contents

3 Contents Basics Simple applications Equivalent circuit Impedance & Reactance More advanced applications - RC circuits Source-Drain Box Battery Box 2

4 Basics Current and voltage are crucial quantities Current law: Mesh rule: n I k =0 k=1 n V k =0 k=1 V and I are connected via Ohm s law: V = RI 3

5 Basics 1. Ohm s law Current and voltage are crucial quantities Current law: Mesh rule: n I k =0 k=1 n V k =0 k=1 V and I are connected via Ohm s law: V = RI 3

6 Basics Defined by Ohm s law: Symbol: In series: In parallel: R tot = 1 R tot = n Power dissipation: i R i n i 1 R i P = IV = I 2 R = V 2 4 R = V/I R [R] = kg m2 A 2 s 3 =Ω

7 Basics 2. Resistors Defined by Ohm s law: Symbol: In series: In parallel: R tot = 1 R tot = n Power dissipation: i R i n i 1 R i P = IV = I 2 R = V 2 4 R = V/I R [R] = kg m2 A 2 s 3 =Ω

8 Basics Defined by: Q = CV or I = C dv dt [C] = C V = A2 s 4 kg m 2 = F Symbol: In series: In parallel: 1 C tot = C tot = n n Cannot dissipate power i i 1 C i C i 5

9 Basics 3. Capacitors Defined by: Q = CV or I = C dv dt [C] = C V = A2 s 4 kg m 2 = F Symbol: In series: In parallel: 1 C tot = C tot = n n Cannot dissipate power i i 1 C i C i 5

10 Basics Defined by: V = L di dt [L] = kg m2 A 2 s 2 = H Symbol: In series: In parallel: L tot = 1 L tot = Stored energy: n i n i L i 1 L i E = 1 2 LI2 6

11 Basics 4. Inductors Defined by: V = L di dt [L] = kg m2 A 2 s 2 = H Symbol: In series: In parallel: L tot = 1 L tot = Stored energy: n i n i L i 1 L i E = 1 2 LI2 6

12 Basics Perfect voltage source: Maintains fixed voltage droop independent from load Symbol: Real voltage source: Can only supply a finite current = perfect voltage source with a small resistor in series 7

13 Basics 5. Current - and voltage sources Perfect voltage source: Maintains fixed voltage droop independent from load Symbol: Real voltage source: Can only supply a finite current = perfect voltage source with a small resistor in series 7

14 Basics Perfect current source: Maintains constant current regardless of load resistance Symbol: Real voltage source: Has maximum voltage it can supply = perfect current source with big resistor in parallel 8

15 Basics 5. Current - and voltage sources Perfect current source: Maintains constant current regardless of load resistance Symbol: Real voltage source: Has maximum voltage it can supply = perfect current source with big resistor in parallel 8

16 Basics How can one compare the relative amplitudes/strengths of two signals? Introduce the unit (deci)bel : db = 20 log A 1 A 2 Note: A 2 =2A 1 6dB In terms of power levels: db = 10 log P 1 P 2 Reference signal needed 9

17 Basics 6. The decibel scale How can one compare the relative amplitudes/strengths of two signals? Introduce the unit (deci)bel : db = 20 log A 1 A 2 Note: A 2 =2A 1 6dB In terms of power levels: db = 10 log P 1 P 2 Reference signal needed 9

18 Simple applications Output voltage is a certain fraction of the input voltage without load, current is the same everywhere I = V in R 1 + R 2 V out = R 2 R 1 + R 2 V in 10

19 Simple applications 1. Voltage dividers Output voltage is a certain fraction of the input voltage without load, current is the same everywhere I = V in R 1 + R 2 V out = R 2 R 1 + R 2 V in 10

20 Simple applications More sophisticated dividers use potentiometer V out = R 2 R 1 + R 2 V in 11

21 Simple applications 1. Voltage dividers More sophisticated dividers use potentiometer V out = R 2 R 1 + R 2 V in 11

22 Simple applications Real divider has a load attached R tot = R 2R L R 2 + R L + R 1 I = V in R tot V L = I R 2R L R 2 + R L V L = V in R 2 R L R 2 R L +R 1 R L +R 1 R 2 12

23 Simple applications 1. Voltage dividers Real divider has a load attached R tot = R 2R L R 2 + R L + R 1 I = V in R tot V L = I R 2R L R 2 + R L V L = V in R 2 R L R 2 R L +R 1 R L +R 1 R 2 12

24 Simple applications Some circuits perform calculations I = C d dt (V in V out )= V R V in (t) V out (t) dv out dt dv in dt V (t) =RC d dt V in(t) Output is prop. to rate of change/derivative of input 13

25 Simple applications 2. Differentiators Some circuits perform calculations I = C d dt (V in V out )= V R V in (t) V out (t) dv out dt dv in dt V (t) =RC d dt V in(t) Output is prop. to rate of change/derivative of input 13

26 Simple applications example: 14

27 Simple applications 2. Differentiators example: 14

28 Simple applications Exchange R and C in the differentiator circuit I = C dv dt = V in V out R V in (t) keep RC large V out V in V out (t) C dv dt V in R 15 V (t) = 1 RC t V in(t) dt + const.

29 Simple applications 3. Integrators Exchange R and C in the differentiator circuit I = C dv dt = V in V out R V in (t) keep RC large V out V in V out (t) C dv dt V in R 15 V (t) = 1 RC t V in(t) dt + const.

30 Equivalent circuit Every two terminal network of resistors and voltage sources can equivalently be represented by a single resistor Rth in series with a single voltage source Vth. 16

31 Equivalent circuit 1. Thévenin s theorem: Every two terminal network of resistors and voltage sources can equivalently be represented by a single resistor Rth in series with a single voltage source Vth. 16

32 Equivalent circuit How can one figure out Rth and Vth? Vth is the open circuit voltage Rth can be calculated by using the short circuit current: R th = V (open circuit) I(short circuit) 17

33 Equivalent circuit Open circuit voltage is given by Short circuit current: V in /R 1 V = V in R 2 R 1 + R 2 Rth is then given by: R th = R 1R 2 R 1 + R 2 18

34 Equivalent circuit Example: Voltage divider Open circuit voltage is given by Short circuit current: V in /R 1 V = V in R 2 R 1 + R 2 Rth is then given by: R th = R 1R 2 R 1 + R 2 18

35 Impedance & Reactance C, L are linear: output changes prop. to input Circuits with C and L have frequency dependence C, L change phase of input signal Impedance extends the concept of resistance to AC circuits, relative phase is taken into account 19

36 Impedance & Reactance 1. Problem C, L are linear: output changes prop. to input Circuits with C and L have frequency dependence C, L change phase of input signal Impedance extends the concept of resistance to AC circuits, relative phase is taken into account 19

37 Impedance & Reactance Take relative phase into account by using complex numbers Now and V,I C V (t) =Re(Ve iωt ) The Impedance is then defined as: Z = Z e iωt Z = R + ix ωt = φ 20

38 Impedance & Reactance 2. Solution Take relative phase into account by using complex numbers Now and V,I C V (t) =Re(Ve iωt ) The Impedance is then defined as: Z = Z e iωt Z = R + ix ωt = φ 20

39 Impedance & Reactance Impedance of R,C and L are given by: Z R = R Z C = 1 iωc Z L = iωl Ohm`s law is still valid: V = IZ Z tot = n i Z i (series) 1 Z tot = n i 1 Z i (parallel) 21

40 Impedance & Reactance 3. Impedance ZR, ZL, ZC and Ohm s law Impedance of R,C and L are given by: Z R = R Z C = 1 iωc Z L = iωl Ohm`s law is still valid: V = IZ Z tot = n i Z i (series) 1 Z tot = n i 1 Z i (parallel) 21

41 Output Impedance Impedance of the output of a circuit = int. resistance Limits the current that can by supplied to a load Very important for power supplies Cannot be measured with Ohmmeter Indirect measurement necessary 22

42 Output Impedance 1. Definition Impedance of the output of a circuit = int. resistance Limits the current that can by supplied to a load Very important for power supplies Cannot be measured with Ohmmeter Indirect measurement necessary 22

43 Output Impedance Output Impedance = Zi Measure Output voltage V without a load Use known load RL, measure the voltage VL over RL: V L = R L I and I = V Z i + R L Z I = R L V V L 1 23

44 Output Impedance 2. Measure Zi Output Impedance = Zi Measure Output voltage V without a load Use known load RL, measure the voltage VL over RL: V L = R L I and I = V Z i + R L Z I = R L V V L 1 23

45 Output Impedance Used to maximize the transferred power Design input impedance of load/output impedance of source Z L = Z S 24

46 Output Impedance 2. Impedance Matching Used to maximize the transferred power Design input impedance of load/output impedance of source Z L = Z S 24

47 RC-circuits Frequency dependent voltage dividers Ability to pass frequencies of interest while rejecting all other frequencies Usually one speaks of RC-filters Plenty of applications, therefore very important 25

48 RC-circuits Most common RC circuit, used e.g. in audio amp. 26 I = V in Z tot = = V in R + R V out = V in R + V in R + 1 iωc i ωc ω 2 C 2 i ωc R R ω 2 C 2

49 RC-circuits 1. High-pass filter Most common RC circuit, used e.g. in audio amp. 26 I = V in Z tot = = V in R + R V out = V in R + V in R + 1 iωc i ωc ω 2 C 2 i ωc R R ω 2 C 2

50 RC-circuits Amplitude of output signal: V out = V in R R /2 ω 2 C 2 27

51 RC-circuits 1. High-pass filter Amplitude of output signal: V out = V in R R /2 ω 2 C 2 27

52 RC-circuits Exchange R and C in the High-pass filter V out = V in 1 (1 + ω 2 R 2 C 2 ) 1/2 28

53 RC-circuits 2. Low-pass filter Exchange R and C in the High-pass filter V out = V in 1 (1 + ω 2 R 2 C 2 ) 1/2 28

54 RC-circuits Exchange R and C in the High-pass filter Can be used e.g. to eliminate interference 29

55 RC-circuits 2. Low-pass filter Exchange R and C in the High-pass filter Can be used e.g. to eliminate interference 29

56 RC-circuits Combinations of capacitors and inductors Very sharp frequency characteristic V in V out Z CL = i 1 ωl ωc ZCL and ZR act like a voltage divider 30

57 RC-circuits 3. Resonant circuit Combinations of capacitors and inductors Very sharp frequency characteristic V in V out Z CL = i 1 ωl ωc ZCL and ZR act like a voltage divider 30

58 RC-circuits Opposite behavior of C and L leads to: lim ω ω R Z CL Losses in C and L limit sharpness of the peak Used e.g. in radio amplifiers 31

59 RC-circuits 3. Resonant circuit Opposite behavior of C and L leads to: lim ω ω R Z CL Losses in C and L limit sharpness of the peak Used e.g. in radio amplifiers 31

60 Source-Drain Box Couple AC- and DC voltages Precise control over the amplitude of both AC and DC voltages Should not depend on frequency 32

61 Source-Drain Box 1. Intention Couple AC- and DC voltages Precise control over the amplitude of both AC and DC voltages Should not depend on frequency 32

62 Source-Drain Box AC DC 6.8kΩ 100 Ω 56Ω 50kΩ 4:1 Source Drain Ground 33

63 Source-Drain Box 2. Circuit AC DC 6.8kΩ 100 Ω 56Ω 50kΩ 4:1 Source Drain Ground 33

64 Source-Drain Box Voltage Divider 1: 1:122 Voltage DIvider 2: 1:501 Transformer: 4:1 Output is 1: of AC input DC input is divided by

65 Battery Box Simple to use voltage source (DC) Adjustable over wide range of voltages (1mV - 9V) + 1µF 10k 10k 9V + 90k 35

66 Battery Box 1. Intention Simple to use voltage source (DC) Adjustable over wide range of voltages (1mV - 9V) + 1µF 10k 10k 9V + 90k 35

67 Battery Box Standard 9V battery Potentiometer to adjust voltage Voltage divider to switch between ranges + 1µF 10k 10k 9V + 90k 36

Prof. Anyes Taffard. Physics 120/220. Voltage Divider Capacitor RC circuits

Prof. Anyes Taffard. Physics 120/220. Voltage Divider Capacitor RC circuits Prof. Anyes Taffard Physics 120/220 Voltage Divider Capacitor RC circuits Voltage Divider The figure is called a voltage divider. It s one of the most useful and important circuit elements we will encounter.

More information

Handout 11: AC circuit. AC generator

Handout 11: AC circuit. AC generator Handout : AC circuit AC generator Figure compares the voltage across the directcurrent (DC) generator and that across the alternatingcurrent (AC) generator For DC generator, the voltage is constant For

More information

Lecture 4: R-L-C Circuits and Resonant Circuits

Lecture 4: R-L-C Circuits and Resonant Circuits Lecture 4: R-L-C Circuits and Resonant Circuits RLC series circuit: What's V R? Simplest way to solve for V is to use voltage divider equation in complex notation: V X L X C V R = in R R + X C + X L L

More information

R-L-C Circuits and Resonant Circuits

R-L-C Circuits and Resonant Circuits P517/617 Lec4, P1 R-L-C Circuits and Resonant Circuits Consider the following RLC series circuit What's R? Simplest way to solve for is to use voltage divider equation in complex notation. X L X C in 0

More information

Sinusoidal Steady-State Analysis

Sinusoidal Steady-State Analysis Chapter 4 Sinusoidal Steady-State Analysis In this unit, we consider circuits in which the sources are sinusoidal in nature. The review section of this unit covers most of section 9.1 9.9 of the text.

More information

Announcements: Today: more AC circuits

Announcements: Today: more AC circuits Announcements: Today: more AC circuits I 0 I rms Current through a light bulb I 0 I rms I t = I 0 cos ωt I 0 Current through a LED I t = I 0 cos ωt Θ(cos ωt ) Theta function (is zero for a negative argument)

More information

Figure Circuit for Question 1. Figure Circuit for Question 2

Figure Circuit for Question 1. Figure Circuit for Question 2 Exercises 10.7 Exercises Multiple Choice 1. For the circuit of Figure 10.44 the time constant is A. 0.5 ms 71.43 µs 2, 000 s D. 0.2 ms 4 Ω 2 Ω 12 Ω 1 mh 12u 0 () t V Figure 10.44. Circuit for Question

More information

1 Phasors and Alternating Currents

1 Phasors and Alternating Currents Physics 4 Chapter : Alternating Current 0/5 Phasors and Alternating Currents alternating current: current that varies sinusoidally with time ac source: any device that supplies a sinusoidally varying potential

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits 1 Capacitor Resistor + Q = C V = I R R I + + Inductance d I Vab = L dt AC power source The AC power source provides an alternative voltage, Notation - Lower case

More information

Supplemental Notes on Complex Numbers, Complex Impedance, RLC Circuits, and Resonance

Supplemental Notes on Complex Numbers, Complex Impedance, RLC Circuits, and Resonance Supplemental Notes on Complex Numbers, Complex Impedance, RLC Circuits, and Resonance Complex numbers Complex numbers are expressions of the form z = a + ib, where both a and b are real numbers, and i

More information

Basic RL and RC Circuits R-L TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri

Basic RL and RC Circuits R-L TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri st Class Basic RL and RC Circuits The RL circuit with D.C (steady state) The inductor is short time at Calculate the inductor current for circuits shown below. I L E R A I L E R R 3 R R 3 I L I L R 3 R

More information

Lecture 24. Impedance of AC Circuits.

Lecture 24. Impedance of AC Circuits. Lecture 4. Impedance of AC Circuits. Don t forget to complete course evaluations: https://sakai.rutgers.edu/portal/site/sirs Post-test. You are required to attend one of the lectures on Thursday, Dec.

More information

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the

More information

DC and AC Impedance of Reactive Elements

DC and AC Impedance of Reactive Elements 3/6/20 D and A Impedance of Reactive Elements /6 D and A Impedance of Reactive Elements Now, recall from EES 2 the complex impedances of our basic circuit elements: ZR = R Z = jω ZL = jωl For a D signal

More information

Introduction to AC Circuits (Capacitors and Inductors)

Introduction to AC Circuits (Capacitors and Inductors) Introduction to AC Circuits (Capacitors and Inductors) Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

A capacitor is a device that stores electric charge (memory devices). A capacitor is a device that stores energy E = Q2 2C = CV 2

A capacitor is a device that stores electric charge (memory devices). A capacitor is a device that stores energy E = Q2 2C = CV 2 Capacitance: Lecture 2: Resistors and Capacitors Capacitance (C) is defined as the ratio of charge (Q) to voltage (V) on an object: C = Q/V = Coulombs/Volt = Farad Capacitance of an object depends on geometry

More information

2. The following diagram illustrates that voltage represents what physical dimension?

2. The following diagram illustrates that voltage represents what physical dimension? BioE 1310 - Exam 1 2/20/2018 Answer Sheet - Correct answer is A for all questions 1. A particular voltage divider with 10 V across it consists of two resistors in series. One resistor is 7 KΩ and the other

More information

EE221 Circuits II. Chapter 14 Frequency Response

EE221 Circuits II. Chapter 14 Frequency Response EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active

More information

ECE2262 Electric Circuit

ECE2262 Electric Circuit ECE2262 Electric Circuit Chapter 7: FIRST AND SECOND-ORDER RL AND RC CIRCUITS Response to First-Order RL and RC Circuits Response to Second-Order RL and RC Circuits 1 2 7.1. Introduction 3 4 In dc steady

More information

2.1 The electric field outside a charged sphere is the same as for a point source, E(r) =

2.1 The electric field outside a charged sphere is the same as for a point source, E(r) = Chapter Exercises. The electric field outside a charged sphere is the same as for a point source, E(r) Q 4πɛ 0 r, where Q is the charge on the inner surface of radius a. The potential drop is the integral

More information

I. Impedance of an R-L circuit.

I. Impedance of an R-L circuit. I. Impedance of an R-L circuit. [For inductor in an AC Circuit, see Chapter 31, pg. 1024] Consider the R-L circuit shown in Figure: 1. A current i(t) = I cos(ωt) is driven across the circuit using an AC

More information

Physics 142 AC Circuits Page 1. AC Circuits. I ve had a perfectly lovely evening but this wasn t it. Groucho Marx

Physics 142 AC Circuits Page 1. AC Circuits. I ve had a perfectly lovely evening but this wasn t it. Groucho Marx Physics 142 A ircuits Page 1 A ircuits I ve had a perfectly lovely evening but this wasn t it. Groucho Marx Alternating current: generators and values It is relatively easy to devise a source (a generator

More information

Sinusoidal Steady State Analysis (AC Analysis) Part I

Sinusoidal Steady State Analysis (AC Analysis) Part I Sinusoidal Steady State Analysis (AC Analysis) Part I Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

Driven RLC Circuits Challenge Problem Solutions

Driven RLC Circuits Challenge Problem Solutions Driven LC Circuits Challenge Problem Solutions Problem : Using the same circuit as in problem 6, only this time leaving the function generator on and driving below resonance, which in the following pairs

More information

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

More information

Exam 2, Phy 2049, Spring Solutions:

Exam 2, Phy 2049, Spring Solutions: Exam 2, Phy 2049, Spring 2017. Solutions: 1. A battery, which has an emf of EMF = 10V and an internal resistance of R 0 = 50Ω, is connected to three resistors, as shown in the figure. The resistors have

More information

REACTANCE. By: Enzo Paterno Date: 03/2013

REACTANCE. By: Enzo Paterno Date: 03/2013 REACTANCE REACTANCE By: Enzo Paterno Date: 03/2013 5/2007 Enzo Paterno 1 RESISTANCE - R i R (t R A resistor for all practical purposes is unaffected by the frequency of the applied sinusoidal voltage or

More information

Physics 115. AC: RL vs RC circuits Phase relationships RLC circuits. General Physics II. Session 33

Physics 115. AC: RL vs RC circuits Phase relationships RLC circuits. General Physics II. Session 33 Session 33 Physics 115 General Physics II AC: RL vs RC circuits Phase relationships RLC circuits R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 6/2/14 1

More information

University of California, Berkeley Physics H7B Spring 1999 (Strovink) SOLUTION TO PROBLEM SET 11 Solutions by P. Pebler

University of California, Berkeley Physics H7B Spring 1999 (Strovink) SOLUTION TO PROBLEM SET 11 Solutions by P. Pebler University of California Berkeley Physics H7B Spring 999 (Strovink) SOLUTION TO PROBLEM SET Solutions by P. Pebler Purcell 7.2 A solenoid of radius a and length b is located inside a longer solenoid of

More information

AC Circuits Homework Set

AC Circuits Homework Set Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.

More information

Version 001 CIRCUITS holland (1290) 1

Version 001 CIRCUITS holland (1290) 1 Version CIRCUITS holland (9) This print-out should have questions Multiple-choice questions may continue on the next column or page find all choices before answering AP M 99 MC points The power dissipated

More information

Alternating Current Circuits. Home Work Solutions

Alternating Current Circuits. Home Work Solutions Chapter 21 Alternating Current Circuits. Home Work s 21.1 Problem 21.11 What is the time constant of the circuit in Figure (21.19). 10 Ω 10 Ω 5.0 Ω 2.0µF 2.0µF 2.0µF 3.0µF Figure 21.19: Given: The circuit

More information

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA DISCUSSION The capacitor is a element which stores electric energy by charging the charge on it. Bear in mind that the charge on a capacitor

More information

INTC 1307 Instrumentation Test Equipment Teaching Unit 6 AC Bridges

INTC 1307 Instrumentation Test Equipment Teaching Unit 6 AC Bridges IHLAN OLLEGE chool of Engineering & Technology ev. 0 W. lonecker ev. (8/6/0) J. Bradbury INT 307 Instrumentation Test Equipment Teaching Unit 6 A Bridges Unit 6: A Bridges OBJETIVE:. To explain the operation

More information

Electricity and Light Pre Lab Questions

Electricity and Light Pre Lab Questions Electricity and Light Pre Lab Questions The pre lab questions can be answered by reading the theory and procedure for the related lab. You are strongly encouraged to answers these questions on your own.

More information

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations Op-Amp Integrator and Op-Amp Differentiator 1 CAPACITANCE AND INDUCTANCE Introduces

More information

EE221 Circuits II. Chapter 14 Frequency Response

EE221 Circuits II. Chapter 14 Frequency Response EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active

More information

Sinusoidal Steady-State Analysis

Sinusoidal Steady-State Analysis Sinusoidal Steady-State Analysis Almost all electrical systems, whether signal or power, operate with alternating currents and voltages. We have seen that when any circuit is disturbed (switched on or

More information

Experiment 3: Resonance in LRC Circuits Driven by Alternating Current

Experiment 3: Resonance in LRC Circuits Driven by Alternating Current Experiment 3: Resonance in LRC Circuits Driven by Alternating Current Introduction In last week s laboratory you examined the LRC circuit when constant voltage was applied to it. During this laboratory

More information

Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526)

Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526) NCEA Level 3 Physics (91526) 2015 page 1 of 6 Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526) Evidence Q Evidence Achievement Achievement with Merit Achievement

More information

Sinusoidal Steady State Analysis

Sinusoidal Steady State Analysis Sinusoidal Steady State Analysis 9 Assessment Problems AP 9. [a] V = 70/ 40 V [b] 0 sin(000t +20 ) = 0 cos(000t 70 ).. I = 0/ 70 A [c] I =5/36.87 + 0/ 53.3 =4+j3+6 j8 =0 j5 =.8/ 26.57 A [d] sin(20,000πt

More information

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3.

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. Electromagnetic Oscillations and Alternating Current 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. RLC circuit in AC 1 RL and RC circuits RL RC Charging Discharging I = emf R

More information

Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer

Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer J. McNames Portland State University ECE 221 Circuit Theorems Ver. 1.36 1

More information

Physics 9 Friday, April 18, 2014

Physics 9 Friday, April 18, 2014 Physics 9 Friday, April 18, 2014 Turn in HW12. I ll put HW13 online tomorrow. For Monday: read all of Ch33 (optics) For Wednesday: skim Ch34 (wave optics) I ll hand out your take-home practice final exam

More information

Physics 405/505 Digital Electronics Techniques. University of Arizona Spring 2006 Prof. Erich W. Varnes

Physics 405/505 Digital Electronics Techniques. University of Arizona Spring 2006 Prof. Erich W. Varnes Physics 405/505 Digital Electronics Techniques University of Arizona Spring 2006 Prof. Erich W. Varnes Administrative Matters Contacting me I will hold office hours on Tuesday from 1-3 pm Room 420K in

More information

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points):

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points): ENGR43 Test 2 Spring 29 ENGR43 Spring 29 Test 2 Name: SOLUTION Section: 1(MR 8:) 2(TF 2:) 3(MR 6:) (circle one) Question I (2 points): Question II (2 points): Question III (17 points): Question IV (2 points):

More information

P441 Analytical Mechanics - I. RLC Circuits. c Alex R. Dzierba. In this note we discuss electrical oscillating circuits: undamped, damped and driven.

P441 Analytical Mechanics - I. RLC Circuits. c Alex R. Dzierba. In this note we discuss electrical oscillating circuits: undamped, damped and driven. Lecture 10 Monday - September 19, 005 Written or last updated: September 19, 005 P441 Analytical Mechanics - I RLC Circuits c Alex R. Dzierba Introduction In this note we discuss electrical oscillating

More information

SINUSOIDAL STEADY STATE CIRCUIT ANALYSIS

SINUSOIDAL STEADY STATE CIRCUIT ANALYSIS SINUSOIDAL STEADY STATE CIRCUIT ANALYSIS 1. Introduction A sinusoidal current has the following form: where I m is the amplitude value; ω=2 πf is the angular frequency; φ is the phase shift. i (t )=I m.sin

More information

EM Oscillations. David J. Starling Penn State Hazleton PHYS 212

EM Oscillations. David J. Starling Penn State Hazleton PHYS 212 I ve got an oscillating fan at my house. The fan goes back and forth. It looks like the fan is saying No. So I like to ask it questions that a fan would say no to. Do you keep my hair in place? Do you

More information

Single Phase Parallel AC Circuits

Single Phase Parallel AC Circuits Single Phase Parallel AC Circuits 1 Single Phase Parallel A.C. Circuits (Much of this material has come from Electrical & Electronic Principles & Technology by John Bird) n parallel a.c. circuits similar

More information

Lecture 11 - AC Power

Lecture 11 - AC Power - AC Power 11/17/2015 Reading: Chapter 11 1 Outline Instantaneous power Complex power Average (real) power Reactive power Apparent power Maximum power transfer Power factor correction 2 Power in AC Circuits

More information

Operational amplifiers (Op amps)

Operational amplifiers (Op amps) Operational amplifiers (Op amps) v R o R i v i Av i v View it as an ideal amp. Take the properties to the extreme: R i, R o 0, A.?!?!?!?! v v i Av i v A Consequences: No voltage dividers at input or output.

More information

Impedance/Reactance Problems

Impedance/Reactance Problems Impedance/Reactance Problems. Consider the circuit below. An AC sinusoidal voltage of amplitude V and frequency ω is applied to the three capacitors, each of the same capacitance C. What is the total reactance

More information

ECE 201 Fall 2009 Final Exam

ECE 201 Fall 2009 Final Exam ECE 01 Fall 009 Final Exam December 16, 009 Division 0101: Tan (11:30am) Division 001: Clark (7:30 am) Division 0301: Elliott (1:30 pm) Instructions 1. DO NOT START UNTIL TOLD TO DO SO.. Write your Name,

More information

Refinements to Incremental Transistor Model

Refinements to Incremental Transistor Model Refinements to Incremental Transistor Model This section presents modifications to the incremental models that account for non-ideal transistor behavior Incremental output port resistance Incremental changes

More information

Circuits Practice Websheet 18.1

Circuits Practice Websheet 18.1 Circuits Practice Websheet 18.1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. How much power is being dissipated by one of the 10-Ω resistors? a. 24

More information

SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Self-paced Course

SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Self-paced Course SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING Self-paced Course MODULE 26 APPLICATIONS TO ELECTRICAL CIRCUITS Module Topics 1. Complex numbers and alternating currents 2. Complex impedance 3.

More information

Midterm Exam (closed book/notes) Tuesday, February 23, 2010

Midterm Exam (closed book/notes) Tuesday, February 23, 2010 University of California, Berkeley Spring 2010 EE 42/100 Prof. A. Niknejad Midterm Exam (closed book/notes) Tuesday, February 23, 2010 Guidelines: Closed book. You may use a calculator. Do not unstaple

More information

DEPARTMENT OF COMPUTER ENGINEERING UNIVERSITY OF LAHORE

DEPARTMENT OF COMPUTER ENGINEERING UNIVERSITY OF LAHORE DEPARTMENT OF COMPUTER ENGINEERING UNIVERSITY OF LAHORE NAME. Section 1 2 3 UNIVERSITY OF LAHORE Department of Computer engineering Linear Circuit Analysis Laboratory Manual 2 Compiled by Engr. Ahmad Bilal

More information

Alternating Current. Symbol for A.C. source. A.C.

Alternating Current. Symbol for A.C. source. A.C. Alternating Current Kirchoff s rules for loops and junctions may be used to analyze complicated circuits such as the one below, powered by an alternating current (A.C.) source. But the analysis can quickly

More information

CHAPTER 5 DC AND AC BRIDGE

CHAPTER 5 DC AND AC BRIDGE 5. Introduction HAPTE 5 D AND A BIDGE Bridge circuits, which are instruments for making comparison measurements, are widely used to measure resistance, inductance, capacitance, and impedance. Bridge circuits

More information

Circuit Analysis-II. Circuit Analysis-II Lecture # 5 Monday 23 rd April, 18

Circuit Analysis-II. Circuit Analysis-II Lecture # 5 Monday 23 rd April, 18 Circuit Analysis-II Capacitors in AC Circuits Introduction ü The instantaneous capacitor current is equal to the capacitance times the instantaneous rate of change of the voltage across the capacitor.

More information

Operational amplifiers (Op amps)

Operational amplifiers (Op amps) Operational amplifiers (Op amps) Recall the basic two-port model for an amplifier. It has three components: input resistance, Ri, output resistance, Ro, and the voltage gain, A. v R o R i v d Av d v Also

More information

Assessment Schedule 2016 Physics: Demonstrate understanding electrical systems (91526)

Assessment Schedule 2016 Physics: Demonstrate understanding electrical systems (91526) NCEA evel 3 Physics (91526) 2016 page 1 of 5 Assessment Schedule 2016 Physics: Demonstrate understanding electrical systems (91526) Evidence Statement NØ N1 N 2 A 3 A 4 M 5 M 6 E 7 E 8 0 1A 2A 3A 4A or

More information

Toolbox: Electrical Systems Dynamics

Toolbox: Electrical Systems Dynamics Toolbox: Electrical Systems Dynamics Dr. John C. Wright MIT - PSFC 05 OCT 2010 Introduction Outline Outline AC and DC power transmission Basic electric circuits Electricity and the grid Image removed due

More information

AC Circuits III. Physics 2415 Lecture 24. Michael Fowler, UVa

AC Circuits III. Physics 2415 Lecture 24. Michael Fowler, UVa AC Circuits III Physics 415 Lecture 4 Michael Fowler, UVa Today s Topics LC circuits: analogy with mass on spring LCR circuits: damped oscillations LCR circuits with ac source: driven pendulum, resonance.

More information

Laboratory I: Impedance

Laboratory I: Impedance Physics 331, Fall 2008 Lab I - Handout 1 Laboratory I: Impedance Reading: Simpson Chapter 1 (if necessary) & Chapter 2 (particularly 2.9-2.13) 1 Introduction In this first lab we review the properties

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

E40M Review - Part 1

E40M Review - Part 1 E40M Review Part 1 Topics in Part 1 (Today): KCL, KVL, Power Devices: V and I sources, R Nodal Analysis. Superposition Devices: Diodes, C, L Time Domain Diode, C, L Circuits Topics in Part 2 (Wed): MOSFETs,

More information

Electric Circuits I FINAL EXAMINATION

Electric Circuits I FINAL EXAMINATION EECS:300, Electric Circuits I s6fs_elci7.fm - Electric Circuits I FINAL EXAMINATION Problems Points.. 3. 0 Total 34 Was the exam fair? yes no 5//6 EECS:300, Electric Circuits I s6fs_elci7.fm - Problem

More information

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review.

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review. Schedule Date Day lass No. 0 Nov Mon 0 Exam Review Nov Tue Title hapters HW Due date Nov Wed Boolean Algebra 3. 3.3 ab Due date AB 7 Exam EXAM 3 Nov Thu 4 Nov Fri Recitation 5 Nov Sat 6 Nov Sun 7 Nov Mon

More information

AC analysis - many examples

AC analysis - many examples AC analysis - many examples The basic method for AC analysis:. epresent the AC sources as complex numbers: ( ). Convert resistors, capacitors, and inductors into their respective impedances: resistor Z

More information

OPERATIONAL AMPLIFIER APPLICATIONS

OPERATIONAL AMPLIFIER APPLICATIONS OPERATIONAL AMPLIFIER APPLICATIONS 2.1 The Ideal Op Amp (Chapter 2.1) Amplifier Applications 2.2 The Inverting Configuration (Chapter 2.2) 2.3 The Non-inverting Configuration (Chapter 2.3) 2.4 Difference

More information

Solutions to these tests are available online in some places (but not all explanations are good)...

Solutions to these tests are available online in some places (but not all explanations are good)... The Physics GRE Sample test put out by ETS https://www.ets.org/s/gre/pdf/practice_book_physics.pdf OSU physics website has lots of tips, and 4 additional tests http://www.physics.ohiostate.edu/undergrad/ugs_gre.php

More information

Lecture #3. Review: Power

Lecture #3. Review: Power Lecture #3 OUTLINE Power calculations Circuit elements Voltage and current sources Electrical resistance (Ohm s law) Kirchhoff s laws Reading Chapter 2 Lecture 3, Slide 1 Review: Power If an element is

More information

Design Engineering MEng EXAMINATIONS 2016

Design Engineering MEng EXAMINATIONS 2016 IMPERIAL COLLEGE LONDON Design Engineering MEng EXAMINATIONS 2016 For Internal Students of the Imperial College of Science, Technology and Medicine This paper is also taken for the relevant examination

More information

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is RLC Circuit (3) We can then write the differential equation for charge on the capacitor The solution of this differential equation is (damped harmonic oscillation!), where 25 RLC Circuit (4) If we charge

More information

Inductive & Capacitive Circuits. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur

Inductive & Capacitive Circuits. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Inductive & Capacitive Circuits Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur LR Circuit LR Circuit (Charging) Let us consider a circuit having an inductance

More information

Power Factor Improvement

Power Factor Improvement Salman bin AbdulazizUniversity College of Engineering Electrical Engineering Department EE 2050Electrical Circuit Laboratory Power Factor Improvement Experiment # 4 Objectives: 1. To introduce the concept

More information

Radio Frequency Electronics

Radio Frequency Electronics Radio Frequency Electronics Preliminaries III Lee de Forest Born in Council Bluffs, Iowa in 1873 Had 180 patents Invented the vacuum tube that allows for building electronic amplifiers Vacuum tube started

More information

Chapter 31: RLC Circuits. PHY2049: Chapter 31 1

Chapter 31: RLC Circuits. PHY2049: Chapter 31 1 hapter 31: RL ircuits PHY049: hapter 31 1 L Oscillations onservation of energy Topics Damped oscillations in RL circuits Energy loss A current RMS quantities Forced oscillations Resistance, reactance,

More information

Electricity & Magnetism Lecture 20

Electricity & Magnetism Lecture 20 Electricity & Magnetism Lecture 20 Today s Concept: AC Circuits Maximum currents & voltages Phasors: A Simple Tool Electricity & Magne?sm Lecture 20, Slide 1 Other videos: Prof. W. Lewin, MIT Open Courseware

More information

Impedance. Reactance. Capacitors

Impedance. Reactance. Capacitors Impedance Ohm's law describes the relationship between current and voltage in circuits that are in equilibrium- that is, when the current and voltage are not changing. When we have a situation where the

More information

AC Circuit Analysis and Measurement Lab Assignment 8

AC Circuit Analysis and Measurement Lab Assignment 8 Electric Circuit Lab Assignments elcirc_lab87.fm - 1 AC Circuit Analysis and Measurement Lab Assignment 8 Introduction When analyzing an electric circuit that contains reactive components, inductors and

More information

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown.

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown. Solved Problems Electric Circuits & Components 1-1 Write the KVL equation for the circuit shown. 1-2 Write the KCL equation for the principal node shown. 1-2A In the DC circuit given in Fig. 1, find (i)

More information

Lecture 6: Impedance (frequency dependent. resistance in the s- world), Admittance (frequency. dependent conductance in the s- world), and

Lecture 6: Impedance (frequency dependent. resistance in the s- world), Admittance (frequency. dependent conductance in the s- world), and Lecture 6: Impedance (frequency dependent resistance in the s- world), Admittance (frequency dependent conductance in the s- world), and Consequences Thereof. Professor Ray, what s an impedance? Answers:

More information

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is 1 Part 4: Electromagnetism 4.1: Induction A. Faraday's Law The magnetic flux through a loop of wire is Φ = BA cos θ B A B = magnetic field penetrating loop [T] A = area of loop [m 2 ] = angle between field

More information

EECE 2510 Circuits and Signals, Biomedical Applications Final Exam Section 3. Name:

EECE 2510 Circuits and Signals, Biomedical Applications Final Exam Section 3. Name: EECE 2510 Circuits and Signals, Biomedical Applications Final Exam Section 3 Instructions: Closed book, closed notes; Computers and cell phones are not allowed Scientific calculators are allowed Complete

More information

Alternating Currents. The power is transmitted from a power house on high voltage ac because (a) Electric current travels faster at higher volts (b) It is more economical due to less power wastage (c)

More information

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS 1.0 Kirchoff s Law Kirchoff s Current Law (KCL) states at any junction in an electric circuit the total current flowing towards that junction is equal

More information

Chapter 28 Solutions

Chapter 28 Solutions Chapter 8 Solutions 8.1 (a) P ( V) R becomes 0.0 W (11.6 V) R so R 6.73 Ω (b) V IR so 11.6 V I (6.73 Ω) and I 1.7 A ε IR + Ir so 15.0 V 11.6 V + (1.7 A)r r 1.97 Ω Figure for Goal Solution Goal Solution

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 11 Sinusoidal Steady-State Analysis Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Contents and Objectives 3 Chapter Contents 11.1

More information

Electrical Eng. fundamental Lecture 1

Electrical Eng. fundamental Lecture 1 Electrical Eng. fundamental Lecture 1 Contact details: h-elhelw@staffs.ac.uk Introduction Electrical systems pervade our lives; they are found in home, school, workplaces, factories,

More information

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/ Physics GRE: Electromagnetism G. J. Loges University of Rochester Dept. of Physics & stronomy xkcd.com/567/ c Gregory Loges, 206 Contents Electrostatics 2 Magnetostatics 2 3 Method of Images 3 4 Lorentz

More information

Chapter 21: RLC Circuits. PHY2054: Chapter 21 1

Chapter 21: RLC Circuits. PHY2054: Chapter 21 1 Chapter 21: RC Circuits PHY2054: Chapter 21 1 Voltage and Current in RC Circuits AC emf source: driving frequency f ε = ε sinωt ω = 2π f m If circuit contains only R + emf source, current is simple ε ε

More information

Homework Assignment 08

Homework Assignment 08 Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

More information

CLUSTER LEVEL WORK SHOP

CLUSTER LEVEL WORK SHOP CLUSTER LEVEL WORK SHOP SUBJECT PHYSICS QUESTION BANK (ALTERNATING CURRENT ) DATE: 0/08/06 What is the phase difference between the voltage across the inductance and capacitor in series AC circuit? Ans.

More information

Electronics Capacitors

Electronics Capacitors Electronics Capacitors Wilfrid Laurier University October 9, 2015 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists

More information

Time Varying Circuit Analysis

Time Varying Circuit Analysis MAS.836 Sensor Systems for Interactive Environments th Distributed: Tuesday February 16, 2010 Due: Tuesday February 23, 2010 Problem Set # 2 Time Varying Circuit Analysis The purpose of this problem set

More information

Electricity. From the word Elektron Greek for amber

Electricity. From the word Elektron Greek for amber Electricity From the word Elektron Greek for amber Electrical systems have two main objectives: To gather, store, process, transport information & Energy To distribute and convert energy Electrical Engineering

More information