First Order System Types

Size: px
Start display at page:

Transcription

1 First Order System Types 1. Introduction: First order systems are, by definition, systems whose input-output relationship is a first order differential equation. A first order differential equation contains a first order derivative but no derivative higher than first order the order of a differential equation is the order of the highest order derivative present in the equation. First order systems contain a single energy storage element. In general, the order of the inputoutput differential equation will be the same as the number of independent energy storage elements in the system. Independent energy storage cannot be combined with other energy storage elements to form a single equivalent energy storage element. For example, we previously learned that two capacitors in parallel can be modeled as a single equivalent capacitor therefore, a parallel combination of two capacitors forms a single independent energy storage element. First order systems are an extremely important class of systems. Many practical systems are first order; for example, the mass-damper system and the mass heating system are both first order systems. Higher order systems can often be approximated as first order systems to a reasonable degree of accuracy if they have a dominant first order mode. 2. First Order System Model The first order system has only one pole as shown Figure 1: (a) Block Diagran of a first-order system; (b) Simplifed block Diagram 1 1 (1) Where K is the DC Gain and T is the time constant of the system. Time Constant is a measure of how quickly a 1 order system response to a unit step input. DC gain of the system ration between the input signal and the steady state value of output. 1 P age

2 Example 1: For the first order system given below DC gain (K) is equal 10 Time Constant (T) is equal 3 Example 2: For the first order system given below DC gain (K) is equal Time Constant (T) is equal Impulse Response of Order System Consider the following 1 order system in figure 2 Figure 2: Impulse response of first order system 1 1 In order to represent the response of the system in time domain we need to compute the inverse Laplace transform of the above equation, we have (2) 2 P age

3 Example 3: For the first order system given below The impulse response is shown in figure Figure 3: Impulse response of example Ramp Response of Order System Consider the first order system in figure In order to represent the response of the system in time domain we need to compute the inverse Laplace transform of the above equation, we have (3) 3 P age

4 Example 4: For the first order system given below 1 1) The ramp response of system, if 1 1 is shown in figure 4 2) The ramp response of system, if 1 3 is shown in figure 5 Figure 4: The ramp response for case 1, example 4 Figure 5: The ramp response for case 2, example 4 4 P age

5 2.3 Step Response of Order System Consider the first order system in figure In order to represent the response of the system in time domain we need to compute the inverse Laplace transform of the above equation, we have 1) Where 1 (4) (5) 2) Where (6) For example, assume,. Figure 6: The step response specification of first order system 5 P age

6 The step response of the first order system takes five time constants to reach its final value. Figure 7: Step response,,,, Figure 8: The step response at different value of T 6 P age

7 ,,,, 3. First Order System with a Zero Figure 9: The step response at different value of K The transfer function of the first order system with a zero can be represented using the form in equation (7) 1 1 (7) Zero of the system lie at 1/ and pole at 1/ Step response of the system would be: The Laplace inverse transfer is (8) 7 P age

8 Case 1: The shape of the step response is approximately same (with offset added by zero) Example 5: Consider the first order system given by In this system: / Figure 10: the step response of case 1 Case 2: Example 6: Consider the first order system given by P age

9 In this system: /. Figure 11: The step response for case 2 9 P age

10 Figure 12: The step response of first order system with zero 4. First Order System with Delays The first order system with delay time can have the following transfer function Where 1 (9) The step response of this type of system is shown in figure 13 Figure 13: the step response of first order system with delay time 10 P age

11 Example 6: Consider the following first order system 10 1 Figure 14: step response for system in Example 6 5. System Identification of Transfer Function of Order Systems The field of system identification uses statistical methods to build mathematical models of dynamical systems from measured data. System identification also includes the optimal design of experiments for efficiently generating informative data for fitting such models as well as model reduction. A much more common approach is therefore to start from measurements of the behavior of the system and the external influences (inputs to the system) and try to determine a mathematical relation between them without going into the details of what is actually happening inside the system. This approach is called system identification. Two types of models are common in the field of system identification: 1) Grey box Model: although the peculiarities of what is going on inside the system are not entirely known, a certain model based on both insight into the system and experimental data is constructed. This model does however still have a number of unknown free parameters which can be estimated using system identification. One example, uses the Monod saturation model for microbial growth. The model contains a simple hyperbolic relationship between substrate concentration and growth rate, but this can be justified by molecules binding to a substrate without going into detail on the types of molecules or types of binding. Grey box modeling is also known as semi-physical modeling. 11 P age

12 2) Black box Model: No prior model is available. Most system identification algorithms are of this type. In science, computing, and engineering, a black box is a device, system or object which can be viewed in terms of its inputs and outputs (or transfer characteristics), without any knowledge of its internal workings. Its implementation is "opaque" (black). Almost anything might be referred to as a black box: a transistor, algorithm, or the human brain. Figure 15: Black Box 5.1 System Identification of First order system Often it is not possible or practical to obtain a system s transfer function analytically. Perhaps the system is closed, and the component parts are not easily identifiable. The system s step response can lead to a representation even though the inner construction is not known. With a step input, we can measure the time constant and the steady-state value, from which the transfer function can be calculated. If we can identify T and K from laboratory testing we can obtain the transfer function of the system. 12 P age

13 Example 7: Assume the unit step response given in figure 16; Figure 16: Unit step Response From the response, we can measure the time constant T, that is the time constant for the amplitude to reach 63% of its final value. Since the final value is about 0.72 the time constant is evaluated for the curve reaches , then 0.13 is simply the steady state value. The transfer function is obtained as: P age

14 6. Simulation of First order system using Simulink In this section we study a open loop and closed loop system for case a first order system with delay and show the parameter of first order system. Note: Maybe there more than blocks representation but we discuss and use the most model simulate the practical experiments as shown in the following example Example 8: Consider the first order system with delay given by the following transfer function As shown in the previous section We can simulate this system in Simulink using the basic block diagrams (Transfer Fcn, gain, sum and Transport Delay) Open Loop System We assume the system in unit step input. 14 P age Figure 17: Open loop of system in example 8

15 The result of step response and the parameter is shown in figure 18 Figure 18: Open loop Response So if the experimental data for first order system is known we can obtain the transfer function by determine the parameter (,, as discussed in the system identification example. Closed loop Response The block diagram representation of closed loop system is shown in the figure P age Figure 19: Closed Loop Bock Diagram

16 The step response is shown in figure 20 Figure 20: Step Response of closed loop Depend on the two responses of system, we observe to determine the transfer function of the system we must get the parameter from the open loop characteristic because in this case we obtain the response and the behavior of the system without any modification or addition effect. 16 P age

Solution of ODEs using Laplace Transforms. Process Dynamics and Control

Solution of ODEs using Laplace Transforms Process Dynamics and Control 1 Linear ODEs For linear ODEs, we can solve without integrating by using Laplace transforms Integrate out time and transform to Laplace

Time Response of Systems

Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) s-plane Time response p =0 s p =0,p 2 =0 s 2 t p =

Modeling. Transition between the TF to SS and SS to TF will also be discussed.

Modeling This lecture we will consentrate on how to do system modeling based on two commonly used techniques In frequency domain using Transfer Function (TF) representation In time domain via using State

A-type elements, 4 7, 18, 31, 168, 198, 202, 219, 220, 222, 225 A-type variables. See Across variable ac current, 172, 251 ac induction motor, 251 Acceleration rotational, 30 translational, 16 Accumulator,

L4970A 10A SWITCHING REGULATOR

L4970A 10A SWITCHING REGULATOR 10A OUTPUT CURRENT.1 TO 40 OUTPUT OLTAGE RANGE 0 TO 90 DUTY CYCLE RANGE INTERNAL FEED-FORWARD LINE REGULA- TION INTERNAL CURRENT LIMITING PRECISE.1 ± 2 ON CHIP REFERENCE

INTRODUCTION TO THE SIMULATION OF ENERGY AND STORAGE SYSTEMS

INTRODUCTION TO THE SIMULATION OF ENERGY AND STORAGE SYSTEMS 20.4.2018 FUSES+ in Stralsund Merja Mäkelä merja.makela@xamk.fi South-Eastern Finland University of Applied Sciences Intended learning outcomes

EE/ME/AE324: Dynamical Systems. Chapter 7: Transform Solutions of Linear Models

EE/ME/AE324: Dynamical Systems Chapter 7: Transform Solutions of Linear Models The Laplace Transform Converts systems or signals from the real time domain, e.g., functions of the real variable t, to the

Systems Analysis and Control

Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture : Different Types of Control Overview In this Lecture, you will learn: Limits of Proportional Feedback Performance

SECTION 4: STEADY STATE ERROR MAE 4421 Control of Aerospace & Mechanical Systems 2 Introduction Steady State Error Introduction 3 Consider a simple unity feedback system The error is the difference between

Chapter 7 Control. Part Classical Control. Mobile Robotics - Prof Alonzo Kelly, CMU RI

Chapter 7 Control 7.1 Classical Control Part 1 1 7.1 Classical Control Outline 7.1.1 Introduction 7.1.2 Virtual Spring Damper 7.1.3 Feedback Control 7.1.4 Model Referenced and Feedforward Control Summary

Basic Procedures for Common Problems

Basic Procedures for Common Problems ECHE 550, Fall 2002 Steady State Multivariable Modeling and Control 1 Determine what variables are available to manipulate (inputs, u) and what variables are available

Control 2. Proportional and Integral control

Control 2 Proportional and Integral control 1 Disturbance rejection in Proportional Control Θ i =5 + _ Controller K P =20 Motor K=2.45 Θ o Consider first the case where the motor steadystate gain = 2.45

Electric Circuits. Overview. Hani Mehrpouyan,

Electric Circuits Hani Mehrpouyan, Department of Electrical and Computer Engineering, Lecture 15 (First Order Circuits) Nov 16 th, 2015 Hani Mehrpouyan (hani.mehr@ieee.org) Boise State c 2015 1 1 Overview

Process Modelling, Identification, and Control

Jan Mikles Miroslav Fikar Process Modelling, Identification, and Control With 187 Figures and 13 Tables 4u Springer Contents 1 Introduction 1 1.1 Topics in Process Control 1 1.2 An Example of Process Control

Lab Experiment 2: Performance of First order and second order systems

Lab Experiment 2: Performance of First order and second order systems Objective: The objective of this exercise will be to study the performance characteristics of first and second order systems using

ME 475/591 Control Systems Final Exam Fall '99

ME 475/591 Control Systems Final Exam Fall '99 Closed book closed notes portion of exam. Answer 5 of the 6 questions below (20 points total) 1) What is a phase margin? Under ideal circumstances, what does

Introduction to Process Control

Introduction to Process Control For more visit :- www.mpgirnari.in By: M. P. Girnari (SSEC, Bhavnagar) For more visit:- www.mpgirnari.in 1 Contents: Introduction Process control Dynamics Stability The

MS-E2133 Systems Analysis Laboratory II Assignment 2 Control of thermal power plant

MS-E2133 Systems Analysis Laboratory II Assignment 2 Control of thermal power plant How to control the thermal power plant in order to ensure the stable operation of the plant? In the assignment Production

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

Basic Electronics Introductory Lecture Course for Technology and Instrumentation in Particle Physics 2011 Chicago, Illinois June 9-14, 2011 Presented By Gary Drake Argonne National Laboratory Session 2

Chap. 3 Laplace Transforms and Applications

Chap 3 Laplace Transforms and Applications LS 1 Basic Concepts Bilateral Laplace Transform: where is a complex variable Region of Convergence (ROC): The region of s for which the integral converges Transform

Andrea Zanchettin Automatic Control AUTOMATIC CONTROL. Andrea M. Zanchettin, PhD Spring Semester, Linear systems (frequency domain)

1 AUTOMATIC CONTROL Andrea M. Zanchettin, PhD Spring Semester, 2018 Linear systems (frequency domain) 2 Motivations Consider an LTI system Thanks to the Lagrange s formula we can compute the motion of

Lecture 6: Time-Dependent Behaviour of Digital Circuits

Lecture 6: Time-Dependent Behaviour of Digital Circuits Two rather different quasi-physical models of an inverter gate were discussed in the previous lecture. The first one was a simple delay model. This

The z-transform Part 2

http://faculty.kfupm.edu.sa/ee/muqaibel/ The z-transform Part 2 Dr. Ali Hussein Muqaibel The material to be covered in this lecture is as follows: Properties of the z-transform Linearity Initial and final

Recursive, Infinite Impulse Response (IIR) Digital Filters:

Recursive, Infinite Impulse Response (IIR) Digital Filters: Filters defined by Laplace Domain transfer functions (analog devices) can be easily converted to Z domain transfer functions (digital, sampled

Cahier Technique N 13 Principe de réduction des courants d enclenchement des transformateurs

Cahier Technique N 13 Principe de réduction des courants d enclenchement des transformateurs Numerical transformer inrush current minimizer Principle of the operation Rev 1.0 Document version information

LABORATORY INSTRUCTION MANUAL CONTROL SYSTEM II LAB EE 693

LABORATORY INSTRUCTION MANUAL CONTROL SYSTEM II LAB EE 693 ELECTRICAL ENGINEERING DEPARTMENT JIS COLLEGE OF ENGINEERING (AN AUTONOMOUS INSTITUTE) KALYANI, NADIA EXPERIMENT NO : CS II/ TITLE : FAMILIARIZATION

NETWORK ANALYSIS WITH APPLICATIONS

NETWORK ANALYSIS WITH APPLICATIONS Third Edition William D. Stanley Old Dominion University Prentice Hall Upper Saddle River, New Jersey I Columbus, Ohio CONTENTS 1 BASIC CIRCUIT LAWS 1 1-1 General Plan

ECE317 : Feedback and Control

ECE317 : Feedback and Control Lecture : Steady-state error Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling Analysis Design Laplace

Lecture 14 - Using the MATLAB Control System Toolbox and Simulink Friday, February 8, 2013

Today s Objectives ENGR 105: Feedback Control Design Winter 2013 Lecture 14 - Using the MATLAB Control System Toolbox and Simulink Friday, February 8, 2013 1. introduce the MATLAB Control System Toolbox

Lecture 9. Welcome back! Coming week labs: Today: Lab 16 System Identification (2 sessions)

232 Welcome back! Coming week labs: Lecture 9 Lab 16 System Identification (2 sessions) Today: Review of Lab 15 System identification (ala ME4232) Time domain Frequency domain 1 Future Labs To develop

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017

Process Modelling, Identification, and Control

Jan Mikles Miroslav Fikar 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Process Modelling, Identification, and

Most matter is electrically neutral; its atoms and molecules have the same number of electrons as protons.

Magnetism Electricity Magnetism Magnetic fields are produced by the intrinsic magnetic moments of elementary particles associated with a fundamental quantum property, their spin. -> permanent magnets Magnetic

Special Mathematics Laplace Transform

Special Mathematics Laplace Transform March 28 ii Nature laughs at the difficulties of integration. Pierre-Simon Laplace 4 Laplace Transform Motivation Properties of the Laplace transform the Laplace transform

Step input, ramp input, parabolic input and impulse input signals. 2. What is the initial slope of a step response of a first order system?

IC6501 CONTROL SYSTEM UNIT-II TIME RESPONSE PART-A 1. What are the standard test signals employed for time domain studies?(or) List the standard test signals used in analysis of control systems? (April

Uncertainty and Robustness for SISO Systems

Uncertainty and Robustness for SISO Systems ELEC 571L Robust Multivariable Control prepared by: Greg Stewart Outline Nature of uncertainty (models and signals). Physical sources of model uncertainty. Mathematical

Physics 142 Steady Currents Page 1 Steady Currents If at first you don t succeed, try, try again. Then quit. No sense being a damn fool about it. W.C. Fields Electric current: the slow average drift of

Introduction to Controls

EE 474 Review Exam 1 Name Answer each of the questions. Show your work. Note were essay-type answers are requested. Answer with complete sentences. Incomplete sentences will count heavily against the grade.

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response

.. AERO 422: Active Controls for Aerospace Vehicles Dynamic Response Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. . Previous Class...........

EE 422G - Signals and Systems Laboratory

EE 4G - Signals and Systems Laboratory Lab 9 PID Control Kevin D. Donohue Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 April, 04 Objectives: Identify the

Process Control, 3P4 Assignment 6

Process Control, 3P4 Assignment 6 Kevin Dunn, kevin.dunn@mcmaster.ca Due date: 28 March 204 This assignment gives you practice with cascade control and feedforward control. Question [0 = 6 + 4] The outlet

FEEDBACK CONTROL SYSTEMS

FEEDBAC CONTROL SYSTEMS. Control System Design. Open and Closed-Loop Control Systems 3. Why Closed-Loop Control? 4. Case Study --- Speed Control of a DC Motor 5. Steady-State Errors in Unity Feedback Control

Networks and Systems Prof. V. G. K. Murti Department of Electrical Engineering Indian Institute of Technology, Madras

Networks and Systems Prof. V. G. K. Murti Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 34 Network Theorems (1) Superposition Theorem Substitution Theorem The next

27. The pole diagram and the Laplace transform

124 27. The pole diagram and the Laplace transform When working with the Laplace transform, it is best to think of the variable s in F (s) as ranging over the complex numbers. In the first section below

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42

Contents Preface.............................................. xiii 1. Introduction......................................... 1 1.1 Continuous and Discrete Control Systems................. 4 1.2 Open-Loop

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e

Transform methods Some of the different forms of a signal, obtained by transformations, are shown in the figure. X(s) X(t) L - L F - F jw s s jw X(jw) X*(t) F - F X*(jw) jwt e z jwt z e X(nT) Z - Z X(z)

Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras Lecture No - 42 Fully Differential Single Stage Opamp Hello and welcome

Chapter 13 Digital Control

Chapter 13 Digital Control Chapter 12 was concerned with building models for systems acting under digital control. We next turn to the question of control itself. Topics to be covered include: why one

Fourier series. XE31EO2 - Pavel Máša. Electrical Circuits 2 Lecture1. XE31EO2 - Pavel Máša - Fourier Series

Fourier series Electrical Circuits Lecture - Fourier Series Filtr RLC defibrillator MOTIVATION WHAT WE CAN'T EXPLAIN YET Source voltage rectangular waveform Resistor voltage sinusoidal waveform - Fourier

A Signal Processing Approach to the Analysis of Chemical Networking Protocols

Laurea Specialistica 19 July 2010 A Signal Processing Approach to the Analysis of Chemical Networking Protocols Author Supervisors Prof. Marco Luise Prof. Filippo Giannetti (University of Pisa) (University

Surface Plasmon Wave

Surface Plasmon Wave In this experiment you will learn about a surface plasmon wave. Certain metals (Au, Ag, Co, etc) exhibit a negative dielectric constant at certain regions of the electromagnetic spectrum.

Linear State Feedback Controller Design

Assignment For EE5101 - Linear Systems Sem I AY2010/2011 Linear State Feedback Controller Design Phang Swee King A0033585A Email: king@nus.edu.sg NGS/ECE Dept. Faculty of Engineering National University

DC and Transient Responses (i.e. delay) (some comments on power too!)

DC and Transient Responses (i.e. delay) (some comments on power too!) Michael Niemier (Some slides based on lecture notes by David Harris) 1 Lecture 02 - CMOS Transistor Theory & the Effects of Scaling

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 Electrical and Electronics Engineering TUTORIAL QUESTION BAN Course Name : CONTROL SYSTEMS Course Code : A502 Class : III

EECS 16B: FALL 2015 FINAL

University of California College of Engineering Department of Electrical Engineering and Computer Sciences E. Alon, B. Ayazifar, C. Tomlin Wed., Dec. 16, 2015 G. Ranade 8:00-11:00am EECS 16B: FALL 2015

Operational amplifiers (Op amps)

Operational amplifiers (Op amps) Recall the basic two-port model for an amplifier. It has three components: input resistance, Ri, output resistance, Ro, and the voltage gain, A. v R o R i v d Av d v Also

Automatic Control Systems

Automatic Control Systems Edited by Dr. Yuri Sokolov Contributing Authors: Dr. Victor Iliushko, Dr. Emaid A. Abdul-Retha, Mr. Sönke Dierks, Dr. Pascual Marqués. Published by Marques Aviation Ltd Southport,

Chapter 2. - DC Biasing - BJTs

Chapter 2. - DC Biasing - BJTs Objectives To Understand : Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented

Power System Operations and Control Prof. S.N. Singh Department of Electrical Engineering Indian Institute of Technology, Kanpur. Module 3 Lecture 8

Power System Operations and Control Prof. S.N. Singh Department of Electrical Engineering Indian Institute of Technology, Kanpur Module 3 Lecture 8 Welcome to lecture number 8 of module 3. In the previous

D(s) G(s) A control system design definition

R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure

Lecture 9 Infinite Impulse Response Filters

Lecture 9 Infinite Impulse Response Filters Outline 9 Infinite Impulse Response Filters 9 First-Order Low-Pass Filter 93 IIR Filter Design 5 93 CT Butterworth filter design 5 93 Bilinear transform 7 9

Nonlinear dynamic simulation model of switched reluctance linear machine

Procedia Earth and Planetary Science 1 (2009) 1320 1324 Procedia Earth and Planetary Science www.elsevier.com/locate/procedia The 6 th International Conference on Mining Science & Technology Nonlinear

Modeling and Control Overview

Modeling and Control Overview D R. T A R E K A. T U T U N J I A D V A N C E D C O N T R O L S Y S T E M S M E C H A T R O N I C S E N G I N E E R I N G D E P A R T M E N T P H I L A D E L P H I A U N I

Learn2Control Laboratory

Learn2Control Laboratory Version 3.2 Summer Term 2014 1 This Script is for use in the scope of the Process Control lab. It is in no way claimed to be in any scientific way complete or unique. Errors should

Using Neural Networks for Identification and Control of Systems

Using Neural Networks for Identification and Control of Systems Jhonatam Cordeiro Department of Industrial and Systems Engineering North Carolina A&T State University, Greensboro, NC 27411 jcrodrig@aggies.ncat.edu

Today s goals So far Today 2.004

Today s goals So far Feedback as a means for specifying the dynamic response of a system Root Locus: from the open-loop poles/zeros to the closed-loop poles Moving the closed-loop poles around Today Proportional

Introduction to the z-transform

z-transforms and applications Introduction to the z-transform The z-transform is useful for the manipulation of discrete data sequences and has acquired a new significance in the formulation and analysis

Index. INDEX_p /15/02 3:08 PM Page 765

INDEX_p.765-770 11/15/02 3:08 PM Page 765 Index N A Adaptive control, 144 Adiabatic reactors, 465 Algorithm, control, 5 All-pass factorization, 257 All-pass, frequency response, 225 Amplitude, 216 Amplitude

Lecture 8: Sensorless Synchronous Motor Drives

1 / 22 Lecture 8: Sensorless Synchronous Motor Drives ELEC-E8402 Control of Electric Drives and Power Converters (5 ECTS) Marko Hinkkanen Spring 2017 2 / 22 Learning Outcomes After this lecture and exercises

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 380 Linear Systems. Solutions to Assignment 2 Spring 2000

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 8 Linear Systems Solutions to Assignment Spring Design a Filter There is no single best way to solve this problem In fact, there is no single

Control System. Contents

Contents Chapter Topic Page Chapter- Chapter- Chapter-3 Chapter-4 Introduction Transfer Function, Block Diagrams and Signal Flow Graphs Mathematical Modeling Control System 35 Time Response Analysis of

6.3. Transformer isolation

6.3. Transformer isolation Objectives: Isolation of input and output ground connections, to meet safety requirements eduction of transformer size by incorporating high frequency isolation transformer inside

6.302 Feedback Systems Recitation 16: Compensation Prof. Joel L. Dawson

Bode Obstacle Course is one technique for doing compensation, or designing a feedback system to make the closed-loop behavior what we want it to be. To review: - G c (s) G(s) H(s) you are here! plant For

RC Circuits. 1. Designing a time delay circuit. Introduction. In this lab you will explore RC circuits. Introduction

Name Date Time to Complete h m Partner Course/ Section / Grade RC Circuits Introduction In this lab you will explore RC circuits. 1. Designing a time delay circuit Introduction You will begin your exploration

University of TN Chattanooga Physics 1040L 8/18/2012 PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB

PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB OBJECT: To study the discharging of a capacitor and determine the time constant for a simple circuit. APPARATUS: Capacitor (about 24 μf), two resistors (about

Automatic Control Systems theory overview (discrete time systems)

Automatic Control Systems theory overview (discrete time systems) Prof. Luca Bascetta (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Motivations

Solution 10 July 2015 ECE301 Signals and Systems: Midterm. Cover Sheet

Solution 10 July 2015 ECE301 Signals and Systems: Midterm Cover Sheet Test Duration: 60 minutes Coverage: Chap. 1,2,3,4 One 8.5" x 11" crib sheet is allowed. Calculators, textbooks, notes are not allowed.

CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version

CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version Norman S. Nise California State Polytechnic University, Pomona John Wiley fir Sons, Inc. Contents PREFACE, vii 1. INTRODUCTION, 1

Chapter 7. Digital Control Systems

Chapter 7 Digital Control Systems 1 1 Introduction In this chapter, we introduce analysis and design of stability, steady-state error, and transient response for computer-controlled systems. Transfer functions,

Generalizing the DTFT!

The Transform Generaliing the DTFT! The forward DTFT is defined by X e jω ( ) = x n e jωn in which n= Ω is discrete-time radian frequency, a real variable. The quantity e jωn is then a complex sinusoid

Exercises for lectures 13 Design using frequency methods

Exercises for lectures 13 Design using frequency methods Michael Šebek Automatic control 2016 31-3-17 Setting of the closed loop bandwidth At the transition frequency in the open loop is (from definition)

Experiment 4. RC Circuits. Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor.

Experiment 4 RC Circuits 4.1 Objectives Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. Graphically determine the time constant τ for the decay. 4.2

ECE 255, Frequency Response

ECE 255, Frequency Response 19 April 2018 1 Introduction In this lecture, we address the frequency response of amplifiers. This was touched upon briefly in our previous lecture in Section 7.5 of the textbook.

EEE105 Teori Litar I Chapter 7 Lecture #3. Dr. Shahrel Azmin Suandi Emel:

EEE105 Teori Litar I Chapter 7 Lecture #3 Dr. Shahrel Azmin Suandi Emel: shahrel@eng.usm.my What we have learnt so far? Chapter 7 introduced us to first-order circuit From the last lecture, we have learnt

Table of Laplacetransform

Appendix Table of Laplacetransform pairs 1(t) f(s) oct), unit impulse at t = 0 a, a constant or step of magnitude a at t = 0 a s t, a ramp function e- at, an exponential function s + a sin wt, a sine fun

PID controllers. Laith Batarseh. PID controllers

Next Previous 24-Jan-15 Chapter six Laith Batarseh Home End The controller choice is an important step in the control process because this element is responsible of reducing the error (e ss ), rise time

Systems Analysis and Control

Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real

Systems Analysis and Control

Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real Poles

PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA.

PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA What are phasors??? In normal practice, the phasor represents the rms maximum value of the positive half cycle of the sinusoid

Test 2 SOLUTIONS. ENGI 5821: Control Systems I. March 15, 2010

Test 2 SOLUTIONS ENGI 5821: Control Systems I March 15, 2010 Total marks: 20 Name: Student #: Answer each question in the space provided or on the back of a page with an indication of where to find the

LAPLACE TRANSFORMATION AND APPLICATIONS. Laplace transformation It s a transformation method used for solving differential equation.

LAPLACE TRANSFORMATION AND APPLICATIONS Laplace transformation It s a transformation method used for solving differential equation. Advantages The solution of differential equation using LT, progresses

1 An Overview and Brief History of Feedback Control 1. 2 Dynamic Models 23. Contents. Preface. xiii

Contents 1 An Overview and Brief History of Feedback Control 1 A Perspective on Feedback Control 1 Chapter Overview 2 1.1 A Simple Feedback System 3 1.2 A First Analysis of Feedback 6 1.3 Feedback System

Stepping Motors. Chapter 11 L E L F L D

Chapter 11 Stepping Motors In the synchronous motor, the combination of sinusoidally distributed windings and sinusoidally time varying current produces a smoothly rotating magnetic field. We can eliminate

R a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies.

SET - 1 II B. Tech II Semester Supplementary Examinations Dec 01 1. a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies..

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dept. of Chemical and Biological Engineering 5-1 Road Map of the Lecture V Laplace Transform and Transfer

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.

DC and Transient Courtesy of Dr. Daehyun Lim@WSU, Dr. Harris@HMC, Dr. Shmuel Wimer@BIU and Dr. Choi@PSU http://csce.uark.edu +1 (479) 575-604 yrpeng@uark.edu Pass Transistors We have assumed source is

Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore

Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore Lecture - 19 Modeling DC-DC convertors Good day to all of you. Today,

PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA

PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA I m VECTOR. Cause I m committing crimes with magnitude and direction at the same time!" What are phasors??? In normal practice,