# Uncertainty and Robustness for SISO Systems

Size: px
Start display at page:

## Transcription

1 Uncertainty and Robustness for SISO Systems ELEC 571L Robust Multivariable Control prepared by: Greg Stewart

2 Outline Nature of uncertainty (models and signals). Physical sources of model uncertainty. Mathematical descriptions of model uncertainty. Robust stability. Robust performance.

3 Summary of Robustness in Control Systems Determine the nominal model G(s) and uncertainty set G(s) Π Design controller, K(s). Check robust stability (if not RS, return to 2). Check robust performance (if not RP, return to 2). Some controller synthesis techniques (such as H ) automate steps 2-4.

4 Signal Uncertainty versus Model Uncertainty

5 Signal Uncertainty versus Model Uncertainty Suppose we are given an open-loop system model: g(s) = 1 / (s+10) and a constant controller: k(s) = -9 These make a stable closed-loop with a single pole at s = -1.

6 Simulink Model of the Closed-Loop* u To Workspace2 1.0 d(t) dist 0 Constant Step -9 Controller u(t) 1 Signal Generator (s+10) Process disturbance gain 1.2 model gain y(t) To Workspace3 y To Workspace ymod To Workspace1 *Configured for System 2.

7 Modelled and Measured Responses System 1: open-loop System 2: open-loop y(t) y(t) u(t) u(t) TIME TIME Given that we designed a stabilizing controller for the nominal model (smooth line in red), can we say which of these two systems will perform better in closed-loop?

8 Closed-Loop Responses System 1: closed-loop System 2: closed-loop y(t) 10 0 y(t) u(t) Stable TIME u(t) Unstable! TIME System 2 looked better in open-loop, but is far worse in closed-loop. Why did this happen?

9 Explanation System 1: open-loop System 2: open-loop y(t) 0.1 y(t) TIME TIME y(t) = g(s) u(t) + 10 d(t) then k(s) = -9, closed-loop pole = -1 y(t) = 1.2 g(s) u(t) + d(t) then k(s) = -9, closed-loop pole = +0.8 A 20% change in the gain of the process model destabilized the closed-loop. Bounded additive disturbances have no effect on system stability.

10 Moral of the story Uncertainty is always present in both signals and models. Perturbations due to model uncertainty can destabilize a system. Bounded signal uncertainty will not. Feedback can create infinite signals. Be careful with it! Common sense analysis of model uncertainty can be misleading.

11 Physical Sources of Model Uncertainty

12 Sources of Model Uncertainty Parameters in the linear model identified from noisy input/output data calculated from physical modelling Nonlinearities in actuators and sensors actuator/sensor saturation actuator/sensor failure hardware deterioration over time physical systems are inherently nonlinear

13 Sources of Model Uncertainty At high frequencies, we know almost nothing about the process: control and model identification concentrate on low frequencies. Deliberate simplification of the model it is easier to design controllers for simple processes than for complicated processes.

14 Sources of Model Uncertainty Uncertainty in the controller (often neglected!) deliberate reduction of controller order for simpler implementation implementation issues, e.g. M finite floating point precision in computers M error/limit checking in the controller implementation sometimes referred to as fragility (Keel et al, TAC, Aug 97)

15 Mathematical Descriptions of Model Uncertainty

16 Parametric Uncertainty Most intuitive kind of model uncertainty uncertainty in the parameters of the linear model. For example, consider a first-order transfer function: with parameters g / (s+a) g = 1.0 ± 0.2 a = 10 ± 1.3

17 Parametric Uncertainty Write the nominal process model as: g(s) = 1.0 / (s+10) All possible models are given by: g p (s) Π where the uncertainty set is defined by: Π = { g / (s+a) : 0.8 g 1.2, 8.7 a 11.3 }

18 Parametric Uncertainty Despite the intuitive nature of parametric uncertainty models, they are not used often. The model structure is set, leaving no room for unmodelled dynamics. You need to be very sure of the model in order to use such a high-fidelity uncertainty structure. The mathematics of controller design and analysis is cumbersome in this framework.

19 Complex Model Perturbations Additive model uncertainty g p (s) perturbed model a (s) a (jω) 1 w a (s) uncertainty weight g(s) nominal model where a (s) is any stable transfer function that satisfies a (jω) 1, for all frequencies ω. we then use transfer function w a (s) to model the physical uncertainty (typically high-pass filter).

20 A Few Words About Delta a (s) is different than most transfer functions due to the fact that we assume so little about it. We only know that it is stable and a (jω) 1. For example, any of the following are permitted: a (s) = +1, +0.5, etc. a (s) = a / (s+a), for a>0 a (s) = -1, -0.5, etc. a (s) = 0 a (s) = e -θs... and infinitely many others!

21 Additive Model Uncertainty The bounds of the possible models can be drawn in the frequency domain. g(jω) g(jω) + w a (jω) magnitude g(jω) - w a (jω) frequency, [rad/sec]

22 Additive Model Uncertainty This structure permits a family of potential models in a bounded neighbourhood of the nominal model. possible models g p (jω) magnitude frequency, [rad/sec]

23 Multiplicative Model Uncertainty g p (s) perturbed model I (s) I (jω) 1 w I (s) uncertainty weight g(s) nominal model configuration is different, but each transfer function block has a similar interpretation as with the additive case.

24 Multiplicative Model Uncertainty In SISO systems, we can find simple equivalence between additive and multiplicative model uncertainty. Multiplicative uncertainty seems to be used more often than additive. Robust stability and performance calculations are simpler with multiplicative than additive uncertainty.

25 Deliberate Model Uncertainty Sometimes a control engineer will deliberately simplify a process model before designing a controller. g p (s) complicated model f(s) perturbation g(s) simple model where f(s) is a known transfer function, g p (s) = g(s) f(s)

26 Deliberate Model Uncertainty f(s) g(s) equivalent forms f(s)-1 g(s) This may be covered by a complex perturbation, I (s) w I (s) g(s) if we create w I (s) such that w I (jω) f(jω) - 1

27 Deliberate Model Uncertainty This trick is used when the engineer believes that it will be easier to design a controller for a simple g(s) plus some perturbation (robust control). Used when true model g p (s) is complicated. Examples include time delays, high-order models, etc. Technique should be used carefully, since it hides model information from the controller design.

28 Robust Stability

29 Definition: Robust Stability A closed-loop system with controller K(s) is said to be robustly stable if it is stable for every possible plant in the uncertainty set, G p (s) Π

30 Nominal Stability: : graphical interpretation Remember that (nominal) closed-loop stability requires: L(jω) = K(jω)G(jω) does not encircle {-1,0} in complex plane. Im {-1,0} Re L(jω)

31 Robust Stability: : graphical interpretation Robust stability requires that L p (jω) = K(jω)G p (jω) does not encircle {-1,0} in complex plane, for any G p (s) Π Im {-1,0} Re How can we guarantee this? L p (jω)

32 Derivation of Robust Stability Assume multiplicative uncertainty for the moment: L p (s) = G p (s) K(s) = GK (1 + w I I ) = L + w I L I which is a vector equation in the complex plane: Im {-1,0} Re L p (jω) w I L I L(jω)

33 Derivation of Robust Stability Now, since I (jω) can have any phase and I (jω) 1, then the vector w I L I defines a disk of radius w I L Im {-1,0} Re L p (jω) w I L L(jω) Then the loop transfer function L p (jω) is a vector from {0,0} to any point in this disk.

34 Derivation of Robust Stability Since RS is satisfied if L p (jω) does not encircle the {-1,0} point, then we need to ensure that the disk never touches {-1,0}. Im {-1,0} Re 1 + L(jω) w I L L(jω) Diagram shows that the disk never touches {-1,0} if L(jω) does not encircle {-1,0}, and w I L < 1+L, for all ω

35 Derivation of Robust Stability The condition, w I L < 1+L is equivalent to, L( jω) 1+ L( jω) < w I 1 ( jω) and finally in terms of the complementary sensitivity RS for multiplicative uncertainty T ( jω) < w I 1 ( jω)

36 Robust Stability: Comments Note the the left-hand-side is stated completely in terms of the nominal transfer functions. The right-hand-side is stated in terms of the magnitude of the model uncertainty. This robust stability condition is not conservative. It is both sufficient and necessary to guarantee stability. RS conditions for other model uncertainty structures are derived using similar calculations.

37 Robust Stability: Comments Similar RS conditions exist for other model uncertainty structures. For example, the RS condition for additive model uncertainty is derived using similar arguments: RS for additive uncertainty K( jω) 1+ L( jω) < w A 1 ( jω)

38 Robust Stability: parting thought Like the majority of robustness tests, these magnitude-based conditions assume that the system is nominally stable. RULE #1: Always check nominal stability (NS), before applying a robust stability (RS) condition.

39 Robust Performance

40 Definition: Robust Performance A closed-loop system with controller K(s) is said to possess robust performance if the closed-loop satisfies performance specifications (whatever they may be) for every possible plant in the uncertainty set, G p (s) Π Remark: In the vast majority (maybe all) of cases, performance specifications will include closed-loop stability.

41 Robust Performance Let us consider the special case of multiplicative uncertainty a performance specification of w p (jω) S(jω) < 1 where S = (1+L) -1 = (1+GK) -1, and typically we will have the performance weight w p (jω) >> 1, for low frequencies ω w p (jω) < 1, for high frequencies ω

42 Robust Performance First, rewrite the nominal performance specification, w p ( jω) 1+ L( jω) < 1 w p ( jω) < 1+ L( jω) which can be represented in a diagram as, Im -1 {-1,0} Re w p (jω) 1+L(jω) L(jω)

43 Robust Performance Then to apply the performance specification to all loop gains defined by L p (s), we can re-use our RS diagram. Im -1 Re L(jω) w p (jω) 1+L(jω) RP is achieved as long as we keep these disks from touching. w I L

44 Robust Performance The disks do not touch if, 1+L(jω) > w p (jω) + w I (jω) L(jω) Im -1 Re L(jω) w p (jω) 1+L(jω) w I L

45 Robust Performance Robust Performance The RP condition 1+L(jω) > w p (jω) + w I (jω) L(jω) can be rewritten as, 1 ) ( 1 ) ( ) ( ) ( 1 ) ( < ω ω ω ω ω j L j L j w j L j w I p 1 ) ( ) ( ) ( ) ( < + ω ω ω ω j T j w j S j w I p and is typically presented in the form:

46 Robust Performance: Comments w p ( jω) S( jω) + w ( jω) T ( jω) < 1 I This is a RP condition for a specific performance criterion and a specific model uncertainty structure. RP conditions for other uncertainty structures may be derived. Note that satisfying this RP condition automatically includes the RS condition for multiplicative uncertainty w I (jω) T(jω) < 1.

47 Robust Performance: Practically Speaking In practical robust performance, the size of these disks will depend on the frequency ω. Low frequencies, ω w p (jω) large w I (jω) small High frequencies, ω w p (jω) small w I (jω) large Im Im -1 Re Re

48 Robust Performance: Parting Thought w p ( jω) S( jω) + w ( jω) T ( jω) < 1 I The derivation of this result assumed nominal stability (NS). RULE #2: Always check nominal stability (NS), before applying a robust performance (RP) condition.

49 Conclusions Control systems contain uncertainty in signals and in models. Perturbations due to model uncertainty can destabilize a closed-loop. Bounded signal perturbations cannot. Robust control concentrates on addressing model uncertainty.

50 Conclusions Complex model perturbations are commonly used to represent model uncertainty. Assuming nominal stability (NS): a robust stability (RS) condition was derived in terms of the magnitude of these perturbations. a robust performance (RP) condition was derived in terms of the model uncertainty and the performance specification. In practice, the assumption of NS is valid since practical design techniques produce a NS closedloop.

### Model Uncertainty and Robust Stability for Multivariable Systems

Model Uncertainty and Robust Stability for Multivariable Systems ELEC 571L Robust Multivariable Control prepared by: Greg Stewart Devron Profile Control Solutions Outline Representing model uncertainty.

### FEL3210 Multivariable Feedback Control

FEL3210 Multivariable Feedback Control Lecture 5: Uncertainty and Robustness in SISO Systems [Ch.7-(8)] Elling W. Jacobsen, Automatic Control Lab, KTH Lecture 5:Uncertainty and Robustness () FEL3210 MIMO

### Structured Uncertainty and Robust Performance

Structured Uncertainty and Robust Performance ELEC 571L Robust Multivariable Control prepared by: Greg Stewart Devron Profile Control Solutions Outline Structured uncertainty: motivating example. Structured

### Introduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31

Introduction Classical Control Robust Control u(t) y(t) G u(t) G + y(t) G : nominal model G = G + : plant uncertainty Uncertainty sources : Structured : parametric uncertainty, multimodel uncertainty Unstructured

### Robust Performance Example #1

Robust Performance Example # The transfer function for a nominal system (plant) is given, along with the transfer function for one extreme system. These two transfer functions define a family of plants

### Control Systems 2. Lecture 4: Sensitivity function limits. Roy Smith

Control Systems 2 Lecture 4: Sensitivity function limits Roy Smith 2017-3-14 4.1 Input-output controllability Control design questions: 1. How well can the plant be controlled? 2. What control structure

### CDS 101/110a: Lecture 10-1 Robust Performance

CDS 11/11a: Lecture 1-1 Robust Performance Richard M. Murray 1 December 28 Goals: Describe how to represent uncertainty in process dynamics Describe how to analyze a system in the presence of uncertainty

### Robust fixed-order H Controller Design for Spectral Models by Convex Optimization

Robust fixed-order H Controller Design for Spectral Models by Convex Optimization Alireza Karimi, Gorka Galdos and Roland Longchamp Abstract A new approach for robust fixed-order H controller design by

### Control System Design

ELEC ENG 4CL4: Control System Design Notes for Lecture #11 Wednesday, January 28, 2004 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Relative Stability: Stability

### Frequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability

Lecture 6. Loop analysis of feedback systems 1. Motivation 2. Graphical representation of frequency response: Bode and Nyquist curves 3. Nyquist stability theorem 4. Stability margins Frequency methods

### FEL3210 Multivariable Feedback Control

FEL3210 Multivariable Feedback Control Lecture 6: Robust stability and performance in MIMO systems [Ch.8] Elling W. Jacobsen, Automatic Control Lab, KTH Lecture 6: Robust Stability and Performance () FEL3210

### Topic # Feedback Control Systems

Topic #19 16.31 Feedback Control Systems Stengel Chapter 6 Question: how well do the large gain and phase margins discussed for LQR map over to DOFB using LQR and LQE (called LQG)? Fall 2010 16.30/31 19

### A brief introduction to robust H control

A brief introduction to robust H control Jean-Marc Biannic System Control and Flight Dynamics Department ONERA, Toulouse. http://www.onera.fr/staff/jean-marc-biannic/ http://jm.biannic.free.fr/ European

### Classify a transfer function to see which order or ramp it can follow and with which expected error.

Dr. J. Tani, Prof. Dr. E. Frazzoli 5-059-00 Control Systems I (Autumn 208) Exercise Set 0 Topic: Specifications for Feedback Systems Discussion: 30.. 208 Learning objectives: The student can grizzi@ethz.ch,

### Singular Value Decomposition Analysis

Singular Value Decomposition Analysis Singular Value Decomposition Analysis Introduction Introduce a linear algebra tool: singular values of a matrix Motivation Why do we need singular values in MIMO control

### MTNS 06, Kyoto (July, 2006) Shinji Hara The University of Tokyo, Japan

MTNS 06, Kyoto (July, 2006) Shinji Hara The University of Tokyo, Japan Outline Motivation & Background: H2 Tracking Performance Limits: new paradigm Explicit analytical solutions with examples H2 Regulation

### Topic # Feedback Control Systems

Topic #20 16.31 Feedback Control Systems Closed-loop system analysis Bounded Gain Theorem Robust Stability Fall 2007 16.31 20 1 SISO Performance Objectives Basic setup: d i d o r u y G c (s) G(s) n control

### Lecture 6. Chapter 8: Robust Stability and Performance Analysis for MIMO Systems. Eugenio Schuster.

Lecture 6 Chapter 8: Robust Stability and Performance Analysis for MIMO Systems Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Lecture 6 p. 1/73 6.1 General

### (Continued on next page)

(Continued on next page) 18.2 Roots of Stability Nyquist Criterion 87 e(s) 1 S(s) = =, r(s) 1 + P (s)c(s) where P (s) represents the plant transfer function, and C(s) the compensator. The closedloop characteristic

### Analyzing the Stability Robustness of Interval Polynomials

1 Analyzing the Stability Robustness of Interval Polynomials Prof. Guy Beale Electrical and Computer Engineering Department George Mason University Correspondence concerning this paper should be sent to

### Richiami di Controlli Automatici

Richiami di Controlli Automatici Gianmaria De Tommasi 1 1 Università degli Studi di Napoli Federico II detommas@unina.it Ottobre 2012 Corsi AnsaldoBreda G. De Tommasi (UNINA) Richiami di Controlli Automatici

### An Internal Stability Example

An Internal Stability Example Roy Smith 26 April 2015 To illustrate the concept of internal stability we will look at an example where there are several pole-zero cancellations between the controller and

### Robust Loop Shaping Controller Design for Spectral Models by Quadratic Programming

Robust Loop Shaping Controller Design for Spectral Models by Quadratic Programming Gorka Galdos, Alireza Karimi and Roland Longchamp Abstract A quadratic programming approach is proposed to tune fixed-order

### MIMO analysis: loop-at-a-time

MIMO robustness MIMO analysis: loop-at-a-time y 1 y 2 P (s) + + K 2 (s) r 1 r 2 K 1 (s) Plant: P (s) = 1 s 2 + α 2 s α 2 α(s + 1) α(s + 1) s α 2. (take α = 10 in the following numerical analysis) Controller:

### Feedback Control of Linear SISO systems. Process Dynamics and Control

Feedback Control of Linear SISO systems Process Dynamics and Control 1 Open-Loop Process The study of dynamics was limited to open-loop systems Observe process behavior as a result of specific input signals

### Chapter 9 Robust Stability in SISO Systems 9. Introduction There are many reasons to use feedback control. As we have seen earlier, with the help of a

Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter 9 Robust

### Chapter Stability Robustness Introduction Last chapter showed how the Nyquist stability criterion provides conditions for the stability robustness of

Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter Stability

### Lecture 1: Feedback Control Loop

Lecture : Feedback Control Loop Loop Transfer function The standard feedback control system structure is depicted in Figure. This represend(t) n(t) r(t) e(t) u(t) v(t) η(t) y(t) F (s) C(s) P (s) Figure

### CHAPTER 5 ROBUSTNESS ANALYSIS OF THE CONTROLLER

114 CHAPTER 5 ROBUSTNESS ANALYSIS OF THE CONTROLLER 5.1 INTRODUCTION Robust control is a branch of control theory that explicitly deals with uncertainty in its approach to controller design. It also refers

### Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year

Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21-211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21-211 1 / 39 Feedback

### Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Frequency Response-Design Method

.. AERO 422: Active Controls for Aerospace Vehicles Frequency Response- Method Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. ... Response to

### Control Systems I Lecture 10: System Specifications

Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture

### Linear Control Systems Lecture #3 - Frequency Domain Analysis. Guillaume Drion Academic year

Linear Control Systems Lecture #3 - Frequency Domain Analysis Guillaume Drion Academic year 2018-2019 1 Goal and Outline Goal: To be able to analyze the stability and robustness of a closed-loop system

### Internal Model Control of A Class of Continuous Linear Underactuated Systems

Internal Model Control of A Class of Continuous Linear Underactuated Systems Asma Mezzi Tunis El Manar University, Automatic Control Research Laboratory, LA.R.A, National Engineering School of Tunis (ENIT),

### MAS107 Control Theory Exam Solutions 2008

MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve

### Control Systems I. Lecture 9: The Nyquist condition

Control Systems I Lecture 9: The Nyquist condition adings: Guzzella, Chapter 9.4 6 Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Emilio Frazzoli Institute

### Analysis of SISO Control Loops

Chapter 5 Analysis of SISO Control Loops Topics to be covered For a given controller and plant connected in feedback we ask and answer the following questions: Is the loop stable? What are the sensitivities

### Topic # Feedback Control

Topic #4 16.31 Feedback Control Stability in the Frequency Domain Nyquist Stability Theorem Examples Appendix (details) This is the basis of future robustness tests. Fall 2007 16.31 4 2 Frequency Stability

### Control Systems I. Lecture 9: The Nyquist condition

Control Systems I Lecture 9: The Nyquist condition Readings: Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Jacopo Tani Institute for Dynamic Systems and Control

### 1 (s + 3)(s + 2)(s + a) G(s) = C(s) = K P + K I

MAE 43B Linear Control Prof. M. Krstic FINAL June 9, Problem. ( points) Consider a plant in feedback with the PI controller G(s) = (s + 3)(s + )(s + a) C(s) = K P + K I s. (a) (4 points) For a given constant

### Nyquist Criterion For Stability of Closed Loop System

Nyquist Criterion For Stability of Closed Loop System Prof. N. Puri ECE Department, Rutgers University Nyquist Theorem Given a closed loop system: r(t) + KG(s) = K N(s) c(t) H(s) = KG(s) +KG(s) = KN(s)

### ROBUST STABILITY AND PERFORMANCE ANALYSIS* [8 # ]

ROBUST STABILITY AND PERFORMANCE ANALYSIS* [8 # ] General control configuration with uncertainty [8.1] For our robustness analysis we use a system representation in which the uncertain perturbations are

### 6.241 Dynamic Systems and Control

6.241 Dynamic Systems and Control Lecture 17: Robust Stability Readings: DDV, Chapters 19, 20 Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology April 6, 2011 E. Frazzoli

### Design Methods for Control Systems

Design Methods for Control Systems Maarten Steinbuch TU/e Gjerrit Meinsma UT Dutch Institute of Systems and Control Winter term 2002-2003 Schedule November 25 MSt December 2 MSt Homework # 1 December 9

### Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I Lecture 7: Feedback and the Root Locus method Readings: Jacopo Tani Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 2, 2018 J. Tani, E. Frazzoli (ETH) Lecture 7:

### Systems Analysis and Control

Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 22: The Nyquist Criterion Overview In this Lecture, you will learn: Complex Analysis The Argument Principle The Contour

### Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control

Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steady-state Steady-state errors errors Type Type k k systems systems Integral Integral

### Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design.

ISS0031 Modeling and Identification Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design. Aleksei Tepljakov, Ph.D. September 30, 2015 Linear Dynamic Systems Definition

### Analysis of Discrete-Time Systems

TU Berlin Discrete-Time Control Systems 1 Analysis of Discrete-Time Systems Overview Stability Sensitivity and Robustness Controllability, Reachability, Observability, and Detectabiliy TU Berlin Discrete-Time

### An Overview on Robust Control

Advanced Control An Overview on Robust Control P C Scope Keywords Prerequisites allow the student to assess the potential of different methods in robust control without entering deep into theory. Sensitize

### Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries

. AERO 632: of Advance Flight Control System. Preliminaries Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. Preliminaries Signals & Systems Laplace

### D(s) G(s) A control system design definition

R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure

### 06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance.

Chapter 06 Feedback 06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance. Lesson of the Course Fondamenti di Controlli Automatici of

### Lecture 7 (Weeks 13-14)

Lecture 7 (Weeks 13-14) Introduction to Multivariable Control (SP - Chapters 3 & 4) Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Lecture 7 (Weeks 13-14) p.

### Robust Tuning of Power System Stabilizers Using Coefficient Diagram Method

International Journal of Electrical Engineering. ISSN 0974-2158 Volume 7, Number 2 (2014), pp. 257-270 International Research Publication House http://www.irphouse.com Robust Tuning of Power System Stabilizers

### Exam. 135 minutes, 15 minutes reading time

Exam August 6, 208 Control Systems II (5-0590-00) Dr. Jacopo Tani Exam Exam Duration: 35 minutes, 5 minutes reading time Number of Problems: 35 Number of Points: 47 Permitted aids: 0 pages (5 sheets) A4.

### EECE 460. Decentralized Control of MIMO Systems. Guy A. Dumont. Department of Electrical and Computer Engineering University of British Columbia

EECE 460 Decentralized Control of MIMO Systems Guy A. Dumont Department of Electrical and Computer Engineering University of British Columbia January 2011 Guy A. Dumont (UBC EECE) EECE 460 - Decentralized

### Analysis of Discrete-Time Systems

TU Berlin Discrete-Time Control Systems TU Berlin Discrete-Time Control Systems 2 Stability Definitions We define stability first with respect to changes in the initial conditions Analysis of Discrete-Time

### Lecture 9: Input Disturbance A Design Example Dr.-Ing. Sudchai Boonto

Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkuts Unniversity of Technology Thonburi Thailand d u g r e u K G y The sensitivity S is the transfer function

### Outline. Classical Control. Lecture 1

Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction

### Chapter 5. Standard LTI Feedback Optimization Setup. 5.1 The Canonical Setup

Chapter 5 Standard LTI Feedback Optimization Setup Efficient LTI feedback optimization algorithms comprise a major component of modern feedback design approach: application problems involving complex models

### Lecture 5 Classical Control Overview III. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 5 Classical Control Overview III Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore A Fundamental Problem in Control Systems Poles of open

### Robust Control 3 The Closed Loop

Robust Control 3 The Closed Loop Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University /2/2002 Outline Closed Loop Transfer Functions Traditional Performance Measures Time

### Introduction to Control (034040) lecture no. 2

Introduction to Control (034040) lecture no. 2 Leonid Mirkin Faculty of Mechanical Engineering Technion IIT Setup: Abstract control problem to begin with y P(s) u where P is a plant u is a control signal

### Chapter 2 Review of Linear and Nonlinear Controller Designs

Chapter 2 Review of Linear and Nonlinear Controller Designs This Chapter reviews several flight controller designs for unmanned rotorcraft. 1 Flight control systems have been proposed and tested on a wide

### I. D. Landau, A. Karimi: A Course on Adaptive Control Adaptive Control. Part 9: Adaptive Control with Multiple Models and Switching

I. D. Landau, A. Karimi: A Course on Adaptive Control - 5 1 Adaptive Control Part 9: Adaptive Control with Multiple Models and Switching I. D. Landau, A. Karimi: A Course on Adaptive Control - 5 2 Outline

### Control Systems Design

ELEC4410 Control Systems Design Lecture 13: Stability Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 13: Stability p.1/20 Outline Input-Output

### The Nyquist criterion relates the stability of a closed system to the open-loop frequency response and open loop pole location.

Introduction to the Nyquist criterion The Nyquist criterion relates the stability of a closed system to the open-loop frequency response and open loop pole location. Mapping. If we take a complex number

### Iterative Controller Tuning Using Bode s Integrals

Iterative Controller Tuning Using Bode s Integrals A. Karimi, D. Garcia and R. Longchamp Laboratoire d automatique, École Polytechnique Fédérale de Lausanne (EPFL), 05 Lausanne, Switzerland. email: alireza.karimi@epfl.ch

### DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD

206 Spring Semester ELEC733 Digital Control System LECTURE 7: DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD For a unit ramp input Tz Ez ( ) 2 ( z ) D( z) G( z) Tz e( ) lim( z) z 2 ( z ) D( z)

### STABILITY. Have looked at modeling dynamic systems using differential equations. and used the Laplace transform to help find step and impulse

SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 4. Dr David Corrigan 1. Electronic and Electrical Engineering Dept. corrigad@tcd.ie www.sigmedia.tv STABILITY Have looked at modeling dynamic systems using differential

### QFT design for uncertain non-minimum phase and unstable plants revisited

Loughborough University Institutional Repository QFT design for uncertain non-minimum phase and unstable plants revisited This item was submitted to Loughborough University's Institutional Repository by

### Andrea Zanchettin Automatic Control AUTOMATIC CONTROL. Andrea M. Zanchettin, PhD Spring Semester, Linear systems (frequency domain)

1 AUTOMATIC CONTROL Andrea M. Zanchettin, PhD Spring Semester, 2018 Linear systems (frequency domain) 2 Motivations Consider an LTI system Thanks to the Lagrange s formula we can compute the motion of

### Chapter 7 Interconnected Systems and Feedback: Well-Posedness, Stability, and Performance 7. Introduction Feedback control is a powerful approach to o

Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter 7 Interconnected

### The loop shaping paradigm. Lecture 7. Loop analysis of feedback systems (2) Essential specifications (2)

Lecture 7. Loop analysis of feedback systems (2). Loop shaping 2. Performance limitations The loop shaping paradigm. Estimate performance and robustness of the feedback system from the loop transfer L(jω)

### Nonlinear Control. Nonlinear Control Lecture # 18 Stability of Feedback Systems

Nonlinear Control Lecture # 18 Stability of Feedback Systems Absolute Stability + r = 0 u y G(s) ψ( ) Definition 7.1 The system is absolutely stable if the origin is globally uniformly asymptotically stable

### ANALYSIS AND SYNTHESIS OF DISTURBANCE OBSERVER AS AN ADD-ON ROBUST CONTROLLER

ANALYSIS AND SYNTHESIS OF DISTURBANCE OBSERVER AS AN ADD-ON ROBUST CONTROLLER Hyungbo Shim (School of Electrical Engineering, Seoul National University, Korea) in collaboration with Juhoon Back, Nam Hoon

### Dynamic circuits: Frequency domain analysis

Electronic Circuits 1 Dynamic circuits: Contents Free oscillation and natural frequency Transfer functions Frequency response Bode plots 1 System behaviour: overview 2 System behaviour : review solution

### ECSE 4962 Control Systems Design. A Brief Tutorial on Control Design

ECSE 4962 Control Systems Design A Brief Tutorial on Control Design Instructor: Professor John T. Wen TA: Ben Potsaid http://www.cat.rpi.edu/~wen/ecse4962s04/ Don t Wait Until The Last Minute! You got

### Automatic Control (TSRT15): Lecture 7

Automatic Control (TSRT15): Lecture 7 Tianshi Chen Division of Automatic Control Dept. of Electrical Engineering Email: tschen@isy.liu.se Phone: 13-282226 Office: B-house extrance 25-27 Outline 2 Feedforward

### (a) Find the transfer function of the amplifier. Ans.: G(s) =

126 INTRDUCTIN T CNTR ENGINEERING 10( s 1) (a) Find the transfer function of the amplifier. Ans.: (. 02s 1)(. 001s 1) (b) Find the expected percent overshoot for a step input for the closed-loop system

### FREQUENCY-RESPONSE DESIGN

ECE45/55: Feedback Control Systems. 9 FREQUENCY-RESPONSE DESIGN 9.: PD and lead compensation networks The frequency-response methods we have seen so far largely tell us about stability and stability margins

### Course Outline. Closed Loop Stability. Stability. Amme 3500 : System Dynamics & Control. Nyquist Stability. Dr. Dunant Halim

Amme 3 : System Dynamics & Control Nyquist Stability Dr. Dunant Halim Course Outline Week Date Content Assignment Notes 1 5 Mar Introduction 2 12 Mar Frequency Domain Modelling 3 19 Mar System Response

### Systems Analysis and Control

Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using

### Dr Ian R. Manchester

Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign

### Prüfung Regelungstechnik I (Control Systems I) Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 29. 8. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid

### Synthesis of Controllers for Non-minimum Phase and Unstable Systems Using Non-sequential MIMO Quantitative Feedback Theory

Synthesis of Controllers for Non-minimum Phase and Unstable Systems Using Non-sequential MIMO Quantitative Feedback Theory Chen-yang Lan Murray L Kerr Suhada Jayasuriya * Graduate Student Graduate Student

### Pole placement control: state space and polynomial approaches Lecture 2

: state space and polynomial approaches Lecture 2 : a state O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.fr www.gipsa-lab.fr/ o.sename -based November 21, 2017 Outline : a state

### Frequency domain analysis

Automatic Control 2 Frequency domain analysis Prof. Alberto Bemporad University of Trento Academic year 2010-2011 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011

### Introduction to Feedback Control

Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

### Robust Control of Heterogeneous Networks (e.g. congestion control for the Internet)

Robust Control of Heterogeneous Networks (e.g. congestion control for the Internet) Glenn Vinnicombe gv@eng.cam.ac.uk. University of Cambridge & Caltech 1/29 Introduction Is it possible to build (locally

### Design and Tuning of Fractional-order PID Controllers for Time-delayed Processes

Design and Tuning of Fractional-order PID Controllers for Time-delayed Processes Emmanuel Edet Technology and Innovation Centre University of Strathclyde 99 George Street Glasgow, United Kingdom emmanuel.edet@strath.ac.uk

### Stability of Feedback Control Systems: Absolute and Relative

Stability of Feedback Control Systems: Absolute and Relative Dr. Kevin Craig Greenheck Chair in Engineering Design & Professor of Mechanical Engineering Marquette University Stability: Absolute and Relative

### Topic # Feedback Control. State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback

Topic #17 16.31 Feedback Control State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback Back to reality Copyright 21 by Jonathan How. All Rights reserved 1 Fall

### Control Systems Design

ELEC4410 Control Systems Design Lecture 18: State Feedback Tracking and State Estimation Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 18:

### Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017

### Advanced Aerospace Control. Marco Lovera Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano

Advanced Aerospace Control Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano ICT for control systems engineering School of Industrial and Information Engineering Aeronautical Engineering

### Fragility via Robustness of Controllers Dedicated. to the Congestion Control in Internet Protocol

Applied Mathematical Sciences, Vol. 7, 2013, no. 88, 4353-4362 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2013.3528 Fragility via Robustness of Controllers Dedicated to the Congestion