Factorial Experiments

Size: px
Start display at page:

Download "Factorial Experiments"

Transcription

1 Factorial Experiments

2 96 97 ack to two-factor experiment 98 99

3 DOE terminology main effects: Interaction effects 00 0 Three factors z z2 z3 z2 z3 z23 z

4 Two-factor interaction Three-factor interaction Or: using + and in columns: 06 07

5 ube plot Four factors example Full Factorial Design Factors: 4 ase Design: 4; 6 Runs: 6 Replicates: locks: enter pts (total): 0 ll terms are free from aliasing. 0

6 Factorial Fit: Y versus ; ; ; D Estimated Effects and oefficients for Y (coded units) Term Effect oef onstant 72,250-8,000-4,000 24,000 2,000-2,250 -,25 D -5,500-2,750 *,000 0,500 * 0,750 0,375 *D -0,000-0,000 * -,250-0,625 *D 4,500 2,250 *D -0,250-0,25 ** -0,750-0,375 **D 0,500 0,250 **D -0,250-0,25 **D -0,750-0,375 ***D -0,250-0,25 nalysis of Variance for Y (coded units) Source DF Seq SS dj SS dj MS F P Main Effects 4 270,25 270,25 675,33 * * 2-Way Interactions 6 93,75 93,75 5,625 * * 3-Way Interactions 4 5,75 5,75,438 * * 4-Way Interactions 0,25 0,25 0,250 * * Residual Error 0 * * * Total 5 280,00 S = * 2 3 Normal Probability Plot of the Effects (response is Y, lpha =,05) Pareto hart of the Effects (response is Y, lpha =,05) Percent D D Effect Type Not Significant Significant Factor Name D D Term D D D D D D D D 2,89 Factor D Name D -0-5 Lenth's PSE =, Effect Lenth's PSE =, Effect

7 Main Effects Plot (data means) for Y Interaction Plot (data means) for Y Mean of Y D D Example: Three factors and replicate Factorial Fit: Y versus ; ; Estimated Effects and oefficients for Y (coded units) Term Effect oef SE oef T P onstant 64,250 0,707 90,86 0,000 23,000,500 0,707 6,26 0,000-5,000-2,500 0,707-3,54 0,008,500 0,750 0,707,06 0,320 *,500 0,750 0,707,06 0,320 * 0,000 5,000 0,707 7,07 0,000 * 0,000 0,000 0,707 0,00,000 ** 0,500 0,250 0,707 0,35 0,733 S = 2,82843 R-Sq = 97,63% R-Sq(adj) = 95,55% nalysis of Variance for Y (coded units) Source DF Seq SS dj SS dj MS F P Main Effects , ,00 74,667 92,7 0,000 2-Way Interactions 3 409,00 409,00 36,333 7,04 0,00 3-Way Interactions,00,00,000 0,3 0,733 Residual Error 8 64,00 64,00 8,000 Pure Error 8 64,00 64,00 8,000 Total ,00 8 9

8 Term 2,3 Pareto hart of the Standardized Effects (response is Y, lpha =,05) Factor Name Percent Normal Probability Plot of the Standardized Effects (response is Y, lpha =,05) Effect Type Not Significant Significant Factor Name Standardized Effect Standardized Effect locking in 2^k experiments Full experiment: Two blocks: Use column as generator, i.e. lock consists of experiments with = - lock 2 consists of experiments with = The interaction is confounded ( mixed ) with the block effect. This means that the value of the estimated coefficient of can be due to both interaction effect and block-effect. Suppose all Y in block 2 are increased by a value h. Then the estimated effect of will increase by h. ut one cannot know from observations whether this is due to the interaction or the block effect. On the other hand, the estimated main effects,, and the two-factor interactions,, are not changed by the h. These are of most importance to estimate, so the choice of blocking seems reasonable

9 Four blocks in 2^3 experiment lock structure is as follows: Need two columns of +/- to define 4 blocks. Turns out that the best option is to use two two-factor interactions, e.g. and (which is default in MINIT lock : Experiments where = = - lock 2: Experiments where = -, = lock 3: Experiments where =, = - lock 4: Experiments where = = 24 Interaction effects and are confounded with the block effect, since they are generators for the blocks. In addition, their product * = = is confounded with the block effect (Note: the column is constant within each block. dding h2 to block 2, h3 to block 3, h4 to block 4 does not change estimated effects of,,, and also does not change the third order interaction. However, e.g. will change by 2h3+2h4-2h2 and we do not know whether this is due to an interaction effect or blocking effect: This is ONFOUNDING. 25 How to determine which columns to use for blocking? Idea: Try to leave estimates for main effects and low order interactions unchanged by blocking. Note: I = = = where I is a column of s Find the blocks for a 2^3 experiment using columns and. The interaction between and is * = ** = which is a main effect, which hence is confounded with the block effect (in addition to and ) 26 27

10 Example obligatory project

11 MINIT plots ssuming third and fourth order interactions are Interaction plots 34 35

12

13 From Exam in TM4260 Industrial Statistics, december 2003, Exercise 2 company decides to investigate the hardening process of a ballbearing production. The following four factors are chosen: : content of added carbon : Hardening temperature : Hardening time D: ooling temperature. b) What is the variance of the main effect and the interaction? ssume that the st deviation sigma has been estimated from other experiments, by s = 0.32 with 9 degrees of freedom (in the exam, this had been done in Ex.) Use this estimate to find out whether the interaction is significantly different from 0 (i.e. active ) Use 5% significance level. What is the conclusion of the experiment so far? Design and results are given below: a) What is the generator and the defining relation of the design, and what is the design s resolution? Write down the alias structure. Find the estimates of the main effect of and the interaction effect The company is well satisfied with the results so far and they decide to carry out also the other half fraction. The result of the other half fraction is given below. Use this to find unconfounded estimates for the main effects and the two-factor interactions. ssume that one would like to estimate the variance of the effects from the higher order interactions. Explain how this can be done, and find the estimate. Is it wise to include the four-factor interaction in this calculation? Why (not)? Later, one of the operators that participated in the experiments asked whether one could have carried out the first half fraction in (a) in two blocks. This would, he said, have simplified considerably the performance of the experiments. What answer would you give to the operator? 42 43

14 From Exam in SIF 5066 Experimental design and, May 2003, Exercise company making ballbearings experienced problems with the lifetimes of the products. In an experiments that they carried out they considered the factors : type of ball standard (-) or modified (+) : type of cage - standard (-) or modified (+) : type of lubricate - standard (-) or modified (+) D: quantity of lubricate normal (-) or large (+) The repsonse was the lifetime of the ballbearing in an accelerated life testing experiment. The results are given on the next page. 44 : type of ball : type of cage : type of lubricate D: quantity of lubricate a) What type of experiment is this? What is the defining relation? What is the resolution? alculate estimates of the main effect of and the two-factor interaction. b) Estimated contrasts for,,d,,d are, respectively, 0.60, 0.3, 0.22, -0., What can you say about the estimated effects for D, D,. D, D, D,? ssume that factors and D do not influence the response. Explain why this is then a 2^2 experiment with replicate. alculate an estimate for the variance of the effects, and find out whether, and are now significant. c) Give an interpretation of the results. The experiment was in fact carried out in two blocks, where experiments -4 was one block and 5-8 the other. How is this blocking constructed? How will we need to modify the analysis of significance in (b)? (ssume again that,d do not influence the response) 45

CSCI 688 Homework 6. Megan Rose Bryant Department of Mathematics William and Mary

CSCI 688 Homework 6. Megan Rose Bryant Department of Mathematics William and Mary CSCI 688 Homework 6 Megan Rose Bryant Department of Mathematics William and Mary November 12, 2014 7.1 Consider the experiment described in Problem 6.1. Analyze this experiment assuming that each replicate

More information

LEARNING WITH MINITAB Chapter 12 SESSION FIVE: DESIGNING AN EXPERIMENT

LEARNING WITH MINITAB Chapter 12 SESSION FIVE: DESIGNING AN EXPERIMENT LEARNING WITH MINITAB Chapter 12 SESSION FIVE: DESIGNING AN EXPERIMENT Laura M Williams, RN, CLNC, MSN MOREHEAD STATE UNIVERSITY IET603: STATISTICAL QUALITY ASSURANCE IN SCIENCE AND TECHNOLOGY DR. AHMAD

More information

Confounding and Fractional Replication in Factorial Design

Confounding and Fractional Replication in Factorial Design ISSN -580 (Paper) ISSN 5-05 (Online) Vol.6, No.3, 016 onfounding and Fractional Replication in Factorial esign Layla. hmed epartment of Mathematics, ollege of Education, University of Garmian, Kurdistan

More information

a) Prepare a normal probability plot of the effects. Which effects seem active?

a) Prepare a normal probability plot of the effects. Which effects seem active? Problema 8.6: R.D. Snee ( Experimenting with a large number of variables, in experiments in Industry: Design, Analysis and Interpretation of Results, by R. D. Snee, L.B. Hare, and J. B. Trout, Editors,

More information

23. Fractional factorials - introduction

23. Fractional factorials - introduction 173 3. Fractional factorials - introduction Consider a 5 factorial. Even without replicates, there are 5 = 3 obs ns required to estimate the effects - 5 main effects, 10 two factor interactions, 10 three

More information

Contents. 2 2 factorial design 4

Contents. 2 2 factorial design 4 Contents TAMS38 - Lecture 10 Response surface methodology Lecturer: Zhenxia Liu Department of Mathematics - Mathematical Statistics 12 December, 2017 2 2 factorial design Polynomial Regression model First

More information

APPENDIX 1. Binodal Curve calculations

APPENDIX 1. Binodal Curve calculations APPENDIX 1 Binodal Curve calculations The weight of salt solution necessary for the mixture to cloud and the final concentrations of the phase components were calculated based on the method given by Hatti-Kaul,

More information

Suppose we needed four batches of formaldehyde, and coulddoonly4runsperbatch. Thisisthena2 4 factorial in 2 2 blocks.

Suppose we needed four batches of formaldehyde, and coulddoonly4runsperbatch. Thisisthena2 4 factorial in 2 2 blocks. 58 2. 2 factorials in 2 blocks Suppose we needed four batches of formaldehyde, and coulddoonly4runsperbatch. Thisisthena2 4 factorial in 2 2 blocks. Some more algebra: If two effects are confounded with

More information

Analysis of Covariance. The following example illustrates a case where the covariate is affected by the treatments.

Analysis of Covariance. The following example illustrates a case where the covariate is affected by the treatments. Analysis of Covariance In some experiments, the experimental units (subjects) are nonhomogeneous or there is variation in the experimental conditions that are not due to the treatments. For example, a

More information

Orthogonal contrasts for a 2x2 factorial design Example p130

Orthogonal contrasts for a 2x2 factorial design Example p130 Week 9: Orthogonal comparisons for a 2x2 factorial design. The general two-factor factorial arrangement. Interaction and additivity. ANOVA summary table, tests, CIs. Planned/post-hoc comparisons for the

More information

PRODUCT QUALITY IMPROVEMENT THROUGH RESPONSE SURFACE METHODOLOGY : A CASE STUDY

PRODUCT QUALITY IMPROVEMENT THROUGH RESPONSE SURFACE METHODOLOGY : A CASE STUDY PRODUCT QULITY IMPROVEMENT THROUGH RESPONSE SURFCE METHODOLOGY : CSE STUDY HE Zhen, College of Management and Economics, Tianjin University, China, zhhe@tju.edu.cn, Tel: +86-22-8740783 ZHNG Xu-tao, College

More information

1. (Problem 3.4 in OLRT)

1. (Problem 3.4 in OLRT) STAT:5201 Homework 5 Solutions 1. (Problem 3.4 in OLRT) The relationship of the untransformed data is shown below. There does appear to be a decrease in adenine with increased caffeine intake. This is

More information

Contents. TAMS38 - Lecture 8 2 k p fractional factorial design. Lecturer: Zhenxia Liu. Example 0 - continued 4. Example 0 - Glazing ceramic 3

Contents. TAMS38 - Lecture 8 2 k p fractional factorial design. Lecturer: Zhenxia Liu. Example 0 - continued 4. Example 0 - Glazing ceramic 3 Contents TAMS38 - Lecture 8 2 k p fractional factorial design Lecturer: Zhenxia Liu Department of Mathematics - Mathematical Statistics Example 0 2 k factorial design with blocking Example 1 2 k p fractional

More information

Written Exam (2 hours)

Written Exam (2 hours) M. Müller Applied Analysis of Variance and Experimental Design Summer 2015 Written Exam (2 hours) General remarks: Open book exam. Switch off your mobile phone! Do not stay too long on a part where you

More information

Residual Analysis for two-way ANOVA The twoway model with K replicates, including interaction,

Residual Analysis for two-way ANOVA The twoway model with K replicates, including interaction, Residual Analysis for two-way ANOVA The twoway model with K replicates, including interaction, is Y ijk = µ ij + ɛ ijk = µ + α i + β j + γ ij + ɛ ijk with i = 1,..., I, j = 1,..., J, k = 1,..., K. In carrying

More information

Model Building Chap 5 p251

Model Building Chap 5 p251 Model Building Chap 5 p251 Models with one qualitative variable, 5.7 p277 Example 4 Colours : Blue, Green, Lemon Yellow and white Row Blue Green Lemon Insects trapped 1 0 0 1 45 2 0 0 1 59 3 0 0 1 48 4

More information

EXAM IN TMA4255 EXPERIMENTAL DESIGN AND APPLIED STATISTICAL METHODS

EXAM IN TMA4255 EXPERIMENTAL DESIGN AND APPLIED STATISTICAL METHODS Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Contact during exam: Bo Lindqvist Tel. 975 89 418 EXAM IN TMA4255 EXPERIMENTAL DESIGN AND APPLIED STATISTICAL METHODS

More information

Note: The problem numbering below may not reflect actual numbering in DGE.

Note: The problem numbering below may not reflect actual numbering in DGE. Stat664 Year 1999 DGE Note: The problem numbering below may not reflect actual numbering in DGE. 1. For a balanced one-way random effect model, (a) write down the model and assumptions; (b) write down

More information

Reference: Chapter 6 of Montgomery(8e) Maghsoodloo

Reference: Chapter 6 of Montgomery(8e) Maghsoodloo Reference: Chapter 6 of Montgomery(8e) Maghsoodloo 51 DOE (or DOX) FOR BASE BALANCED FACTORIALS The notation k is used to denote a factorial experiment involving k factors (A, B, C, D,..., K) each at levels.

More information

Design of Experiments SUTD - 21/4/2015 1

Design of Experiments SUTD - 21/4/2015 1 Design of Experiments SUTD - 21/4/2015 1 Outline 1. Introduction 2. 2 k Factorial Design Exercise 3. Choice of Sample Size Exercise 4. 2 k p Fractional Factorial Design Exercise 5. Follow-up experimentation

More information

Chapter 30 Design and Analysis of

Chapter 30 Design and Analysis of Chapter 30 Design and Analysis of 2 k DOEs Introduction This chapter describes design alternatives and analysis techniques for conducting a DOE. Tables M1 to M5 in Appendix E can be used to create test

More information

Correlation & Simple Regression

Correlation & Simple Regression Chapter 11 Correlation & Simple Regression The previous chapter dealt with inference for two categorical variables. In this chapter, we would like to examine the relationship between two quantitative variables.

More information

INFERENCE FOR REGRESSION

INFERENCE FOR REGRESSION CHAPTER 3 INFERENCE FOR REGRESSION OVERVIEW In Chapter 5 of the textbook, we first encountered regression. The assumptions that describe the regression model we use in this chapter are the following. We

More information

Key Features: More than one type of experimental unit and more than one randomization.

Key Features: More than one type of experimental unit and more than one randomization. 1 SPLIT PLOT DESIGNS Key Features: More than one type of experimental unit and more than one randomization. Typical Use: When one factor is difficult to change. Example (and terminology): An agricultural

More information

Q Lecture Introduction to Regression

Q Lecture Introduction to Regression Q3 2009 1 Before/After Transformation 2 Construction Role of T-ratios Formally, even under Null Hyp: H : 0, ˆ, being computed from k t k SE ˆ ˆ y values themselves containing random error, will sometimes

More information

Models with qualitative explanatory variables p216

Models with qualitative explanatory variables p216 Models with qualitative explanatory variables p216 Example gen = 1 for female Row gpa hsm gen 1 3.32 10 0 2 2.26 6 0 3 2.35 8 0 4 2.08 9 0 5 3.38 8 0 6 3.29 10 0 7 3.21 8 0 8 2.00 3 0 9 3.18 9 0 10 2.34

More information

Stat 217 Final Exam. Name: May 1, 2002

Stat 217 Final Exam. Name: May 1, 2002 Stat 217 Final Exam Name: May 1, 2002 Problem 1. Three brands of batteries are under study. It is suspected that the lives (in weeks) of the three brands are different. Five batteries of each brand are

More information

AP Statistics Unit 6 Note Packet Linear Regression. Scatterplots and Correlation

AP Statistics Unit 6 Note Packet Linear Regression. Scatterplots and Correlation Scatterplots and Correlation Name Hr A scatterplot shows the relationship between two quantitative variables measured on the same individuals. variable (y) measures an outcome of a study variable (x) may

More information

Ph.D. Preliminary Examination Statistics June 2, 2014

Ph.D. Preliminary Examination Statistics June 2, 2014 Ph.D. Preliminary Examination Statistics June, 04 NOTES:. The exam is worth 00 points.. Partial credit may be given for partial answers if possible.. There are 5 pages in this exam paper. I have neither

More information

Design of Experiments SUTD 06/04/2016 1

Design of Experiments SUTD 06/04/2016 1 Design of Experiments SUTD 06/04/2016 1 Outline 1. Introduction 2. 2 k Factorial Design 3. Choice of Sample Size 4. 2 k p Fractional Factorial Design 5. Follow-up experimentation (folding over) with factorial

More information

PART I. (a) Describe all the assumptions for a normal error regression model with one predictor variable,

PART I. (a) Describe all the assumptions for a normal error regression model with one predictor variable, Concordia University Department of Mathematics and Statistics Course Number Section Statistics 360/2 01 Examination Date Time Pages Final December 2002 3 hours 6 Instructors Course Examiner Marks Y.P.

More information

TMA4267 Linear Statistical Models V2017 (L19)

TMA4267 Linear Statistical Models V2017 (L19) TMA4267 Linear Statistical Models V2017 (L19) Part 4: Design of Experiments Blocking Fractional factorial designs Mette Langaas Department of Mathematical Sciences, NTNU To be lectured: March 28, 2017

More information

1. Review of Lecture level factors Homework A 2 3 experiment in 16 runs with no replicates

1. Review of Lecture level factors Homework A 2 3 experiment in 16 runs with no replicates Lecture 3.1 1. Review of Lecture 2.2 2-level factors Homework 2.2.1 2. A 2 3 experiment 3. 2 4 in 16 runs with no replicates Lecture 3.1 1 2 k Factorial Designs Designs with k factors each at 2 levels

More information

Contents. TAMS38 - Lecture 10 Response surface. Lecturer: Jolanta Pielaszkiewicz. Response surface 3. Response surface, cont. 4

Contents. TAMS38 - Lecture 10 Response surface. Lecturer: Jolanta Pielaszkiewicz. Response surface 3. Response surface, cont. 4 Contents TAMS38 - Lecture 10 Response surface Lecturer: Jolanta Pielaszkiewicz Matematisk statistik - Matematiska institutionen Linköpings universitet Look beneath the surface; let not the several quality

More information

LINEAR REGRESSION ANALYSIS. MODULE XVI Lecture Exercises

LINEAR REGRESSION ANALYSIS. MODULE XVI Lecture Exercises LINEAR REGRESSION ANALYSIS MODULE XVI Lecture - 44 Exercises Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Exercise 1 The following data has been obtained on

More information

Confidence Interval for the mean response

Confidence Interval for the mean response Week 3: Prediction and Confidence Intervals at specified x. Testing lack of fit with replicates at some x's. Inference for the correlation. Introduction to regression with several explanatory variables.

More information

19. Blocking & confounding

19. Blocking & confounding 146 19. Blocking & confounding Importance of blocking to control nuisance factors - day of week, batch of raw material, etc. Complete Blocks. This is the easy case. Suppose we run a 2 2 factorial experiment,

More information

(4) 1. Create dummy variables for Town. Name these dummy variables A and B. These 0,1 variables now indicate the location of the house.

(4) 1. Create dummy variables for Town. Name these dummy variables A and B. These 0,1 variables now indicate the location of the house. Exam 3 Resource Economics 312 Introductory Econometrics Please complete all questions on this exam. The data in the spreadsheet: Exam 3- Home Prices.xls are to be used for all analyses. These data are

More information

Steps for Regression. Simple Linear Regression. Data. Example. Residuals vs. X. Scatterplot. Make a Scatter plot Does it make sense to plot a line?

Steps for Regression. Simple Linear Regression. Data. Example. Residuals vs. X. Scatterplot. Make a Scatter plot Does it make sense to plot a line? Steps for Regression Simple Linear Regression Make a Scatter plot Does it make sense to plot a line? Check Residual Plot (Residuals vs. X) Are there any patterns? Check Histogram of Residuals Is it Normal?

More information

ST3232: Design and Analysis of Experiments

ST3232: Design and Analysis of Experiments Department of Statistics & Applied Probability 2:00-4:00 pm, Monday, April 8, 2013 Lecture 21: Fractional 2 p factorial designs The general principles A full 2 p factorial experiment might not be efficient

More information

MEEM Design of Experiments Final Take-home Exam

MEEM Design of Experiments Final Take-home Exam MEEM 5990 - Design of Experiments Final Take-home Exam Assigned: April 19, 2005 Due: April 29, 2005 Problem #1 The results of a replicated 2 4 factorial experiment are shown in the table below: Test X

More information

Design of Experiments Part 3

Design of Experiments Part 3 Design of Experiments Part 3 Dr. Bob Gee Dean Scott Bonney Professor William G. Journigan American Meridian University 1 DOE for Variation Traditional DOE evaluates significant differences in the average

More information

SMAM 319 Exam 1 Name. 1.Pick the best choice for the multiple choice questions below (10 points 2 each)

SMAM 319 Exam 1 Name. 1.Pick the best choice for the multiple choice questions below (10 points 2 each) SMAM 319 Exam 1 Name 1.Pick the best choice for the multiple choice questions below (10 points 2 each) A b In Metropolis there are some houses for sale. Superman and Lois Lane are interested in the average

More information

Fractional Factorial Designs

Fractional Factorial Designs Fractional Factorial Designs ST 516 Each replicate of a 2 k design requires 2 k runs. E.g. 64 runs for k = 6, or 1024 runs for k = 10. When this is infeasible, we use a fraction of the runs. As a result,

More information

This module focuses on the logic of ANOVA with special attention given to variance components and the relationship between ANOVA and regression.

This module focuses on the logic of ANOVA with special attention given to variance components and the relationship between ANOVA and regression. WISE ANOVA and Regression Lab Introduction to the WISE Correlation/Regression and ANOVA Applet This module focuses on the logic of ANOVA with special attention given to variance components and the relationship

More information

Design and Analysis of Experiments Lecture 6.1

Design and Analysis of Experiments Lecture 6.1 Lecture 6.1 1. Review of split unit experiments Why split? Why block? 2. Review of Laboratory 2 Cambridge grassland experiment Soup mix packet filling 3. Extending plot and treatment structures Wood stain

More information

Disadvantages of using many pooled t procedures. The sampling distribution of the sample means. The variability between the sample means

Disadvantages of using many pooled t procedures. The sampling distribution of the sample means. The variability between the sample means Stat 529 (Winter 2011) Analysis of Variance (ANOVA) Reading: Sections 5.1 5.3. Introduction and notation Birthweight example Disadvantages of using many pooled t procedures The analysis of variance procedure

More information

STAT451/551 Homework#11 Due: April 22, 2014

STAT451/551 Homework#11 Due: April 22, 2014 STAT451/551 Homework#11 Due: April 22, 2014 1. Read Chapter 8.3 8.9. 2. 8.4. SAS code is provided. 3. 8.18. 4. 8.24. 5. 8.45. 376 Chapter 8 Two-Level Fractional Factorial Designs more detail. Sequential

More information

Open book and notes. 120 minutes. Covers Chapters 8 through 14 of Montgomery and Runger (fourth edition).

Open book and notes. 120 minutes. Covers Chapters 8 through 14 of Montgomery and Runger (fourth edition). IE 330 Seat # Open book and notes 10 minutes Covers Chapters 8 through 14 of Montgomery and Runger (fourth edition) Cover page and eight pages of exam No calculator ( points) I have, or will, complete

More information

Multiple Regression Examples

Multiple Regression Examples Multiple Regression Examples Example: Tree data. we have seen that a simple linear regression of usable volume on diameter at chest height is not suitable, but that a quadratic model y = β 0 + β 1 x +

More information

Institutionen för matematik och matematisk statistik Umeå universitet November 7, Inlämningsuppgift 3. Mariam Shirdel

Institutionen för matematik och matematisk statistik Umeå universitet November 7, Inlämningsuppgift 3. Mariam Shirdel Institutionen för matematik och matematisk statistik Umeå universitet November 7, 2011 Inlämningsuppgift 3 Mariam Shirdel (mash0007@student.umu.se) Kvalitetsteknik och försöksplanering, 7.5 hp 1 Uppgift

More information

The simple linear regression model discussed in Chapter 13 was written as

The simple linear regression model discussed in Chapter 13 was written as 1519T_c14 03/27/2006 07:28 AM Page 614 Chapter Jose Luis Pelaez Inc/Blend Images/Getty Images, Inc./Getty Images, Inc. 14 Multiple Regression 14.1 Multiple Regression Analysis 14.2 Assumptions of the Multiple

More information

SMAM 314 Exam 42 Name

SMAM 314 Exam 42 Name SMAM 314 Exam 42 Name Mark the following statements True (T) or False (F) (10 points) 1. F A. The line that best fits points whose X and Y values are negatively correlated should have a positive slope.

More information

(ii) Scan your answer sheets INTO ONE FILE only, and submit it in the drop-box.

(ii) Scan your answer sheets INTO ONE FILE only, and submit it in the drop-box. FINAL EXAM ** Two different ways to submit your answer sheet (i) Use MS-Word and place it in a drop-box. (ii) Scan your answer sheets INTO ONE FILE only, and submit it in the drop-box. Deadline: December

More information

Higher Order Factorial Designs. Estimated Effects: Section 4.3. Main Effects: Definition 5 on page 166.

Higher Order Factorial Designs. Estimated Effects: Section 4.3. Main Effects: Definition 5 on page 166. Higher Order Factorial Designs Estimated Effects: Section 4.3 Main Effects: Definition 5 on page 166. Without A effects, we would fit values with the overall mean. The main effects are how much we need

More information

Histogram of Residuals. Residual Normal Probability Plot. Reg. Analysis Check Model Utility. (con t) Check Model Utility. Inference.

Histogram of Residuals. Residual Normal Probability Plot. Reg. Analysis Check Model Utility. (con t) Check Model Utility. Inference. Steps for Regression Simple Linear Regression Make a Scatter plot Does it make sense to plot a line? Check Residual Plot (Residuals vs. X) Are there any patterns? Check Histogram of Residuals Is it Normal?

More information

Simple Linear Regression. Steps for Regression. Example. Make a Scatter plot. Check Residual Plot (Residuals vs. X)

Simple Linear Regression. Steps for Regression. Example. Make a Scatter plot. Check Residual Plot (Residuals vs. X) Simple Linear Regression 1 Steps for Regression Make a Scatter plot Does it make sense to plot a line? Check Residual Plot (Residuals vs. X) Are there any patterns? Check Histogram of Residuals Is it Normal?

More information

Factorial designs (Chapter 5 in the book)

Factorial designs (Chapter 5 in the book) Factorial designs (Chapter 5 in the book) Ex: We are interested in what affects ph in a liquide. ph is the response variable Choose the factors that affect amount of soda air flow... Choose the number

More information

WISE Regression/Correlation Interactive Lab. Introduction to the WISE Correlation/Regression Applet

WISE Regression/Correlation Interactive Lab. Introduction to the WISE Correlation/Regression Applet WISE Regression/Correlation Interactive Lab Introduction to the WISE Correlation/Regression Applet This tutorial focuses on the logic of regression analysis with special attention given to variance components.

More information

Fractional Replications

Fractional Replications Chapter 11 Fractional Replications Consider the set up of complete factorial experiment, say k. If there are four factors, then the total number of plots needed to conduct the experiment is 4 = 1. When

More information

Multiple Regression Methods

Multiple Regression Methods Chapter 1: Multiple Regression Methods Hildebrand, Ott and Gray Basic Statistical Ideas for Managers Second Edition 1 Learning Objectives for Ch. 1 The Multiple Linear Regression Model How to interpret

More information

Correlation and Regression

Correlation and Regression Correlation and Regression Dr. Bob Gee Dean Scott Bonney Professor William G. Journigan American Meridian University 1 Learning Objectives Upon successful completion of this module, the student should

More information

Six Sigma Black Belt Study Guides

Six Sigma Black Belt Study Guides Six Sigma Black Belt Study Guides 1 www.pmtutor.org Powered by POeT Solvers Limited. Analyze Correlation and Regression Analysis 2 www.pmtutor.org Powered by POeT Solvers Limited. Variables and relationships

More information

" M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2

 M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2 Notation and Equations for Final Exam Symbol Definition X The variable we measure in a scientific study n The size of the sample N The size of the population M The mean of the sample µ The mean of the

More information

Chapter 14. Multiple Regression Models. Multiple Regression Models. Multiple Regression Models

Chapter 14. Multiple Regression Models. Multiple Regression Models. Multiple Regression Models Chapter 14 Multiple Regression Models 1 Multiple Regression Models A general additive multiple regression model, which relates a dependent variable y to k predictor variables,,, is given by the model equation

More information

Strategy of Experimentation II

Strategy of Experimentation II LECTURE 2 Strategy of Experimentation II Comments Computer Code. Last week s homework Interaction plots Helicopter project +1 1 1 +1 [4I 2A 2B 2AB] = [µ 1) µ A µ B µ AB ] +1 +1 1 1 +1 1 +1 1 +1 +1 +1 +1

More information

The t-test: A z-score for a sample mean tells us where in the distribution the particular mean lies

The t-test: A z-score for a sample mean tells us where in the distribution the particular mean lies The t-test: So Far: Sampling distribution benefit is that even if the original population is not normal, a sampling distribution based on this population will be normal (for sample size > 30). Benefit

More information

Design of Experiments (DOE) Instructor: Thomas Oesterle

Design of Experiments (DOE) Instructor: Thomas Oesterle 1 Design of Experiments (DOE) Instructor: Thomas Oesterle 2 Instructor Thomas Oesterle thomas.oest@gmail.com 3 Agenda Introduction Planning the Experiment Selecting a Design Matrix Analyzing the Data Modeling

More information

20g g g Analyze the residuals from this experiment and comment on the model adequacy.

20g g g Analyze the residuals from this experiment and comment on the model adequacy. 3.4. A computer ANOVA output is shown below. Fill in the blanks. You may give bounds on the P-value. One-way ANOVA Source DF SS MS F P Factor 3 36.15??? Error??? Total 19 196.04 3.11. A pharmaceutical

More information

Unit 6: Fractional Factorial Experiments at Three Levels

Unit 6: Fractional Factorial Experiments at Three Levels Unit 6: Fractional Factorial Experiments at Three Levels Larger-the-better and smaller-the-better problems. Basic concepts for 3 k full factorial designs. Analysis of 3 k designs using orthogonal components

More information

44.2. Two-Way Analysis of Variance. Introduction. Prerequisites. Learning Outcomes

44.2. Two-Way Analysis of Variance. Introduction. Prerequisites. Learning Outcomes Two-Way Analysis of Variance 44 Introduction In the one-way analysis of variance (Section 441) we consider the effect of one factor on the values taken by a variable Very often, in engineering investigations,

More information

Apart from this page, you are not permitted to read the contents of this question paper until instructed to do so by an invigilator.

Apart from this page, you are not permitted to read the contents of this question paper until instructed to do so by an invigilator. B. Sc. Examination by course unit 2014 MTH5120 Statistical Modelling I Duration: 2 hours Date and time: 16 May 2014, 1000h 1200h Apart from this page, you are not permitted to read the contents of this

More information

Predict y from (possibly) many predictors x. Model Criticism Study the importance of columns

Predict y from (possibly) many predictors x. Model Criticism Study the importance of columns Lecture Week Multiple Linear Regression Predict y from (possibly) many predictors x Including extra derived variables Model Criticism Study the importance of columns Draw on Scientific framework Experiment;

More information

School of Mathematical Sciences. Question 1

School of Mathematical Sciences. Question 1 School of Mathematical Sciences MTH5120 Statistical Modelling I Practical 8 and Assignment 7 Solutions Question 1 Figure 1: The residual plots do not contradict the model assumptions of normality, constant

More information

Soil Phosphorus Discussion

Soil Phosphorus Discussion Solution: Soil Phosphorus Discussion Summary This analysis is ambiguous: there are two reasonable approaches which yield different results. Both lead to the conclusion that there is not an independent

More information

One-Way Analysis of Variance (ANOVA)

One-Way Analysis of Variance (ANOVA) 1 One-Way Analysis of Variance (ANOVA) One-Way Analysis of Variance (ANOVA) is a method for comparing the means of a populations. This kind of problem arises in two different settings 1. When a independent

More information

Stat 231 Final Exam. Consider first only the measurements made on housing number 1.

Stat 231 Final Exam. Consider first only the measurements made on housing number 1. December 16, 1997 Stat 231 Final Exam Professor Vardeman 1. The first page of printout attached to this exam summarizes some data (collected by a student group) on the diameters of holes bored in certain

More information

ANOVA 3/12/2012. Two reasons for using ANOVA. Type I Error and Multiple Tests. Review Independent Samples t test

ANOVA 3/12/2012. Two reasons for using ANOVA. Type I Error and Multiple Tests. Review Independent Samples t test // ANOVA Lectures - Readings: GW Review Independent Samples t test Placeo Treatment 7 7 7 Mean... Review Independent Samples t test Placeo Treatment 7 7 7 Mean.. t (). p. C. I.: p t tcrit s pt crit s t

More information

[4+3+3] Q 1. (a) Describe the normal regression model through origin. Show that the least square estimator of the regression parameter is given by

[4+3+3] Q 1. (a) Describe the normal regression model through origin. Show that the least square estimator of the regression parameter is given by Concordia University Department of Mathematics and Statistics Course Number Section Statistics 360/1 40 Examination Date Time Pages Final June 2004 3 hours 7 Instructors Course Examiner Marks Y.P. Chaubey

More information

STAT 360-Linear Models

STAT 360-Linear Models STAT 360-Linear Models Instructor: Yogendra P. Chaubey Sample Test Questions Fall 004 Note: The following questions are from previous tests and exams. The final exam will be for three hours and will contain

More information

IE 361 EXAM #3 FALL 2013 Show your work: Partial credit can only be given for incorrect answers if there is enough information to clearly see what you were trying to do. There are two additional blank

More information

Design and Analysis of Experiments

Design and Analysis of Experiments Design and Analysis of Experiments Part VIII: Plackett-Burman, 3 k, Mixed Level, Nested, and Split-Plot Designs Prof. Dr. Anselmo E de Oliveira anselmo.quimica.ufg.br anselmo.disciplinas@gmail.com Plackett-Burman

More information

PSYC 331 STATISTICS FOR PSYCHOLOGISTS

PSYC 331 STATISTICS FOR PSYCHOLOGISTS PSYC 331 STATISTICS FOR PSYCHOLOGISTS Session 4 A PARAMETRIC STATISTICAL TEST FOR MORE THAN TWO POPULATIONS Lecturer: Dr. Paul Narh Doku, Dept of Psychology, UG Contact Information: pndoku@ug.edu.gh College

More information

STAT22200 Spring 2014 Chapter 8A

STAT22200 Spring 2014 Chapter 8A STAT22200 Spring 2014 Chapter 8A Yibi Huang May 13, 2014 81-86 Two-Way Factorial Designs Chapter 8A - 1 Problem 81 Sprouting Barley (p166 in Oehlert) Brewer s malt is produced from germinating barley,

More information

Introduction to Regression

Introduction to Regression Regression Introduction to Regression If two variables covary, we should be able to predict the value of one variable from another. Correlation only tells us how much two variables covary. In regression,

More information

1 Introduction to One-way ANOVA

1 Introduction to One-way ANOVA Review Source: Chapter 10 - Analysis of Variance (ANOVA). Example Data Source: Example problem 10.1 (dataset: exp10-1.mtw) Link to Data: http://www.auburn.edu/~carpedm/courses/stat3610/textbookdata/minitab/

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur nalysis of Variance and Design of Experiment-I MODULE V LECTURE - 9 FCTORIL EXPERIMENTS Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Sums of squares Suppose

More information

TMA4255 Applied Statistics V2016 (5)

TMA4255 Applied Statistics V2016 (5) TMA4255 Applied Statistics V2016 (5) Part 2: Regression Simple linear regression [11.1-11.4] Sum of squares [11.5] Anna Marie Holand To be lectured: January 26, 2016 wiki.math.ntnu.no/tma4255/2016v/start

More information

DESAIN EKSPERIMEN BLOCKING FACTORS. Semester Genap 2017/2018 Jurusan Teknik Industri Universitas Brawijaya

DESAIN EKSPERIMEN BLOCKING FACTORS. Semester Genap 2017/2018 Jurusan Teknik Industri Universitas Brawijaya DESAIN EKSPERIMEN BLOCKING FACTORS Semester Genap Jurusan Teknik Industri Universitas Brawijaya Outline The Randomized Complete Block Design The Latin Square Design The Graeco-Latin Square Design Balanced

More information

Ch 13 & 14 - Regression Analysis

Ch 13 & 14 - Regression Analysis Ch 3 & 4 - Regression Analysis Simple Regression Model I. Multiple Choice:. A simple regression is a regression model that contains a. only one independent variable b. only one dependent variable c. more

More information

Food consumption of rats. Two-way vs one-way vs nested ANOVA

Food consumption of rats. Two-way vs one-way vs nested ANOVA Food consumption of rats Lard Gender Fresh Rancid 709 592 Male 679 538 699 476 657 508 Female 594 505 677 539 Two-way vs one-way vs nested NOV T 1 2 * * M * * * * * * F * * * * T M1 M2 F1 F2 * * * * *

More information

RCB - Example. STA305 week 10 1

RCB - Example. STA305 week 10 1 RCB - Example An accounting firm wants to select training program for its auditors who conduct statistical sampling as part of their job. Three training methods are under consideration: home study, presentations

More information

Paris. Optimization. Philippe Bich (Paris 1 Panthéon-Sorbonne and PSE) Paris, Philippe Bich

Paris. Optimization. Philippe Bich (Paris 1 Panthéon-Sorbonne and PSE) Paris, Philippe Bich Paris. Optimization. (Paris 1 Panthéon-Sorbonne and PSE) Paris, 2017. Lecture 1: About Optimization A For QEM-MMEF, the course (3H each week) and tutorial (4 hours each week) from now to october 22. Exam

More information

Design & Analysis of Experiments 7E 2009 Montgomery

Design & Analysis of Experiments 7E 2009 Montgomery Chapter 5 1 Introduction to Factorial Design Study the effects of 2 or more factors All possible combinations of factor levels are investigated For example, if there are a levels of factor A and b levels

More information

Analysis of Variance: Part 1

Analysis of Variance: Part 1 Analysis of Variance: Part 1 Oneway ANOVA When there are more than two means Each time two means are compared the probability (Type I error) =α. When there are more than two means Each time two means are

More information

MULTIPLE LINEAR REGRESSION IN MINITAB

MULTIPLE LINEAR REGRESSION IN MINITAB MULTIPLE LINEAR REGRESSION IN MINITAB This document shows a complicated Minitab multiple regression. It includes descriptions of the Minitab commands, and the Minitab output is heavily annotated. Comments

More information

23. Inference for regression

23. Inference for regression 23. Inference for regression The Practice of Statistics in the Life Sciences Third Edition 2014 W. H. Freeman and Company Objectives (PSLS Chapter 23) Inference for regression The regression model Confidence

More information

TWO-LEVEL FACTORIAL EXPERIMENTS: BLOCKING. Upper-case letters are associated with factors, or regressors of factorial effects, e.g.

TWO-LEVEL FACTORIAL EXPERIMENTS: BLOCKING. Upper-case letters are associated with factors, or regressors of factorial effects, e.g. STAT 512 2-Level Factorial Experiments: Blocking 1 TWO-LEVEL FACTORIAL EXPERIMENTS: BLOCKING Some Traditional Notation: Upper-case letters are associated with factors, or regressors of factorial effects,

More information

Chapter 9 Other Topics on Factorial and Fractional Factorial Designs

Chapter 9 Other Topics on Factorial and Fractional Factorial Designs Chapter 9 Other Topics on Factorial and Fractional Factorial Designs 許湘伶 Design and Analysis of Experiments (Douglas C. Montgomery) hsuhl (NUK) DAE Chap. 9 1 / 26 The 3 k Factorial Design 3 k factorial

More information

Business Statistics. Lecture 10: Course Review

Business Statistics. Lecture 10: Course Review Business Statistics Lecture 10: Course Review 1 Descriptive Statistics for Continuous Data Numerical Summaries Location: mean, median Spread or variability: variance, standard deviation, range, percentiles,

More information