Humanistic, and Particularly Classical, Studies as a Preparation for the Law

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Humanistic, and Particularly Classical, Studies as a Preparation for the Law"

Transcription

1 University of Michigan Law School University of Michigan Law School Scholarship Repository Articles Faculty Scholarship 1907 Humanistic, and Particularly Classical, Studies as a Preparation for the Law Harry B. Hutchins University of Michigan Law School Follow this and additional works at: Part of the Legal Education Commons Recommended Citation Hutchins, Harry B. "Humanistic, and Particularly Classical, Studies as a Preparation for the Law." Sch. Rev. 15 (1907): This Article is brought to you for free and open access by the Faculty Scholarship at University of Michigan Law School Scholarship Repository. It has been accepted for inclusion in Articles by an authorized administrator of University of Michigan Law School Scholarship Repository. For more information, please contact

2 L L T D PR P R T N F R L 42. H N T, ND P RT L RL L L, T D PR P R T N F R TH L D N H. B. H T H N D p rt nt f L, n v r t f h n d fr th l nt r br n h, n p rt l r bj t b l t l nt l b f r th t d nd pr t f th l. n th r p t th l p pl h t d ff r nt fr th t f th th r l rn d pr f n. Th t d nt nd pr t t n r f d n t f n t t b t nt l n t f f nd t n f r h pr f n l r. Th f r h n b l t l nt l pr r t. F r th pr f n l r n n n r n p l nd d f n t nt f pr p r t n t b d th t t n th n b t th t rd n r r n n n r n n b pl h d. nd t pr b bl th t f r th l, r l n rt n ll d f n d l n d r bl, f n t nt l. B t t b n n f ll th t, b n th t d f th l r n th pr t f t d n t d p nd p n th t r f p rt l r bj t, th r h pr p r t n th r f r n n r. Th ntr r t ph t ll tr, p rt l rl t th pr nt t. Th l pr t l bj t, t nt t l nn t d th th pr v t nt r t f th t z n, nd th t n ff t n h p bl r ht nd bl t n b t t t th t n, th t r f h h r r nt l p nt b v th rd n r. N n n h p f r h t d nt f t th t d t pr l n r tr n n, r n t ppl t n n rt, th t b n pr p r d

3 424 TH H L R V n d v r th t h t br r th n th r z n f pr n pl, nd th t d f th r r n nd r th. H r n p n d t th f t th t th r b n f th l t d nt n t n th ppl t n f n r l pr n pl t th l t n f pr bl nv lv n n nd t n nd v r n t t nt f f t. nd th n, t, h d v r d r tl th, lth h th b d f th ttl d l l r, th r r nt n ll r n t n p n h h th l n ttl d, nd h l t n r r th h r n z n, f p bl, f nfl t n d n, r, h r th n t p bl, th d t r n t n t th ht f r n nd th r t. H n d v r th t f r v r t p t n nd f r v r n l n r h d l l nd f r f l r n t b n d. t n dl f r t t th t r f th n t r, f f ll pl h d, ll f r n l t l p r nd n tr t v b l t t d nd th nf r d nd tr n d j d nt f n d t d n. h l n ll n h v n n t r l pt t d f r th l b bl, v n th l t d pr p r t n, t t r t pr n pl nd th rt f t ppl t n, nd t p h t th fr nt th pp r nt, th f t r n th t, r l, th ppr t v nd f l t d f j r pr d n d nd pr l n r tr n n f h h rd r nd f th th r h nd r r nd. nd f h tr n n n r f r th t d nt, t r t nl d bl f r th pr t t n r. H t b t r, n t

4 L L T D PR P R T N F R L 42 l t l t rf ln th t fr th r h nd v r pr l n r t d. nl h tt nt n p ll h ll n d t th f t, th l n r r l ppr t th xt nt nd v r t f l rn n, d fr th tr tl pr f n l, th t th l r t fr t t t n t h d n th r f v r d r r t th b r. f h h b n l b r ll nd th r hl tr n d, th n l d n r f r th r n b h : b t f t n t h, h h h t t f l th b l t t r t h rt n t nd nd r pr r th n r p l nf r t n. Th n t n th t t pr, th t l r t th b r d nd r t v r t l t nd th r h n r l tr n n, p rh p b d r pp r nt b ll tr t n. Th l t t n n h nd r r th x n t n, b th l r n h r, f l rn d xp rt n p rt l r f ld f n n l tr t f r x pl. n rd r t d v l p h thr h th x n t n f h n xp rt, nd t d t t rr r nd xp f ll n th t t n f th xp rt f h dv r r, t b l t l nt l th t h h v r n n l d f th p lt. r v r, n th r nt f th h t b n n th n tr t r f th rt nd f th j r, f th r b n f r h t pl n t th th f ll n f n f th nt f t t n dd d nd t b r n p n th ntr v r th t th r t d d. Th f ll xt nt f th t ll b ppr t d h n t r b r d th t n n h, p rh p n t f th, b th rt nd j r r n r nt f th

5 426 TH H L R V t t b n r, nd th t h h h pr p r t n b p t, r ll ll tr t d n th tr l n N r th t j t n ttr t n h p bl tt nt n. n th r tr n ll tr t n f th t h h n l d th t pp r ntl h l ttl r n b r n p n th pr t f th l b p t n l l pr d n, t b f nd n th r nt n r n nv t t n b th r tr n tt n th t f N r. Th r r bl br ll nt r f r. H h n n n t n th th t nv t t n h pl d h n th fr nt r n f r n l r. H tt t d p n p bl t n, nd th b l f f th p pl th t h h th tr n th nd th r t pl h th r f r th t h dv t, t th r th h r p t t n n h n t nd br ll nt l r, h v p n d p f r h r r t d f h pr f n b t t pl t h r l r b f r th r tr n tt th t ld d r t tt nt n. Th r t f h h v nt th r h pr p r dn, nd th r t f h pr p r dn l n th f t th t, h l r n th r h pr l n r tr n n, h b pr f nd th t n. Th th t f n r n nd th ntr f n r n th d r t h n p n b. H nv t t n, th r f r, r th r hl nd r p dl d, nd h n l n f rt f d b n l d f d t l th t t th n n t t d pl rv l. H bl t t th n r n xp rt p n h n r nd nd t nf nd h b

6 L L T D PR P R T N F R L 42 th n, t th t n th t d r t ph z, n l, th t pr p r t n f r th l h ld b d b th t d f h bj t ll tr n n t r l nd r p dl, nd t th n l ll nd nd p nd ntl. nd, n j d nt, th bj t th t d f h h t nd t th d v l p nt f th l t r th h h r r f th t d nt tr n, p n t n, nd p r t nt ff rt f r th r t r. f ld r l t th pr p r t n f l t d nt, ld l n t fr th r ll pr d t d nd p ll pr p r d f d, nd ld v th n n th n th t ld d nd rn t ff rt n h p rt t l t. h l b l v n nd dv t th r h ll r pr p r t n f r th t d f l, nd h l h p th t th t n t f r d t nt h n h r, r t v l nt, b d pr r t f r l l t d, fr n t th t th n n h h th r h, ld f h n d l l nd th t l pr p r t n f r l l, n j d nt, h b tt r f tt d f r th t d f l th n th n h d r n f r r n ll h d p t d h n r nd n d h p r t th n l rl nd l ll b d lt r nd p ntl r n " n p" r th t r r l ttl r n ff rt n h p rt. B t h t nd r t d th t n n th t t nt, d n t nt nd r t f th l t v t h, f r b l v n t, b t b l v l th t t h ld l b p rv d nd r l t d th t d pl n r bj t pr d n t d r n t l t th f r t h lf f th r. nd r h pl n th t d nt t th p l z d r f

7 428 TH H L R V b tt r d pl n th n th t h h fr th d r n t n ff rt nv lv d n r f l tr n l t n. Th l r pr f n l l f t b l r l d v t d t th nt rpr t t n f th l, nd t th pr p r t n nd nt rpr t t n f l l n tr nt nd th r t r h ll n th f l n nd n d v r n h d f n n, th r t r h ff t v n. B t, p tt n ll th d nd n d n, f r th nt, th t th t d f th n nt l th t pr t l v l, nd th t h t v r l rn f th n f r tt n, t ll nn t p th f t th t th nt l p r nd ff t v n th t r th r lt f th t t d r n th th n nd b p rt, nd v r l r p rt, f h p nt f r th t v t f l f. B t h l ld r th t d f th l p rt f th pr p r t r l r l r l f r th r d pl n r v l, ld l r th t t d n nt f th f l t th t t t nd t v n th f n l h. t th th r n b n t n. Th r n r rd t th pr t ll n d ff r n f p n n n d t r. Th t d f n l h n b t b d thr h th L t n l n. nd th t th l r n d t n n l h th t n. Th t ff t v, n t th b r r th h, th d l l tt n nt, r bl t r t nd p pl, l r, n, nd f r f l n l h. d n t n b th th t t th b r t th pr nt t d p nd p n r t r, p p l rl nd r t d, r p n th rt >

8 L L T D PR P R T N F R L 420 r rd tt r f n r p rt n, f r thr h th d f th d t n r th n n f h t r l rt n d. H v r, t d nt h h r d n n l d f th l n bl t ppr t th t r t n nd th t th n t f p l t d. t h rdl n r t t th t, f n t d v t h lf t th h l rl d f th l, h h ld b l ll tr n d, nd th t h n l d f L t n nd r h ld b ppl nt d b t l t r d n n l d f Fr n h nd r n. Th f ld f th j r t br d n, nd th nd th r hn f h nv t t n d p nd v r l r l p n h b l t t r h nd t r th r f nf r t n thr h th t xt f th r n l. Th th t t t bl h ld n t b pl t th t th t n th t th lt r v l f h n t t d h ld n t b v rl d n th n d r t n f h t h ld b th tr n n f th pr p t v l r. r t pt t f r t, n th nt n l pr t l t, th t th pr f n l n h ld b f r t f ll th ll d t d ntl n. Th l r h ld b r th n l r, th ph n r th n ph n, th n n r r th n n n n r. h h ld h v n d t n l b th t f t h f r th n t d f, nd b nd, h pr f n. ld n t f r nt l th t n nn t b ll d t d th t n l d f th n nt l, f r h n t th f t, b t th t h n t t d t l t th nd t h t b t n l t r t r nd

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Ed H. H w H Ed. en 2: Ed. o o o z. o o. Q Ed. Ed Q to. PQ in o c3 o o. Ed P5 H Z. < u z. Ed H H Z O H U Z. > to. <! Ed Q. < Ed > Es.

Ed H. H w H Ed. en 2: Ed. o o o z. o o. Q Ed. Ed Q to. PQ in o c3 o o. Ed P5 H Z. < u z. Ed H H Z O H U Z. > to. <! Ed Q. < Ed > Es. d n 2: d t d t d! d d 52 d t d d P in t d. d P5 d - d d , d P il 0) m d p P p x d d n N r -^ T) n «n - P & J (N 0 ' 4 «"«5 -» % «D *5JD V 9 * * /J -2.2 " ^ 0 n 0) - P - i- 0) G V V - 1(2). i 1 1 & i '

More information

, (1). -, [9], [1]. 1.. T =[ a] R: _(t)=f((t)) _ L(t) () = x f, L(t) T., L(t), L() = L(a ; ) = L(a). (2) - : L n (t) =(L n )(t) = 1=n R supp [ 1], 1R

, (1). -, [9], [1]. 1.. T =[ a] R: _(t)=f((t)) _ L(t) () = x f, L(t) T., L(t), L() = L(a ; ) = L(a). (2) - : L n (t) =(L n )(t) = 1=n R supp [ 1], 1R 25 3(514) 517.988..,..,.. -.,.., -, -. : _x(t) =f(t x(t)) _ L(t) (1) L(t) _.. - -, f(t x(t)) L(t). _ ([1],. 1, x 8,. 41),. [2]{[4],., [2]{[4],, [1]. - x(t) =x f( x())dl() t {, {.. [5]{[7]. L(t),. [8] (1),

More information

THE POISSON TRANSFORM^)

THE POISSON TRANSFORM^) THE POISSON TRANSFORM^) BY HARRY POLLARD The Poisson transform is defined by the equation (1) /(*)=- /" / MO- T J _M 1 + (X t)2 It is assumed that a is of bounded variation in each finite interval, and

More information

Geometry Chapter 8: Area Review PA Anchors: A3; B2; Cl. .1.t+~4 -~-J. ""T... Sl. J":..2.l.. -+-Jw. A =- A(~)'" ~ A :..!w-l-~

Geometry Chapter 8: Area Review PA Anchors: A3; B2; Cl. .1.t+~4 -~-J. T... Sl. J:..2.l.. -+-Jw. A =- A(~)' ~ A :..!w-l-~ Geometry Chapter 8: Area Review PA Anchors: A3; B2; Cl 1. Find the missing value given BCDA is a rectangle. Perimeter = 62 cm Area =? V:. d.t-\" ~vj B.--- ---,c 17 em ~ J. ':. ~). -:: - '0..., rj ~ -;:,

More information

Balanced preamp - Digital control

Balanced preamp - Digital control TSOP Vdd U V OUT GN uf xial GN GN Vdd J Prog.Header J Prog.Header MLR V GN PG PG cc0 cc cc cc cc MLR cc cpwr U VSS V R0/IN0 R0/INT R/IN R/SI R/IN/VREF R/SO 9 R/IN R/P 0 R/T0KI R/SK R/MLR/VPP R/SS R/OS/LKO

More information

Power Board 715G5246P02W21002S (For 42RL7500)

Power Board 715G5246P02W21002S (For 42RL7500) Key omponent Power Board GP0W00S (For RL00) SG0 DSPL-0N-AF 0 0PF 0V SG0 DSPL-0N-AF BOX 0 00PF 0V t R0 0K L0 0NF 0V change to.mm I0 D D D D AP00DG 0 PF L0 MH MH R0 0 0NF 0V TVRKFAOZF R- FB0 SG0 DSPL-0N-AF

More information

Lecture 2. Fading Channel

Lecture 2. Fading Channel 1 Lecture 2. Fading Channel Characteristics of Fading Channels Modeling of Fading Channels Discrete-time Input/Output Model 2 Radio Propagation in Free Space Speed: c = 299,792,458 m/s Isotropic Received

More information

I;;"" I _ t. . - I...AJ_ ~I 11 \_-., I. LIfI.l..(!;O '{. ~- --~--- _.L...,.._ J 5" i. I! I \ 1/ \. L, :,_. RAmE ABSTRACT

I;; I _ t. . - I...AJ_ ~I 11 \_-., I. LIfI.l..(!;O '{. ~- --~--- _.L...,.._ J 5 i. I! I \ 1/ \. L, :,_. RAmE ABSTRACT 5 ;; _L_ 7 9 8 A Ll(;O '{ L _ OFFCAL RETURNS GENERAL ELECTON RAmE 98 9 w ;; (k4(ap 'A ' lee S'T'lTE 5'C TU AS c ; _ l6l>'

More information

I if +5sssi$ E sr. Egglg[[l[aggegr glieiffi*gi I I a. gl$[fli$ilg1li3fi[ Ell F rss. F$EArgi. SEgh*rqr. H uf$:xdx. FsfileE

I if +5sssi$ E sr. Egglg[[l[aggegr glieiffi*gi I I a. gl$[fli$ilg1li3fi[ Ell F rss. F$EArgi. SEgh*rqr. H uf$:xdx. FsfileE (tl Sh*q +sss$!! ll ss s ;s$ll s ; B 3 $ Sest -9[*; s$t 1,1 - e^ -" H u$xdx fd $A sfle *9,9* '. s. \^ >X!l P s H 2.ue ^ O - HS 1- -l ( l[[l[e lff* l$[fl$l1l3f[ U, -.1 $tse;es s TD T' ' t B $*l$ \l - 1

More information

Nagoya Institute of Technology

Nagoya Institute of Technology 09.03.19 1 2 OFDM SC-FDE (single carrier-fde)ofdm PAPR 3 OFDM SC-FDE (single carrier-fde)ofdm PAPR 4 5 Mobility 2G GSM PDC PHS 3G WCDMA cdma2000 WLAN IEEE802.11b 4G 20112013 WLAN IEEE802.11g, n BWA 10kbps

More information

fnm 'et Annual Meeting

fnm 'et Annual Meeting UUVtK Ht.t, A 0 8 4 S.. Rittin Nub t, n L Y t U N i, n ' A N n, t\ V n b n k pny' ull N) 0 R Z A L A V N U X N S N R N R H A V N U R A P A R K A L A N Y Buin Add. N. Stt ity wn / Pvin) Ali l) lil tal?l

More information

Spatial Ergodicity of the Harris Flows

Spatial Ergodicity of the Harris Flows Communications on Stochastic Analysis Volume 11 Number 2 Article 6 6-217 Spatial Ergodicity of the Harris Flows E.V. Glinyanaya Institute of Mathematics NAS of Ukraine, glinkate@gmail.com Follow this and

More information

EQUATIONS WHOSE ROOTS ARE T I E nth POWERS OF T I E ROOTS OF A GIVEN CUBIC EQUATION

EQUATIONS WHOSE ROOTS ARE T I E nth POWERS OF T I E ROOTS OF A GIVEN CUBIC EQUATION EQUATIONS WHOSE ROOTS ARE T I E nth POWERS OF T I E ROOTS OF A GIVEN CUBIC EQUATION N. A, DRAiMand MARJORIE BICKNELL Ventura, Calif, and Wilcox High School, Santa Clara, Calif. Given the cubic equation

More information

Expanding brackets and factorising

Expanding brackets and factorising Chapter 7 Expanding brackets and factorising This chapter will show you how to expand and simplify expressions with brackets solve equations and inequalities involving brackets factorise by removing a

More information

elnpol^l SSJU (tl = N) gnot

elnpol^l SSJU (tl = N) gnot ZZ'Uap 66-' S fbul - alnph lluuur!^u SSf, psnu '6 ajns ' l/mu) l,u l fuan 's 'b rll ' p9 'z p6 ua ' "'s pr.u6lu rna u! 6url6ll l4s a11 ap]sap na plnm'6lu l bulm ll psnu aln5 11r1/vu) l,u lusl ll l p usal

More information

2. T H E , ( 7 ) 2 2 ij ij. p i s

2. T H E , ( 7 ) 2 2 ij ij. p i s M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X A N A L Y S I S O F T E M P E R A T U R E D I S T R I B U T I O N I N C O M P O S I T E P L A T E S D U R I N G T H E R M A

More information

NOTE ON FIBONACCI PRIMALITY TESTING John Brillhart University of Arizona, Tucson, AZ (Submitted August 1996-Final Revision January 1997)

NOTE ON FIBONACCI PRIMALITY TESTING John Brillhart University of Arizona, Tucson, AZ (Submitted August 1996-Final Revision January 1997) John Brillhart University of Arizona, Tucson, AZ 85721 (Submitted August 1996-Final Revision January 1997) 1. INTRODUCTION One of the most effective ways of proving an integer N is prime is to show first

More information

Using Electron Scattering Superscaling to predict Charge-changing Neutrino Cross Sections in Nuclei

Using Electron Scattering Superscaling to predict Charge-changing Neutrino Cross Sections in Nuclei Using Electron Scattering Superscaling to predict Charge-changing Neutrino Cross Sections in Nuclei Maria B. Barbaro University of Torino (Italy) and INFN Maria B. Barbaro NUFACT05, Frascati, June 21-26,

More information

Ceu Approved as to form: Barbara Y. hinpoch, Mayor

Ceu Approved as to form: Barbara Y. hinpoch, Mayor CTY OF RENTON, WASHNGTON ORDNANCE NO 4028 AN ORDNANCE OF THE CTY OF RENTON, WASHNGTON, ESTABLSHNG A SPECAL ASSESSMENT DSTRCT FOR SANTARY SEWER SERCE N THE ADAMS STA LD NO 25 SERCE AREA AND ESTABLSHNG THE

More information

This document contains the Errata for Design with Op Amps and Analog ICs.

This document contains the Errata for Design with Op Amps and Analog ICs. This document contains the Errata for Design with Op Amps and Analog ICs. The Errata are shown for the 4 th Edition, 3 rd Edition, and nd Edition, as follows: For the 4 th Edition Errata, scroll down to

More information

Chem 6 Sample exam 2 (150 points total) NAME:

Chem 6 Sample exam 2 (150 points total) NAME: hem 6 Sample exam 2 (150 points total) @ This is a closed book exam to which the onor Principle applies. @ The last page contains equations and physical constants; you can detach it for easy reference.

More information

R k. t + 1. n E t+1 = ( 1 χ E) W E t+1. c E t+1 = χ E Wt+1 E. Γ E t+1. ) R E t+1q t K t. W E t+1 = ( 1 Γ E t+1. Π t+1 = P t+1 /P t

R k. t + 1. n E t+1 = ( 1 χ E) W E t+1. c E t+1 = χ E Wt+1 E. Γ E t+1. ) R E t+1q t K t. W E t+1 = ( 1 Γ E t+1. Π t+1 = P t+1 /P t R k E 1 χ E Wt E n E t+1 t t + 1 n E t+1 = ( 1 χ E) W E t+1 c E t+1 = χ E Wt+1 E t + 1 q t K t Rt+1 E 1 Γ E t+1 Π t+1 = P t+1 /P t W E t+1 = ( 1 Γ E t+1 ) R E t+1q t K t Π t+1 Γ E t+1 K t q t q t K t j

More information

Shock Effects in CML 0175: The Wow Stone

Shock Effects in CML 0175: The Wow Stone PSU McNair Scholars Online Journal Volume 3 Issue 1 Identity, Communities, and Technology: On the Cusp of Change Article 17 2009 Shock Effects in CML 0175: The Wow Stone Kristy Hauver Portland State University

More information

Ëâ,a E :lëë, ËgËEggEËËgË ËiË

Ëâ,a E :lëë, ËgËEggEËËgË ËiË 4 Ë s F Ë3 ËËs *s ôl s{ëaëëëëë {) è) (ll '* ËË Ë Ër rëë s: 5 Ë ËË Ë3s âëëëësëëëë ô r.9 fë;uëë;ëë *Ë =ËfËâ$âË$[Ë$ Ë ËË FêËËËËËrËËËË.Ë:eË*cs srrëf rl $Ël*ËË s66- Ë3 ËËË ËËs.4 Ëâ, :lëë, ËËËËË ËË.Ë $ËFj ËÉË......l"*ÂlÉËËr

More information

Insect visitation of peduncular and petiolar extrafloral nectar glands on castor bean (Ricinus communis L.) plants in Southern California

Insect visitation of peduncular and petiolar extrafloral nectar glands on castor bean (Ricinus communis L.) plants in Southern California Digital Commons@ and Loyola Law School Biology Faculty Works Biology 6-1-2014 Insect visitation of peduncular and petiolar extrafloral nectar glands on castor bean (Ricinus communis L.) plants in Southern

More information

4r, o I. >fi. a IE. v atr. ite. a z. a til. o a. o o. 0..c. E lrl .',,# View thousands of Crane Specifications on FreeCraneSpecs.

4r, o I. >fi. a IE. v atr. ite. a z. a til. o a. o o. 0..c. E lrl .',,# View thousands of Crane Specifications on FreeCraneSpecs. i View husns Crne Speiiins n reecrnespes.m :: :r R: 8 @ il llj v u L u 4r,? >i C) lrl? n R 0&l r'q1 rlr n rrei i 5 n llvvj lv 8 s S llrvvj Sv TT [ > 1 \ l? l:i rg l n - l l. l8 l l 5 l u r l 9? { q i :{r.

More information

elegant Pavilions Rediscover The Perfect Destination

elegant Pavilions Rediscover The Perfect Destination Pv Rv T Pf D W... T O Lv! Rv p f f v. T f p, f f, j f f, bw f p f f w-v. T f bk pv. Pv w b f v, pv f. W, w w, w f, pp w w pv. W pp v w v. Tk f w v k w w j x v f. W v p f b f v j. S f f... Tk Y! 2 3 p Pv

More information

8. Relax and do well.

8. Relax and do well. CHEM 1225 Exam I John I. Gelder February 4, 1999 Name KEY TA's Name Lab Section Please sign your name below to give permission to post your course scores on homework, laboratories and exams. If you do

More information

Excessive Social Imbalances and the Performance of Welfare States in the EU. Frank Vandenbroucke, Ron Diris and Gerlinde Verbist

Excessive Social Imbalances and the Performance of Welfare States in the EU. Frank Vandenbroucke, Ron Diris and Gerlinde Verbist Excessive Scial Imbalances and the Perfrmance f Welfare States in the EU Frank Vandenbrucke, Rn Diris and Gerlinde Verbist Child pverty in the Eurzne, SILC 2008 35.00 30.00 25.00 20.00 15.00 10.00 5.00.00

More information

F l a s h-b a s e d S S D s i n E n t e r p r i s e F l a s h-b a s e d S S D s ( S o-s ltiad t e D r i v e s ) a r e b e c o m i n g a n a t t r a c

F l a s h-b a s e d S S D s i n E n t e r p r i s e F l a s h-b a s e d S S D s ( S o-s ltiad t e D r i v e s ) a r e b e c o m i n g a n a t t r a c L i f e t i m e M a n a g e m e n t o f F l a-b s ah s e d S S D s U s i n g R e c o v e r-a y w a r e D y n a m i c T h r o t t l i n g S u n g j i n L e, e T a e j i n K i m, K y u n g h o, Kainmd J

More information

Primitive Digraphs with the Largest Scrambling Index

Primitive Digraphs with the Largest Scrambling Index Primitive Digraph with the Larget Scrambling Index Mahmud Akelbek, Steve Kirkl 1 Department of Mathematic Statitic, Univerity of Regina, Regina, Sakatchewan, Canada S4S 0A Abtract The crambling index of

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 14 The CMOS Inverter: dynamic behavior (sizing, inverter

More information

Is the superposition of many random spike trains a Poisson process?

Is the superposition of many random spike trains a Poisson process? Is the superposition of many random spike trains a Poisson process? Benjamin Lindner Max-Planck-Institut für Physik komplexer Systeme, Dresden Reference: Phys. Rev. E 73, 2291 (26) Outline Point processes

More information

H A N S -O L A V E N G E R,

H A N S -O L A V E N G E R, O n -l i n e P r o c e e d i n gs o f t h e 7 t h M e d i t e r r a n e a n M o r p h o l o g y M e e t i n g 1 M o r p h o l o g y a n d D i a c h r o n y O n -l i n e P r o c e e d i n g s o f t h e

More information

SAMPLE QUESTION PAPER MATHEMATICS CLASS XII :

SAMPLE QUESTION PAPER MATHEMATICS CLASS XII : SAMPLE QUESTION PAPER MATHEMATICS CLASS XII : 05-6 TYPOLOGY VSA ( M) L A I (4M) L A II (6M) MARKS %WEIGHTAGE Remembering 3, 6, 8, 9, 5 0 0% Understanding, 9, 0 4, 6 % Applications 4 3, 5, 6, 7, 0 9 9%

More information

arxiv: v1 [math.co] 23 Nov 2015

arxiv: v1 [math.co] 23 Nov 2015 arxiv:1511.07306v1 [math.co] 23 Nov 2015 RAMSEY NUMBERS OF TREES AND UNICYCLIC GRAPHS VERSUS FANS MATTHEW BRENNAN Abstract. The generalized Ramsey number R(H, K) is the smallest positive integer n such

More information

210H-3 HA 289 HA H-3. f80 f160. f140. f125. f50. Type. Standard type. Adaptable fluid. Seal material. Phosphate ester fluid. Water in oil fluid

210H-3 HA 289 HA H-3. f80 f160. f140. f125. f50. Type. Standard type. Adaptable fluid. Seal material. Phosphate ester fluid. Water in oil fluid 288 28 Type Nominal pressure Maximum allowable pressure roof test pressure Minimum operating pressure orking speed range orking temperature range (ambient/fluid temperature) Structure of cushioning Adaptable

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE RPRT DCUMNTATN PAG Frm Apprved MB N. 74-188 Publi reprting burden fr tbis lletin f infrmtin is estimted t verge 1 hur per respnse, inluding the lime fr reviewing instrutins, serhing existing dt sures,

More information

1 Introduction This work follows a paper by P. Shields [1] concerned with a problem of a relation between the entropy rate of a nite-valued stationary

1 Introduction This work follows a paper by P. Shields [1] concerned with a problem of a relation between the entropy rate of a nite-valued stationary Prexes and the Entropy Rate for Long-Range Sources Ioannis Kontoyiannis Information Systems Laboratory, Electrical Engineering, Stanford University. Yurii M. Suhov Statistical Laboratory, Pure Math. &

More information

Generation of bandlimited sync transitions for sine waveforms

Generation of bandlimited sync transitions for sine waveforms Generation of bandlimited sync transitions for sine waveforms Vadim Zavalishin May 4, 9 Abstract A common way to generate bandlimited sync transitions for the classical analog waveforms is the BLEP method.

More information

THE LIE ALGEBRA ASSOCIATED TO THE LOWER CENTRAL SERIES OF A LINK GROUP AND MURASUGI'S CONJECTURE

THE LIE ALGEBRA ASSOCIATED TO THE LOWER CENTRAL SERIES OF A LINK GROUP AND MURASUGI'S CONJECTURE PROCEEDINGS of the AMERICAN MATHEMATICAL SOCIETY Volume 109, Number 4, August 1990 THE LIE ALGEBRA ASSOCIATED TO THE LOWER CENTRAL SERIES OF A LINK GROUP AND MURASUGI'S CONJECTURE JOHN P. LABUTE (Communicated

More information

4.06 Periodic Table and Periodic Trends

4.06 Periodic Table and Periodic Trends 4.06 Periodic Table and Periodic Trends Dr. Fred Omega Garces Chemistry 100, Miramar College 1 4.06 Periodic Table and Periodic Trend The Periodic Table and the Elements What is the periodic table? What

More information

Document And Report Documentation Page Submitted edoc_

Document And Report Documentation Page Submitted edoc_ 'uaiwixll r'u.iu V xvpuii ifj-tmeniann iage Submitted as ed 1.. '...X,> https://trstiiit.dti.mil/passgi/ed/ed_press_sf298.pl -/ Dument And Reprt Dumentatin Page Submitted ed_17573268 as Reprt Dumentatin

More information

ECE 650 Lecture #10 (was Part 1 & 2) D. van Alphen. D. van Alphen 1

ECE 650 Lecture #10 (was Part 1 & 2) D. van Alphen. D. van Alphen 1 ECE 650 Lecture #10 (was Part 1 & 2) D. van Alphen D. van Alphen 1 Lecture 10 Overview Part 1 Review of Lecture 9 Continuing: Systems with Random Inputs More about Poisson RV s Intro. to Poisson Processes

More information

The Mathematics of Harmonic Oscillators

The Mathematics of Harmonic Oscillators Th Mhcs of Hronc Oscllors Spl Hronc Moon In h cs of on-nsonl spl hronc oon (SHM nvolvng sprng wh sprng consn n wh no frcon, you rv h quon of oon usng Nwon's scon lw: con wh gvs: 0 Ths s sos wrn usng h

More information

vs. Chapter 4: Standard Flows Chapter 4: Standard Flows for Rheology shear elongation 2/1/2016 CM4650 Lectures 1-3: Intro, Mathematical Review

vs. Chapter 4: Standard Flows Chapter 4: Standard Flows for Rheology shear elongation 2/1/2016 CM4650 Lectures 1-3: Intro, Mathematical Review CM465 Lectures -3: Intro, Mathematical //6 Chapter 4: Standard Flows CM465 Polymer Rheology Michigan Tech Newtonian fluids: vs. non-newtonian fluids: How can we investigate non-newtonian behavior? CONSTANT

More information

A CHARACTERISTIC PROPERTY OF QUADRATIC RESIDUES

A CHARACTERISTIC PROPERTY OF QUADRATIC RESIDUES A CHARACTERISTIC PROPERTY OF QUADRATIC RESIDUES JOHN B. KELLY 1. Introduction. Let p be an odd prime. We denote by Rp the set of quadratic residues (mod p), by Np the set of quadratic nonresidues, and

More information

On reaching head-to-tail ratios for balanced and unbalanced coins

On reaching head-to-tail ratios for balanced and unbalanced coins Journal of Statistical Planning and Inference 0 (00) 0 0 www.elsevier.com/locate/jspi On reaching head-to-tail ratios for balanced and unbalanced coins Tamas Lengyel Department of Mathematics, Occidental

More information

Lecture 20. Chemical Potential

Lecture 20. Chemical Potential Lecture 20 Chemical Potential Reading: Lecture 20, today: Chapter 10, sections A and B Lecture 21, Wednesday: Chapter 10: 10 17 end 3/21/16 1 Pop Question 7 Boltzmann Distribution Two systems with lowest

More information

A~(A'~) = i,(t) (1.34)

A~(A'~) = i,(t) (1.34) GENERAL RESISTIVE CIRCUITS 225 Nonlinear branch equation In vector notation, Eq. (1.31) becomes simply Since the independent current sources do not form cut sets (by assumption), Eq. (1.14) remains valid.

More information

NAME: 3rd (final) EXAM

NAME: 3rd (final) EXAM 1 Chem 64 Winter 2003 AME: 3rd (final) EXAM THIS EXAM IS WORTH 100 POITS AD COTAIS 9 QUESTIOS THEY ARE OT EQUALLY WEIGHTED! YOU SHOULD ATTEMPT ALL QUESTIOS AD ALLOCATE YOUR TIME ACCORDIGLY IF YOU DO'T

More information

CD-DET TP5_CS- LCDPWR RFPWR CHPD5 GP05 GP25 RST5 L13 D12 D11 D10 LCD_MISO LCD5_MOSI LCD5_SCK SD5_CS- LCD_MISO LCD5_MOSI LCD5_SCK SD5_CS-

CD-DET TP5_CS- LCDPWR RFPWR CHPD5 GP05 GP25 RST5 L13 D12 D11 D10 LCD_MISO LCD5_MOSI LCD5_SCK SD5_CS- LCD_MISO LCD5_MOSI LCD5_SCK SD5_CS- SPST SW L 0uH.uF TP HEER NO STUFF TP 0 HEER NO STUFF TP TP pf Y.uF.uF 0 HEER NO STUFF 0 HEER NO STUFF MHz, 0ppm pf.uf (OUT) (IN) R 0K /W % 0uF OUT OUT OUT OUT KLT L 0 L_MISO L_MOSI L_SK S_S- L_S- L_- L_

More information

Formulation of Finite Element Matrices

Formulation of Finite Element Matrices Topic 6 Formulation of Finite Element Matrices Contents: Summary of principle of virtual work equations in total and updated Lagrangian formulations Deformation-independent and deformation-dependent loading

More information

Jasmin Smajic1, Christian Hafner2, Jürg Leuthold2, March 23, 2015

Jasmin Smajic1, Christian Hafner2, Jürg Leuthold2, March 23, 2015 Jasmin Smajic, Christian Hafner 2, Jürg Leuthold 2, March 23, 205 Time Domain Finite Element Method (TD FEM): Continuous and Discontinuous Galerkin (DG-FEM) HSR - University of Applied Sciences of Eastern

More information

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009 Schedule H-6.lb SOUTHWSTRN LCTRIC POWR COMPANY SCHDUL H-6.1b NUCLAR UNIT OUTAG DATA For the Test Year nded March 31, 29 This schedule is not applicable to SVvPCO. 5 Schedule H-6.1 c SOUTHWSTRN LCTRIC POWR

More information

DEDICATED TO THE MEMORY OF R.J. WEINSHENK 1. INTRODUCTION

DEDICATED TO THE MEMORY OF R.J. WEINSHENK 1. INTRODUCTION CONVOLUTION TRIANGLES FOR GENERALIZED FIBONACCI NUMBERS VERNER E. HOGGATT, JR. San Jse State Cllege, San Jse, Califrnia DEDICATED TO THE MEMORY OF R.J. WEINSHENK. INTRODUCTION The sequence f integers Fj

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

Section 4-5: Electric Potential

Section 4-5: Electric Potential 148 CHAPTER 4 Pv(2) = 2b = 10. Hence. b = 5. Appling Gauss's law to a spherical surface of radius R, J;; 1D.ds = Jv r pv d'll, DR 4nR2 = Jo rr 5R 41tR2 dr = 201t 4'" ~ ' 5 DR = 4 R2 (C/m2), A ~ 5? ') (Clm-).

More information

The Periodic Table of Elements

The Periodic Table of Elements The Periodic Table of Elements 8 Uuo Uus Uuh (9) Uup (88) Uuq (89) Uut (8) Uub (8) Rg () 0 Ds (9) 09 Mt (8) 08 Hs (9) 0 h () 0 Sg () 0 Db () 0 Rf () 0 Lr () 88 Ra () 8 Fr () 8 Rn () 8 At (0) 8 Po (09)

More information

Current. Current Ed Res Y Goal Func Obj Sit SdR DD Working Revised Chaiige

Current. Current Ed Res Y Goal Func Obj Sit SdR DD Working Revised Chaiige 08 WILLOWS UNIFIED SCHOOL DIST BUDGET APPROVAL/REVISION J3851 BG0900 H.00.07 09/03/13 PAG Fund :01 GENERAL FUND Resource 0000 UNRESTRICTED GENERAL PURPOSE Project Year:0 Ed Res Y Goal Func Obj Sit SdR

More information

DEUTSCHES ELEKTRONEN-SYNCHROTRON DE SY

DEUTSCHES ELEKTRONEN-SYNCHROTRON DE SY DEUTSCHES ELEKTRONEN-SYNCHROTRON DE SY DESY 77/7 May 1977 p Recurrences in J/~ + 3~ by II. Z. z., Aydin. Abstract:.. We study the recurre~~~~ decay of the J/~ and show that for this decay gives the following

More information

SOME PROPERTIES OF THIRD-ORDER RECURRENCE RELATIONS

SOME PROPERTIES OF THIRD-ORDER RECURRENCE RELATIONS SOME PROPERTIES OF THIRD-ORDER RECURRENCE RELATIONS A. G. SHANNON* University of Papua New Guinea, Boroko, T. P. N. G. A. F. HORADAIVS University of New Engl, Armidale, Australia. INTRODUCTION In this

More information

Chemistry 112 Name Exam I Form A Section January 29,

Chemistry 112 Name Exam I Form A Section January 29, Chemistry 112 Name Exam I Form A Section January 29, 2013 email IMPORTANT: On the scantron (answer sheet), you MUST clearly fill your name, your student number, section number, and test form (white cover

More information

Section 1.1: Functions Given by Formulas

Section 1.1: Functions Given by Formulas Section 1.1: Functions Given by Formulas Topics: Using function notation Domain Answering questions when given a formula functions Using TI to compute function values and using the Ans feature of the calculator

More information

Series RC and RL Time Domain Solutions

Series RC and RL Time Domain Solutions ECE2205: Circuits and Systems I 6 1 Series RC and RL Time Domain Solutions In the last chapter, we saw that capacitors and inductors had element relations that are differential equations: i c (t) = C d

More information

8 factors of x. For our second example, let s raise a power to a power:

8 factors of x. For our second example, let s raise a power to a power: CH 5 THE FIVE LAWS OF EXPONENTS EXPONENTS WITH VARIABLES It s no time for chnge in tctics, in order to give us deeper understnding of eponents. For ech of the folloing five emples, e ill stretch nd squish,

More information

THESEUS ARRIVES MARY JANE LEACH. Mixed Chorus (SSAATB) and String Quartet. Ariadne Press Duration: ca. 2:30

THESEUS ARRIVES MARY JANE LEACH. Mixed Chorus (SSAATB) and String Quartet. Ariadne Press Duration: ca. 2:30 HESEUS ARRIVES Mixd hors (SSAA) and String Qartt Dration: ca. 2:30 MARY JANE LEAH Ariadn rss 00034 Soprano 1 Soprano 2 Vocal rangs: & & b Alto 1 & Alto 2 & b nor V b ass b In a pic sch as this, in hich

More information

^ ) = ^ : g ' f ^4(x)=a(xr + /xxr,

^ ) = ^ : g ' f ^4(x)=a(xr + /xxr, Edited by Stanley Rablnowitz Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence may also be sent to

More information

DISTRIBUTED BY: National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road. Springfield Va.

DISTRIBUTED BY: National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road. Springfield Va. '" I " " "" ll '" I'" ' " P"-' I II -«...-.,. ' M»^..l^..l I! Ilium llljlll '^' '^'^ " " '!»"I AD-757 354 SYMMETRIC SIMPLE GAMES Robert James Weber Cornell University Prepared for: Office of Naval Research

More information

A Note on the Asymptotic Stability of Linear Volterra Difference Equations of Convolution Type

A Note on the Asymptotic Stability of Linear Volterra Difference Equations of Convolution Type Trinity University Digital Commons @ Trinity Mathematics Faculty Research Mathematics Department -1-007 A Note on the Asymptotic Stability of Linear Volterra Difference Equations of Convolution Type Saber

More information

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017 COMP 250 Ltur 29 rp trvrsl Nov. 15/16, 2017 1 Toy Rursv rp trvrsl pt rst Non-rursv rp trvrsl pt rst rt rst 2 Hs up! Tr wr w mstks n t sls or S. 001 or toy s ltur. So you r ollown t ltur rorns n usn ts

More information

necessita d'interrogare il cielo

necessita d'interrogare il cielo gigi nei necessia d'inegae i cie cic pe sax span s inuie a dispiegaa fma dea uce < affeandi ves i cen dea uce isnane " sienzi dei padi sie veic dei' anima 5 J i f H 5 f AL J) i ) L '3 J J "' U J J ö'

More information

SOME APPLICATIONS H. F. BLICHFELDT

SOME APPLICATIONS H. F. BLICHFELDT A NEW PRINCIPLE THE GEOMETRY OF NUMBERS, WITH SOME APPLICATIONS BY H. F. BLICHFELDT 1. Minkowski has discovered a geometrical principle which he applied with success to certain important problems in the

More information

Study on Operating Principle of Cockcroft-Walton Circuit to Produce Plasmas Using High-Voltage Discharge )

Study on Operating Principle of Cockcroft-Walton Circuit to Produce Plasmas Using High-Voltage Discharge ) Study on Operating Principle of ockcroft-walton ircuit to Produce Plasmas Using High-Voltage Discharge ) Takao FUKUYAMA and Keiichi SUGIHARA 1) Faculty of Education, Nagasaki University, 1-14 Bunkyo-machi,

More information

CHEM 130 Exp. 8: Molecular Models

CHEM 130 Exp. 8: Molecular Models CHEM 130 Exp. 8: Molecular Models In this lab, we will learn and practice predicting molecular structures from molecular formulas. The Periodic Table of the Elements IA 1 H IIA IIIA IVA VA VIA VIIA 3 5

More information

X-Ray Diffraction. Parkland College. Reuben James Parkland College. Recommended Citation

X-Ray Diffraction. Parkland College. Reuben James Parkland College. Recommended Citation Parkland College A with Honors Projects Honors Program 2014 X-Ray Diffraction Reuben James Parkland College Recommended Citation James, Reuben, "X-Ray Diffraction" (2014). A with Honors Projects. 115.

More information

Fragment Assembly of DNA

Fragment Assembly of DNA Wright State University CORE Scholar Computer Science and Engineering Faculty Publications Computer Science and Engineering 2003 Fragment Assembly of DNA Dan E. Krane Wright State University - Main Campus,

More information

I can use properties of similar triangles to find segment lengths. I can apply proportionality and triangle angle bisector theorems.

I can use properties of similar triangles to find segment lengths. I can apply proportionality and triangle angle bisector theorems. Page! 1 of! 8 Attendance Problems. Solve each proportion. 12 1. 2. 3. 15 = AB 9.5 20 QR = 3.8 4.2 x 5 20 = x + 3 30 4.! y + 7 2y 4 = 3.5 2.8 I can use properties of similar triangles to find segment lengths.

More information

GM4275 GM4275 V2.03. Features. Description. Applications. Block Diagram WIDE INPUT RANGE 5V LOW DROPOUT REGULATOR WITH RESET FLAG

GM4275 GM4275 V2.03. Features. Description. Applications. Block Diagram WIDE INPUT RANGE 5V LOW DROPOUT REGULATOR WITH RESET FLAG Description The GM4275 series of fixed output, micro-power voltage regulators is designed for applications which require wide input voltage range up to 45V. The GM4275 is an excellent choice for the use

More information

Uai~,ersily of Michigan, Ann Arbor, MI 48109, USA

Uai~,ersily of Michigan, Ann Arbor, MI 48109, USA Di~rete l~tatlueraafics 44(1983) 293--2'98 P/o,l'tll-Holland Pttblishing Company 293 A NOTE ON ABEL POLYNOMLALS LABELED FORESTS AND hooted Bruce E. SAGAN* Uai~,ersily of Michigan, Ann Arbor, MI 48109,

More information

How to Treat Evolutionary Algorithms as Ordinary Randomized Algorithms

How to Treat Evolutionary Algorithms as Ordinary Randomized Algorithms How to Treat Evolutionary Algorithms as Ordinary Randomized Algorithms Technical University of Denmark (Workshop Computational Approaches to Evolution, March 19, 2014) 1/22 Context Running time/complexity

More information

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling. Cptr 4 4 Intrvl Suln Gry Alortms Sls y Kvn Wyn Copyrt 005 Prson-Ason Wsly All rts rsrv Intrvl Suln Intrvl Suln: Gry Alortms Intrvl suln! Jo strts t s n nss t! Two os omptl ty on't ovrlp! Gol: n mxmum sust

More information

Introduction to Magnetohydrodynamics (MHD)

Introduction to Magnetohydrodynamics (MHD) Introduction to Magnetohydrodynamics (MHD) Tony Arber University of Warwick 4th SOLARNET Summer School on Solar MHD and Reconnection Aim Derivation of MHD equations from conservation laws Quasi-neutrality

More information

MATERIAL SEE BOM ANGLES = 2 FINISH N/A

MATERIAL SEE BOM ANGLES = 2 FINISH N/A 9 NOTS:. SSML N NSPT PR SOP 0-9... NSTLL K STKR N X L STKR TO NS O SROU WT TP. 3. PR-PK LNR RNS WT P (XTRM PRSSUR NL R ) RS OR NNRN PPROV QUVLNT. 4. OLOR TT Y T SLS ORR. RRN T MNS OM OR OMPONNTS ONTNN

More information

ON A CONJECTURE OF BALOG ADOLF HILDEBRAND

ON A CONJECTURE OF BALOG ADOLF HILDEBRAND PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 95. Number 4. December 1985 ON A CONJECTURE OF BALOG ADOLF HILDEBRAND Abstract. A conjecture of A. Balog is proved which gives a sufficient condition

More information

Trillingsdempende materialen basis & eigenschappen Berekenen en toepassen op trillingsisolatie van technische installaties.

Trillingsdempende materialen basis & eigenschappen Berekenen en toepassen op trillingsisolatie van technische installaties. Trillingsdempende materialen basis & eigenschappen Berekenen en toepassen op trillingsisolatie van technische installaties Patrick Carels KVIV Studiedag Ingenieurshuis - Antwerpen www.cdm.eu 23/9/206 Content

More information

Random Variables and Probability Distributions

Random Variables and Probability Distributions CHAPTER Random Variables and Probability Distributions Random Variables Suppose that to each point of a sample space we assign a number. We then have a function defined on the sample space. This function

More information

ENGI Partial Differentiation Page y f x

ENGI Partial Differentiation Page y f x ENGI 344 4 Partial Differentiation Page 4-0 4. Partial Differentiation For functions of one variable, be found unambiguously by differentiation: y f x, the rate of change of the dependent variable can

More information

Shortcut methods for complex distillation columns : part 2-- number of stages and feed tray location

Shortcut methods for complex distillation columns : part 2-- number of stages and feed tray location Carnegie Mellon University Research Showcase @ CMU Department of Chemical Engineering Carnegie Institute of Technology 1979 Shortcut methods for complex distillation columns : part 2-- number of stages

More information

Developing a Distributed Java-based Speech Recognition Engine

Developing a Distributed Java-based Speech Recognition Engine The ITB Journal Volume 5 Issue 1 Article 2 2004 Developing a Distributed Java-based Speech Recognition Engine Tony Ayers Institute of Technology Blanchardstown, tony.ayers@itb.ie Brian Nolan Institute

More information

ON THE DIFFERENTIAL EQUATIONS OF HILL IN THE THEORY OF THE MOTION OF THE MOON (II)

ON THE DIFFERENTIAL EQUATIONS OF HILL IN THE THEORY OF THE MOTION OF THE MOON (II) ON THE DIFFERENTIAL EQUATIONS OF HILL IN THE THEORY OF THE MOTION OF THE MOON (II) BY J. F. STEFFENSEN in Copenhagen i. In a former paper with the same title 1 (quoted below as "I") polar coordinates r

More information

Firm-to-Firm Trade: Imports, Exports, and the Labor Market. IEA: Mexico City. Jonathan Eaton, Samuel Kortum, Francis Kramarz.

Firm-to-Firm Trade: Imports, Exports, and the Labor Market. IEA: Mexico City. Jonathan Eaton, Samuel Kortum, Francis Kramarz. Firm-to-Firm Trade: Imports, Exports, and the Labor Market Jonathan Eaton, Samuel Kortum, Francis Kramarz IEA: Mexico City June 2017 Overview Develop granular theory of rms, jobs, and international trade

More information

r (p) = p J e- pf h (t) dt,

r (p) = p J e- pf h (t) dt, Mathematics. - Modern operational calculus based on the two-sided Laplace integral. I. By BALTH. VAN DER POL and H. BREMMER. (Laboratorium voor Wetenschappelijk Onderzoek, N.V. Philips' Gloeilampenfabrieken,

More information

Scanner Data and the Estimation of Demand Parameters

Scanner Data and the Estimation of Demand Parameters CARD Working Papers CARD Reports and Working Papers 4-1991 Scanner Data and the Estimation of Demand Parameters Richard Green Iowa State University Zuhair A. Hassan Iowa State University Stanley R. Johnson

More information

NOTE ON GREEN'S THEOREM.

NOTE ON GREEN'S THEOREM. 1915.] NOTE ON GREEN'S THEOREM. 17 NOTE ON GREEN'S THEOREM. BY MR. C. A. EPPERSON. (Read before the American Mathematical Society April 24, 1915.) 1. Introduction, We wish in this paper to extend Green's

More information

Colligative Properties of Solutions

Colligative Properties of Solutions CHAPTER 16. Colligative Properties of Solutions 16-1. The number of moles of KMnO 4 (aq) is ( ) 1 mol KMnO4 moles KMnO 4 (5.25 g KMnO 4 ) 0.0332 mol 158.04 g KMnO 4 molality m 0.0332 mol 0.250 kg 0.133

More information

Journal of Educational and Behavioral Statistics

Journal of Educational and Behavioral Statistics Journal of Educational and Behavioral Statistics http://jebs.aera.net Theory of Estimation and Testing of Effect Sizes: Use in Meta-Analysis Helena Chmura Kraemer JOURNAL OF EDUCATIONAL AND BEHAVIORAL

More information

Radial Basis Function (RBF) Networks

Radial Basis Function (RBF) Networks CSE 5526: Introduction to Neural Networks Radial Basis Function (RBF) Networks 1 Function approximation We have been using MLPs as pattern classifiers But in general, they are function approximators Depending

More information