Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano"

Transcription

1 RIGHT-ANGLE WEAVE Dv mons Mm t look o ts n rlt tt s ptvly p sn y Py Brnkmn Mttlno Dv your mons nto trnls o two or our olors. FCT-SCON0216_BNB Klm Pulsn Co. Ts mtrl my not rprou n ny orm wtout prmsson rom t pulsr. 1 tjwlry.om

2 , olor A, olor B, olor C, olor D or B 2 x 4 mm pnut, olor A 2 x 4 mm pnut, olor B 2 x 4 mm pnut, olor C 2 x 4 mm pnut, olor D mtrls our-olor rlt 8 n. (20 m) 2 x 4 mm pnut s 8 olor A (lt lu) 9 olor B (lk) 7 olor C (unmtl ry) 8 olor D (lt yllow) s s, olor B (lk) Illuson Cor monolmnt,.010, wt B Ey nl, or Frln 6 l. tst wt #12 n nl FIGURE s, olor B Look t ts rlt rom r, n you ll s two optl llusons t work. T us o pnut s vs your work t rp o u rt-nl wv wtout t ssl o sttn n 3-D. Tn, mult-olor s ln t look o lts n sows wtr you oos two ol olors or our mor sutl us. r/lk rlt 8 n. (20 m) 2 x 4 mm pnut s 10 olor A (r) 11 olor B (lk) s s, olor B (lk) Illuson Cor monolmnt,.010, wt B Ey nls, or Frln 6 l. tst wt #12 n nls stpystp Four-olor rlt Dmon n E mon n t n s work nvully. For on, you wll n y workn t ntr row o t mon. Nxt, you wll rsn rows to t lt o t ntr row to omplt t rst l o t mon. Tn, you wll rsn rows to t rt o t ntr row, ompltn t mon. [1] On 2 y. (1.8 m) o monolmnt or or Frln, pk up tr olor A n on olor B 2 x 4 mm pnut s, n ntr t s on t tr. T t s nto rn wt squr knot (Onln Bn Bss). Usn on n o t tr, sw trou t rst A n (ur 1, ). Ts s stt 1 n t ntr row o t mon. [2] Usn t sm tr, ontnu workn t ntr row n rt-nl wv (Onln Bss), pkn up pnut s n olors A D s ollows: Stt 2: two As n on B ( ). Stt 3: on B n two As ( ). Stt 4: on C, on D, n on B ( ). Stt 5: two Ds n on C ( ). Stt 6: on C n two Ds ( ). Stt 7: two Ds n on C ( ). Sw trou t nxt D n t prvous stt ( ). You v now omplt t ntr row o t mon n r n poston to strt t nxt row, w s t rst row to t lt o t ntr row. Py Brnkmn Mttlno s n plyn wt s or out our yrs n s nspr y t sn vrls o work, nlun omtry, olor, sp, mnson, pttrn, tnqu, n mtrl. Py s B.S. n rttur n work or 22 yrs n t ml v nustry s rtsmn/t llustrtor n n mrktn ommuntons. S lvs n Nw York, wr s s mmr o t WNY P Cntr. Contt Py t 2

3 2 x 4 mm pnut, 2 x 4 olor mm pnut A, olor A 2 x 4 mm pnut, 2 x 4 olor mm pnut B, olor B 2 x 4 mm pnut, 2 x 4 olor mm pnut C, olor C 2 x 4 mm pnut, 2 x 4 olor mm pnut D, olor D 110 s, olor 110 Bs, olor B FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 [3] Work t rst row to t lt o t ntr row, ontnun n rt-nl wv n pkn up t ollown s pr stt: Stt 1: tr Ds (ur 2, ). Stt 2: two Ds ( ). Stt 3: two Bs ( ). Stt 4: two Bs ( ). Stt 5: two Bs ( ). Sw trou t work s sown ( ) to t nto poston to strt t nxt row. [4] Work t son row to t lt o t ntr row, pkn up t ollown s pr stt: Stt 1: tr Bs (ur 3, ). Stt 2: on D n on B ( ). Stt 3: two Ds ( ). Sw trou t nxt B s sown ( ) to t nto poston to strt t nxt row. [5] T tr row to t lt o t ntr row s just on stt: two Bs n D (ur 4). En ts tr (Onln Bss). [6] Usn t otr tr, sw trou t work to xt t tr C pk up n t ntr row (ur 5, pont ). [7] Work t rst row to t rt o t ntr row, pkn up t ollown s pr stt: Stt 1: tr Cs ( ). Stt 2: two Cs ( ). Stt 3: on A n on C ( ). Stt 4: two As ( ). Stt 5: two As ( ). Sw trou t work s sown ( ) to t nto poston to strt t nxt row. [8] Work t son row to t rt o t ntr row, pkn up t ollown s pr stt: Stt 1: tr As (ur 6, ). Stt 2: two Cs ( ). Stt 3: two Cs ( ). Sw trou t nxt A s sown ( ) to t nto poston to strt t nxt row. 3

4 FIGURE 7 FIGURE 9 FIGURE 11 FIGURE 8 FIGURE 10 DESIGNER S NOTES: I sr, sw trou t s o t mons n tol r to onnt ll t rt-nl wv stts. Ts wll stn t work sltly n us t to srnk out 10 prnt. For n 8-n. (20 m) rlt, you wll n to work svn mons (s n t r-n-lk rlt on p. 1) nst o sx. I you r usn Frln, ts stp s rommn to stlz t work. In stp 7 o Tol r n stp 5 o Rtnulr tol rn, you n ustomz t lnt o your rlt. For n 8-n. (20 m) rlt, ollow t nstrutons to work tr rt-nl wv stts, nlun t stt tt onnts to t n, or lsp ttmnt. For lonr rlt, work mor stts or lsp ttmnt. For sortr rlt, work wr stts or t tol rn ttmnt. You ll stll wnt t lst tr stts or t tol r ttmnt so t r n sly sl trou t rn. [9] T tr row to t rt o t ntr row s just on stt: on A n two Cs (ur 7). En ts tr. [10] Cntr 2 y. (1.8 m) o monolmnt or or Frln n t D t t tp o t mon. Wt on n o t tr, pk up B n two As, sw trou t strtn D, n ontnu trou t B n t rst A just pk up. Work stps 2 9 to rt t nxt mon. [11] Rpt stp 10 untl you v totl o sx mons n t n. Tol r You n us ny o t our olors o pnut s or t tol r n lsp. T nstrutons low rlt t olors us n t our-olor rlt sown on p. 1. As wt t mons, you wll work t ntr row o t tol r rst, ollow y t rows to t lt n tn y t rows to t rt. [1] On 1 y. (.9 m) o monolmnt or or Frln, pk up tr Ds n n A, n ntr t s on t tr. T t s nto rn wt squr knot. Usn on n o t tr, sw trou t tr Ds just pk up (ur 8, ). Ts s stt 1 n t ntr row o t tol r. [2] Usn t sm tr, ontnu workn t ntr row n rt-nl wv, pkn up t ollown s pr stt: Stt 2: on A n two Ds ( ). Stt 3: two Ds n on A ( ). Stt 4: on A n two Ds ( ). Sw trou t work s sown ( ). You v now omplt t ntr row o t tol r n r n poston to strt t nxt row, w s t rst row to t lt o t ntr row. [3] Work t rst row to t lt o t ntr row, pkn up t ollown s pr stt: Stt 1: tr Ds (ur 9, ). Stt 2: two Ds ( ). Stt 3: two Ds. Sw trou t nxt D s sown ( ) to t nto poston to strt t nxt row. [4] Work t son row to t lt o t ntr row, pkn up t ollown s pr stt: Stt 1: tr Ds (ur 10, ). Stt 2: two Ds ( ). Sw trou t work s sown ( ) to t nto poston to strt t nxt row. [5] T tr row to t lt o t ntr row s just on stt: tr Ds (ur 11). En ts tr. [6] Usn t otr tr, work t son l o t tol r s mrror m o t rst, ut us ll As. [7] Sw trou t work to xt t rst D pk up n t rst stt o t ntr row o t tol r. Work two rt-nl wv stts usn As. For t lst stt, pk up n A, sw trou t D t t tp o t lst mon, pk up n A, n omplt t stt. Rtr t tr pt o t lsp onnton, n n ts tr. 4

5 FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 15 Rtnulr tol rn [1] On 1 y. (.9 m) o monolmnt or or Frln, pk up our Bs, lvn 6-n. (15 m) tl. T t s nto rn wt squr knot, n sw trou t rst tr Bs n. Ts s t rst stt n ts s o t rtnl. [2] Usn Bs, work sx mor rtnl wv stts or totl o svn on ts s o t rtnl. Sw trou t work s sown (ur 12) to rt 90-r turn n t nto poston to work t nxt s. [3] Usn Bs, work our rt-nl wv stts or ts s, mk 90-r turn, work sx stts or t nxt s, mk 90-r turn, n work two rt-nl wv stts or t lst s (ur 13, ). To jon t lst s o t rtnl to t rst, pk up B, sw trou t orrsponn B on t rst s, pk up B, n sw trou t orrsponn B on t lst s ( ). [4] Sw trou t work to xt B lon t outs o t rtnl. Pk up n 110 s, n sw trou t ollown B. Rpt ts stt to n 110 twn ll t Bs lon t outs o t rtnl ut not t t ornrs (ur 14, ). Sw trou t work to xt B lon t ns o t rtnl, n rpt ts mllsmnt, ut ts tm 110s to t ornrs ( ). Rnor ts nnr mllsmnt to prvnt strtn wn t rlt s lsp. [5] Sw trou t work to xt t ntr B on lon outs o t rtnl. Usn Bs, work two rt-nl wv stts. For t lst stt, pk up B, sw trou t A t t tp o t rst mon, pk up B, n omplt t stt. Rtr t tr pt o t lsp onnton, n n t workn tr n tl. Two-olor rlt To mk two-olor rlt, s n t r-n-lk rlt on p. 1, ollow t sttn nstrutons ov, ut us ur 15 s u or w olor pnut s to pk up. 5

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information

d e c b a d c b a d e c b a a c a d c c e b

d e c b a d c b a d e c b a a c a d c c e b FLAT PEYOTE STITCH Bin y mkin stoppr -- sw trou n pull it lon t tr until it is out 6 rom t n. Sw trou t in witout splittin t tr. You soul l to sli it up n own t tr ut it will sty in pl wn lt lon. Evn-Count

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong Dprtmnt o Computr Sn n Ennrn Cns Unvrsty o Hon Kon W v lry lrn rt rst sr (BFS). Toy, w wll suss ts sstr vrson : t pt rst sr (DFS) lortm. Our susson wll on n ous on rt rps, us t xtnson to unrt rps s strtorwr.

More information

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1 Spnnn Trs BFS, DFS spnnn tr Mnmum spnnn tr Mr 28, 2018 Cn Hrn / Gory Tn 1 Dpt-rst sr Vsts vrts lon snl pt s r s t n o, n tn ktrks to t rst junton n rsums own notr pt Mr 28, 2018 Cn Hrn / Gory Tn 2 Dpt-rst

More information

(Minimum) Spanning Trees

(Minimum) Spanning Trees (Mnmum) Spnnn Trs Spnnn trs Kruskl's lortm Novmr 23, 2017 Cn Hrn / Gory Tn 1 Spnnn trs Gvn G = V, E, spnnn tr o G s onnt surp o G wt xtly V 1 s mnml sust o s tt onnts ll t vrts o G G = Spnnn trs Novmr

More information

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices. Cptr 11: Trs 11.1 - Introuton to Trs Dnton 1 (Tr). A tr s onnt unrt rp wt no sp ruts. Tor 1. An unrt rp s tr n ony tr s unqu sp pt twn ny two o ts vrts. Dnton 2. A root tr s tr n w on vrtx s n snt s t

More information

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall Hvn lps o so o t posslts or solutons o lnr systs, w ov to tos o nn ts solutons. T s w sll us s to try to sply t syst y lntn so o t vrls n so ts qutons. Tus, w rr to t to s lnton. T prry oprton nvolv s

More information

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e) POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

More information

Strongly connected components. Finding strongly-connected components

Strongly connected components. Finding strongly-connected components Stronly onnt omponnts Fnn stronly-onnt omponnts Tylr Moor stronly onnt omponnt s t mxml sust o rp wt rt pt twn ny two vrts SE 3353, SMU, Dlls, TX Ltur 9 Som sls rt y or pt rom Dr. Kvn Wyn. For mor normton

More information

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk CMPS 2200 Fll 2017 Grps Crol Wnk Sls ourtsy o Crls Lsrson wt ns n tons y Crol Wnk 10/23/17 CMPS 2200 Intro. to Alortms 1 Grps Dnton. A rt rp (rp) G = (V, E) s n orr pr onsstn o st V o vrts (snulr: vrtx),

More information

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017 Rn: Not ovr n or rns. CMSC 451: Ltr 4 Brs n 2-E Conntvty Trsy, Sp 7, 2017 Hr-Orr Grp Conntvty: (T ollown mtrl ppls only to nrt rps!) Lt G = (V, E) n onnt nrt rp. W otn ssm tt or rps r onnt, t somtms t

More information

Platform Controls. 1-1 Joystick Controllers. Boom Up/Down Controller Adjustments

Platform Controls. 1-1 Joystick Controllers. Boom Up/Down Controller Adjustments Ston 7 - Rpr Prours Srv Mnul - Son Eton Pltorm Controls 1-1 Joystk Controllrs Mntnn oystk ontrollrs t t propr sttns s ssntl to s mn oprton. Evry oystk ontrollr soul oprt smootly n prov proportonl sp ontrol

More information

Closed Monochromatic Bishops Tours

Closed Monochromatic Bishops Tours Cos Monoromt Bsops Tours Jo DMo Dprtmnt o Mtmts n Sttsts Knnsw Stt Unvrsty, Knnsw, Gor, 0, USA mo@nnsw.u My, 00 Astrt In ss, t sop s unqu s t s o to sn oor on t n wt or. Ts ms os tour n w t sop vsts vry

More information

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017 COMP 250 Ltur 29 rp trvrsl Nov. 15/16, 2017 1 Toy Rursv rp trvrsl pt rst Non-rursv rp trvrsl pt rst rt rst 2 Hs up! Tr wr w mstks n t sls or S. 001 or toy s ltur. So you r ollown t ltur rorns n usn ts

More information

MINI POST SERIES BALUSTRADE SYSTEM INSTALLATION GUIDE PRODUCT CODE: MPS-RP

MINI POST SERIES BALUSTRADE SYSTEM INSTALLATION GUIDE PRODUCT CODE: MPS-RP MN POST SRS LUSTR SYSTM NSTLLTON U PROUT O: MPS-RP 0 R0 WLL LN 0 RONT LVTON VW R0 N P 0 T RUR LOK LOT ON LSS. SLON SL TYP. OT SS 000 LSS T 0 00 SRS LSS WT 00/00 (0mm NRMNTS VLL) MX. 000 00-0 (ROMMN) 00

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

Graph Search (6A) Young Won Lim 5/18/18

Graph Search (6A) Young Won Lim 5/18/18 Grp Sr (6A) Youn Won Lm Copyrt () 2015 2018 Youn W. Lm. Prmon rnt to opy, trut n/or moy t oumnt unr t trm o t GNU Fr Doumntton Ln, Vron 1.2 or ny ltr vron pul y t Fr Sotwr Founton; wt no Invrnt Ston, no

More information

DOCUMENT STATUS: RELEASE

DOCUMENT STATUS: RELEASE RVSON STORY RV T SRPTON O Y 0-4-0 RLS OR PROUTON 5 MM -04-0 NS TRU PLOT PROUTON -- S O O OR TLS 30 MM 03-3-0 3-044 N 3-45, TS S T TON O PROTTV RM OVR. 3 05--0 LT 3-004, NOT, 3-050 3 0//00 UPT ST ROM SN,

More information

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2 AMPLE C EXAM UETION WITH OLUTION: prt. It n sown tt l / wr.7888l. I Φ nots orul or pprotng t vlu o tn t n sown tt t trunton rror o ts pproton s o t or or so onstnts ; tt s Not tt / L Φ L.. Φ.. /. /.. Φ..787.

More information

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling. Cptr 4 4 Intrvl Suln Gry Alortms Sls y Kvn Wyn Copyrt 005 Prson-Ason Wsly All rts rsrv Intrvl Suln Intrvl Suln: Gry Alortms Intrvl suln! Jo strts t s n nss t! Two os omptl ty on't ovrlp! Gol: n mxmum sust

More information

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions ulty o Mtmtis Wtrloo, Ontrio N ntr or ution in Mtmtis n omputin r / Mt irls Mr /, 0 rp Tory - Solutions * inits lln qustion. Tr t ollowin wlks on t rp low. or on, stt wtr it is pt? ow o you know? () n

More information

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4 Mt 166 WIR, Sprin 2012, Bnjmin urisp Mt 166 Wk in Rviw 2 Stions 1.1, 1.2, 1.3, & 1.4 1. S t pproprit rions in Vnn irm tt orrspon to o t ollowin sts. () (B ) B () ( ) B B () (B ) B 1 Mt 166 WIR, Sprin 2012,

More information

Tangram Fractions Overview: Students will analyze standard and nonstandard

Tangram Fractions Overview: Students will analyze standard and nonstandard ACTIVITY 1 Mtrils: Stunt opis o tnrm mstrs trnsprnis o tnrm mstrs sissors PROCEDURE Skills: Dsriin n nmin polyons Stuyin onrun Comprin rtions Tnrm Frtions Ovrviw: Stunts will nlyz stnr n nonstnr tnrms

More information

CS 103 BFS Alorithm. Mark Redekopp

CS 103 BFS Alorithm. Mark Redekopp CS 3 BFS Aloritm Mrk Rkopp Brt-First Sr (BFS) HIGHLIGHTED ALGORITHM 3 Pt Plnnin W'v sn BFS in t ontxt o inin t sortst pt trou mz? S?? 4 Pt Plnnin W xplor t 4 niors s on irtion 3 3 3 S 3 3 3 3 3 F I you

More information

SAMPLE LITANY OF THE SAINTS E/G. Dadd9/F. Aadd9. cy. Christ, have. Lord, have mer cy. Christ, have A/E. Dadd9. Aadd9/C Bm E. 1. Ma ry and. mer cy.

SAMPLE LITANY OF THE SAINTS E/G. Dadd9/F. Aadd9. cy. Christ, have. Lord, have mer cy. Christ, have A/E. Dadd9. Aadd9/C Bm E. 1. Ma ry and. mer cy. LTNY OF TH SNTS Cntrs Gnt flwng ( = c. 100) /G Ddd9/F ll Kybrd / hv Ddd9 hv hv Txt 1973, CL. ll rghts rsrvd. Usd wth prmssn. Musc: D. Bckr, b. 1953, 1987, D. Bckr. Publshd by OCP. ll rghts rsrvd. SMPL

More information

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms CS 542 Avn Dt Stutu n Alotm Exm 2 Soluton Jontn Tun 4/2/202. (5 ont) Con n oton on t tton t tutu n w t n t 2 no. Wt t mllt num o no tt t tton t tutu oul ontn. Exln you nw. Sn n mut n you o u t n t, t n

More information

DOCUMENT STATUS: MINTP0 E-ST5080, BASE, NO DISPLAY VENDOR: 15.5 INCH MATERIAL SEE BOM FINISH REVISION HISTORY ITEM NO. PART NUMBER DESCRIPTION

DOCUMENT STATUS: MINTP0 E-ST5080, BASE, NO DISPLAY VENDOR: 15.5 INCH MATERIAL SEE BOM FINISH REVISION HISTORY ITEM NO. PART NUMBER DESCRIPTION RV T RVSON STORY SRPTON O Y 0-0-0 PROUTON RLS K. N NOTS:. SRL LL NORMTON: a) VOLTS: V b) MPS:.0 c) YLS: N/ d) WTTS: W e) PS: N/ f) PX #: PX. RTTON LOOS: S / / LN R WT SOPROPYL LOLOL PROR TO PLN.. PK M:

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n R P RT F TH PR D NT N N TR T F R N V R T F NN T V D 0 0 : R PR P R JT..P.. D 2 PR L 8 8 J PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D.. 20 00 D r r. Pr d nt: n J n r f th r d t r v th

More information

H NT Z N RT L 0 4 n f lt r h v d lt n r n, h p l," "Fl d nd fl d " ( n l d n l tr l t nt r t t n t nt t nt n fr n nl, th t l n r tr t nt. r d n f d rd n t th nd r nt r d t n th t th n r lth h v b n f

More information

MATERIAL SEE BOM ANGLES = 2 FINISH N/A

MATERIAL SEE BOM ANGLES = 2 FINISH N/A 9 NOTS:. SSML N NSPT PR SOP 0-9... NSTLL K STKR N X L STKR TO NS O SROU WT TP. 3. PR-PK LNR RNS WT P (XTRM PRSSUR NL R ) RS OR NNRN PPROV QUVLNT. 4. OLOR TT Y T SLS ORR. RRN T MNS OM OR OMPONNTS ONTNN

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

L.3922 M.C. L.3922 M.C. L.2996 M.C. L.3909 M.C. L.5632 M.C. L M.C. L.5632 M.C. L M.C. DRIVE STAR NORTH STAR NORTH NORTH DRIVE

L.3922 M.C. L.3922 M.C. L.2996 M.C. L.3909 M.C. L.5632 M.C. L M.C. L.5632 M.C. L M.C. DRIVE STAR NORTH STAR NORTH NORTH DRIVE N URY T NORTON PROV N RRONOUS NORTON NVRTNTY PROV. SPY S NY TY OR UT T TY RY OS NOT URNT T S TT T NORTON PROV S ORRT, NSR S POSS, VRY ORT S N ON N T S T TY RY. TS NORTON S N OP RO RORS RT SU "" YW No.

More information

Planar convex hulls (I)

Planar convex hulls (I) Covx Hu Covxty Gv st P o ots 2D, tr ovx u s t sst ovx oyo tt ots ots o P A oyo P s ovx or y, P, t st s try P. Pr ovx us (I) Coutto Gotry [s 3250] Lur To Bowo Co ovx o-ovx 1 2 3 Covx Hu Covx Hu Covx Hu

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction F Dtto Roto Lr Alr F Roto C Y I Ursty O solto: tto o l trs s s ys os ot. Dlt to t to ltpl ws. F Roto Aotr ppro: ort y rry s tor o so E.. 56 56 > pot 6556- stol sp A st o s t ps to ollto o pots ts sp. F

More information

b.) v d =? Example 2 l = 50 m, D = 1.0 mm, E = 6 V, " = 1.72 #10 $8 % & m, and r = 0.5 % a.) R =? c.) V ab =? a.) R eq =?

b.) v d =? Example 2 l = 50 m, D = 1.0 mm, E = 6 V,  = 1.72 #10 $8 % & m, and r = 0.5 % a.) R =? c.) V ab =? a.) R eq =? xmpl : An 8-gug oppr wr hs nomnl mtr o. mm. Ths wr rrs onstnt urrnt o.67 A to W lmp. Th nsty o r ltrons s 8.5 x 8 ltrons pr u mtr. Fn th mgntu o. th urrnt nsty. th rt vloty xmpl D. mm,.67 A, n N 8.5" 8

More information

Humanistic, and Particularly Classical, Studies as a Preparation for the Law

Humanistic, and Particularly Classical, Studies as a Preparation for the Law University of Michigan Law School University of Michigan Law School Scholarship Repository Articles Faculty Scholarship 1907 Humanistic, and Particularly Classical, Studies as a Preparation for the Law

More information

MATERIAL SEE BOM ANGLES = 2 > 2000 DATE MEDIUM FINISH

MATERIAL SEE BOM ANGLES = 2 > 2000 DATE MEDIUM FINISH NOTS:. LN MTN SUR WT NTUR/SOPROPYL LOOL PROR TO RN L OR LOO. PPLY LOTT 4 ON TRS. TORQU TO. Nm / 00 lb-in 4. TORQU TO 45-50 Nm / - lb-ft 5. TORQU TO Nm / 4.5 lb-ft. TORQU TO 0 Nm / lb-in. TORQU TO 5.5 Nm

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

D t r l f r th n t d t t pr p r d b th t ff f th l t tt n N tr t n nd H n N d, n t d t t n t. n t d t t. h n t n :.. vt. Pr nt. ff.,. http://hdl.handle.net/2027/uiug.30112023368936 P bl D n, l d t z d

More information

ELECTRONIC SUPPLEMENTARY INFORMATION

ELECTRONIC SUPPLEMENTARY INFORMATION Elctronc Supplmntry Mtrl (ESI) or Polymr Cmstry. Ts ournl s T Royl Socty o Cmstry 2015 ELECTRONIC SUPPLEMENTARY INFORMATION Poly(lyln tcont)s An ntrstn clss o polystrs wt proclly loct xo-cn oul ons suscptl

More information

Applications of trees

Applications of trees Trs Apptons o trs Orgnzton rts Attk trs to syst Anyss o tr ntworks Prsng xprssons Trs (rtrv o norton) Don-n strutur Mutstng Dstnton-s orwrng Trnsprnt swts Forwrng ts o prxs t routrs Struturs or nt pntton

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1866 Colby College Catalogue 1866-1867 Colby College Follow this and additional works at: http://digitalcommons.colby.edu/catalogs

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1870 Colby College Catalogue 1870-1871 Colby College Follow this and additional works at: http://digitalcommonscolbyedu/catalogs

More information

On Hamiltonian Tetrahedralizations Of Convex Polyhedra

On Hamiltonian Tetrahedralizations Of Convex Polyhedra O Ht Ttrrzts O Cvx Pyr Frs C 1 Q-Hu D 2 C A W 3 1 Dprtt Cputr S T Uvrsty H K, H K, C. E: @s.u. 2 R & TV Trsss Ctr, Hu, C. E: q@163.t 3 Dprtt Cputr S, Mr Uvrsty Nwu St. J s, Nwu, C A1B 35. E: w@r.s.u. Astrt

More information

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd n r t d n 20 20 0 : 0 T P bl D n, l d t z d http:.h th tr t. r pd l 4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n,

More information

CHELOURANYAN CALENDAR FOR YEAR 3335 YEAR OF SAI RHAVË

CHELOURANYAN CALENDAR FOR YEAR 3335 YEAR OF SAI RHAVË CHELOURANYAN CALENDAR FOR YEAR YEAR OF SAI RHAVË I tou woust n unon wt our Motr, now tt tou st nvr t Hr. I tou woust sp t v o mttr, now tt tr s no mttr n no v. ~Cry Mry KEY TO CALENDAR T Dys o t W In t

More information

CSE 332. Data Structures and Parallelism

CSE 332. Data Structures and Parallelism Am Blnk Ltur 20 Wntr 2017 CSE 332 Dt Struturs n Prlllsm CSE 332: Dt Struturs n Prlllsm Grps 1: Wt s Grp? DFS n BFS LnkLsts r to Trs s Trs r to... 1 Wr W v Bn Essntl ADTs: Lsts, Stks, Quus, Prorty Quus,

More information

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2 Am Blnk Ltur 19 Summr 2015 CSE 332: Dt Astrtons CSE 332 Grps 1: Wt s Grp? DFS n BFS Dt Astrtons LnkLsts r to Trs s Trs r to... 1 A Grp s Tny... 2 Wr W v Bn Essntl ADTs: Lsts, Stks, Quus, Prorty Quus, Hps,

More information

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

n r t d n :4 T P bl D n, l d t z d   th tr t. r pd l n r t d n 20 20 :4 T P bl D n, l d t z d http:.h th tr t. r pd l 2 0 x pt n f t v t, f f d, b th n nd th P r n h h, th r h v n t b n p d f r nt r. Th t v v d pr n, h v r, p n th pl v t r, d b p t r b R

More information

l f t n nd bj t nd x f r t l n nd rr n n th b nd p phl t f l br r. D, lv l, 8. h r t,., 8 6. http://hdl.handle.net/2027/miun.aey7382.0001.001 P bl D n http://www.hathitrust.org/access_use#pd Th r n th

More information

Computer Graphics. Viewing & Projections

Computer Graphics. Viewing & Projections Vw & Ovrvw rr : rss r t -vw trsrt: st st, rr w.r.t. r rqurs r rr (rt syst) rt: 2 trsrt st, rt trsrt t 2D rqurs t r y rt rts ss Rr P usuy st try trsrt t wr rts t rs t surs trsrt t r rts u rt w.r.t. vw vu

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Dental PBRN Study: Reasons for replacement or repair of dental restorations

Dental PBRN Study: Reasons for replacement or repair of dental restorations Dntl PBRN Stuy: Rsons or rplmnt or rpr o ntl rstortons Us ts Dt Collton Form wnvr stuy rstorton s rpl or rpr. For nrollmnt n t ollton you my rpl or rpr up to 4 rstortons, on t sm ptnt, urn snl vst. You

More information

DOCUMENT STATUS: LA-S5302-XXXXS LA, SSS, TRICEPS EXTENSION VERY

DOCUMENT STATUS: LA-S5302-XXXXS LA, SSS, TRICEPS EXTENSION VERY RVSON STORY RV T SRPTON O Y //0 RLS OR PROUTON T LN MR ----- L /0/0 UPT SN N OMPONNTS US: S 3-03 (*N TWO PLS ONLY) WS 3-5, PRT 3-00 TO SSMLY. T OLLOWN UPT: 3-30, 3-403, 3-403, 3-40, 3-45, 3-4, 3-5. 30

More information

n

n p l p bl t n t t f Fl r d, D p rt nt f N t r l R r, D v n f nt r r R r, B r f l. n.24 80 T ll h, Fl. : Fl r d D p rt nt f N t r l R r, B r f l, 86. http://hdl.handle.net/2027/mdp.39015007497111 r t v n

More information

Graphs Depth First Search

Graphs Depth First Search Grp Dpt Frt Sr SFO 337 LAX 1843 1743 1233 802 DFW ORD - 1 - Grp Sr Aort - 2 - Outo Ø By unrtnn t tur, you ou to: q L rp orn to t orr n w vrt r ovr, xpor ro n n n pt-rt r. q Cy o t pt-rt r tr,, orwr n ro

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

ADORO TE DEVOTE (Godhead Here in Hiding) te, stus bat mas, la te. in so non mor Je nunc. la in. tis. ne, su a. tum. tas: tur: tas: or: ni, ne, o:

ADORO TE DEVOTE (Godhead Here in Hiding) te, stus bat mas, la te. in so non mor Je nunc. la in. tis. ne, su a. tum. tas: tur: tas: or: ni, ne, o: R TE EVTE (dhd H Hdg) L / Mld Kbrd gú s v l m sl c m qu gs v nns V n P P rs l mul m d lud 7 súb Fí cón ví f f dó, cru gs,, j l f c r s m l qum t pr qud ct, us: ns,,,, cs, cut r l sns m / m fí hó sn sí

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1872 Colby College Catalogue 1872-1873 Colby College Follow this and additional works at: http://digitalcommonscolbyedu/catalogs

More information

An action with positive kinetic energy term for general relativity. T. Mei

An action with positive kinetic energy term for general relativity. T. Mei An ton wt post nt ny t fo n tty T (Dptnt of Jon Cnt Cn o Unsty Wn H PRO Pop s Rp of Cn E-: to@nn tow@pwn ) Astt: At fst w stt so sts n X: 7769 n tn sn post nt ny oont onton n y X: 7769 w psnt n ton wt

More information

,. *â â > V>V. â ND * 828.

,. *â â > V>V. â ND * 828. BL D,. *â â > V>V Z V L. XX. J N R â J N, 828. LL BL D, D NB R H â ND T. D LL, TR ND, L ND N. * 828. n r t d n 20 2 2 0 : 0 T http: hdl.h ndl.n t 202 dp. 0 02802 68 Th N : l nd r.. N > R, L X. Fn r f,

More information

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th n r t d n 20 0 : T P bl D n, l d t z d http:.h th tr t. r pd l 46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l

More information

Housing Market Monitor

Housing Market Monitor M O O D Y È S A N A L Y T I C S H o u s i n g M a r k e t M o n i t o r I N C O R P O R A T I N G D A T A A S O F N O V E M B E R İ Ī Ĭ Ĭ E x e c u t i v e S u m m a r y E x e c u t i v e S u m m a r y

More information

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v ll f x, h v nd d pr v n t fr tf l t th f nt r n r

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th n r t d n 20 2 :24 T P bl D n, l d t z d http:.h th tr t. r pd l 4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n

More information

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t 2Â F b. Th h ph rd l nd r. l X. TH H PH RD L ND R. L X. F r, Br n, nd t h. B th ttr h ph rd. n th l f p t r l l nd, t t d t, n n t n, nt r rl r th n th n r l t f th f th th r l, nd d r b t t f nn r r pr

More information

Priority Search Trees - Part I

Priority Search Trees - Part I .S. 252 Pro. Rorto Taassa oputatoal otry S., 1992 1993 Ltur 9 at: ar 8, 1993 Sr: a Q ol aro Prorty Sar Trs - Part 1 trouto t last ltur, w loo at trval trs. or trval pot losur prols, ty us lar spa a optal

More information

19 21 SECTION A-A SCALE: 1 : 5

19 21 SECTION A-A SCALE: 1 : 5 Mx. - g f Mx. -, / STON - SL: : / STROK: ( oyadan Korunacak Yüzeyler, ( TL SL: / SW-... estek Ringi estek Ringi O-Ring O-Ring ant Yatak ant Yatak Piston Omegat oğaz Omegat oğaz Nutring Toz Keçesi Rondela

More information

PRECAST APPROACH SLAB NOTES

PRECAST APPROACH SLAB NOTES ULNS TS ULN RWNS RPRSNT TYPL TLS OR T SN N TLN O PRST PPRO SLS. TS STS R NLU TO PROV N XMPL O T RTN LYOUT O TYPL PRST PPRO SL. TWO RNT PPRO SL SYSTMS R SOWN: SUR PPRO SLS: SLS TT R PL WT T TOP SUR T OR

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r n r t d n 20 22 0: T P bl D n, l d t z d http:.h th tr t. r pd l 0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n.

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1871 Colby College Catalogue 1871-1872 Colby College Follow this and additional works at: http://digitalcommonscolbyedu/catalogs

More information

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No xhibit 2-9/3/15 Invie Filing Pge 1841 f Pge 366 Dket. 44498 F u v 7? u ' 1 L ffi s xs L. s 91 S'.e q ; t w W yn S. s t = p '1 F? 5! 4 ` p V -', {} f6 3 j v > ; gl. li -. " F LL tfi = g us J 3 y 4 @" V)

More information

Single Source Shortest Paths (with Positive Weights)

Single Source Shortest Paths (with Positive Weights) Snl Sour Sortst Pts (wt Postv Wts) Yuf To ITEE Unvrsty of Qunslnd In ts ltur, w wll rvst t snl sour sortst pt (SSSP) problm. Rll tt w v lrdy lrnd tt t BFS lortm solvs t problm ffntly wn ll t ds v t sm

More information

Lecture II: Minimium Spanning Tree Algorithms

Lecture II: Minimium Spanning Tree Algorithms Ltur II: Mnmum Spnnn Tr Alortms Dr Krn T. Hrly Dprtmnt o Computr Sn Unvrsty Coll Cork Aprl 0 KH (/0/) Ltur II: Mnmum Spnnn Tr Alortms Aprl 0 / 5 Mnmum Spnnn Trs Mnmum Spnnn Trs Spnnn Tr tr orm rom rp s

More information

w x a f f s t p q 4 r u v 5 i l h m o k j d g DT Competition, 1.8/1.6 Stainless, Black S, M, L, XL Matte Raw/Yellow

w x a f f s t p q 4 r u v 5 i l h m o k j d g DT Competition, 1.8/1.6 Stainless, Black S, M, L, XL Matte Raw/Yellow HELION CARBON TEAM S, M, L, XL M R/Y COR XC Py, FOC U Cn F, 110 T Innn Dn 27. AOS Snn Sy /F Ln, P, 1 1/8"-1 1/2" In H T, n 12 12 M D F 32 FLOAT 27. CTD FIT /A K, 110 T, 1QR, / FIT D, L & Rn A, T Ay S DEVICE

More information

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f n r t d n 20 2 : 6 T P bl D n, l d t z d http:.h th tr t. r pd l 22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r

More information

Vr Vr

Vr Vr F rt l Pr nt t r : xt rn l ppl t n : Pr nt rv nd PD RDT V t : t t : p bl ( ll R lt: 00.00 L n : n L t pd t : 0 6 20 8 :06: 6 pt (p bl Vr.2 8.0 20 8.0. 6 TH N PD PPL T N N RL http : h b. x v t h. p V l

More information

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP MO: PSM SY SI TIS SOWN SPRIN INRS OS TOP INNR W TS R OIN OVR S N OVR OR RIIITY. R TURS US WIT OPTION T SINS. R (UNOMPRSS) RR S OPTION (S T ON ST ) IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+)

More information

Graphs Breadth First Search

Graphs Breadth First Search Grp Brdt Frt Sr SFO ORD LAX DFW - 1 - Outo Ø By undrtndn t tur, you oud to: q L rp ordn to t ordr n w vrt r dovrd n rdt-rt r. q Idnty t urrnt tt o rdt-rt r n tr o vrt tt r prvouy dovrd, ut dovrd or undovrd.

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Maximum Matching Width: new characterizations and a fast algorithm for dominating set

Maximum Matching Width: new characterizations and a fast algorithm for dominating set Maxmum Matcn Wdt: nw caractrzatons and a ast alortm or domnatn st 정지수 (KAIST) jont work wt Sv Hortmo Sætr and Jan Arn Tll (Unvrsty o Brn) 1st Koran Worksop on Grap Tory 2015.8.27. KAIST Grap wdt paramtrs

More information

minimize c'x subject to subject to subject to

minimize c'x subject to subject to subject to z ' sut to ' M ' M N uostrd N z ' sut to ' z ' sut to ' sl vrls vtor of : vrls surplus vtor of : uostrd s s s s s s z sut to whr : ut ost of :out of : out of ( ' gr of h food ( utrt : rqurt for h utrt

More information

Catalytic S N Ar of Unactivated Aryl Chlorides ESI

Catalytic S N Ar of Unactivated Aryl Chlorides ESI Eltron Supplmntry Mtrl (ESI) or CmComm. Ts journl s T Royl Soty o Cmstry 2014 Ctlyt S Ar o Untvt Aryl Clors ESI Tl o Contnts 1. Prour n Full Tl o Contons - Prour S1 - Intl solvnt srn (no tlyst) - Solvnt

More information

CLKOUT CLKOUT VCC CLKOUT RESOUT OSCOUT ALE TEST AD0 66 AD2 INT0 INT0 AD INT1 AD INT2/INTA0 AD5 AD7 AD7 INT AD8 AD8 AD10

CLKOUT CLKOUT VCC CLKOUT RESOUT OSCOUT ALE TEST AD0 66 AD2 INT0 INT0 AD INT1 AD INT2/INTA0 AD5 AD7 AD7 INT AD8 AD8 AD10 I U N R 00K RSIN* RST S N.0u Y LK TP RP K L TP USY INT0 INT RISMINT P.0 P. P. P. P. P. P. RY OL RX0 TX0 T P.0 P. P. P. S* S* S* S* RROR* SLK U LKIN LKOUT LKOUT LKIN LKOUT OSOUT 0 OSOUT L L RSIN* L 0 0

More information

Problem 1. Solution: = show that for a constant number of particles: c and V. a) Using the definitions of P

Problem 1. Solution: = show that for a constant number of particles: c and V. a) Using the definitions of P rol. Using t dfinitions of nd nd t first lw of trodynis nd t driv t gnrl rltion: wr nd r t sifi t itis t onstnt rssur nd volu rstivly nd nd r t intrnl nrgy nd volu of ol. first lw rlts d dq d t onstnt

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

T H E S C I E N C E B E H I N D T H E A R T

T H E S C I E N C E B E H I N D T H E A R T A t t R u r s - L x C t I. xtr turs t Lx Ct Rurs. Rr qurtr s s r t surt strutur. Ts Att Rurs rv ut us, s srt t tr t rtt rt yur t w yu ru. T uqu Lx st ut rv ss ts ss t t y rt t tys t r ts w wr rtts. Atrx

More information

DOCUMENT STATUS: CORE HEALTH & FITNESS, LLC IL-D2002-XXAAX IP,DUAL ADJUSTIBLE PULLEY MATERIAL SEE BOM FINISH N/A N/A SHEET SIZE: B SCALE: 1:33.

DOCUMENT STATUS: CORE HEALTH & FITNESS, LLC IL-D2002-XXAAX IP,DUAL ADJUSTIBLE PULLEY MATERIAL SEE BOM FINISH N/A N/A SHEET SIZE: B SCALE: 1:33. NOTS: RVSON STORY RV T SRPTON O Y //04 RLS OR PROUTON 433 P 34 55 033 OUMNT STTUS: NOT O PROPRTRY NORMTON TS OUMNT SLL NOT RPROU NOR SLL T NORMTON ONTN RN US Y OR SLOS TO OTR XPT S XPRSSLY UTORZ Y OR LT

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

B ADDED BADGE PN , CHANGED TO C SIZE FOR ASSY, ADDED NOTES DN J DETAIL A SCALE 1 : INCH MATERIAL

B ADDED BADGE PN , CHANGED TO C SIZE FOR ASSY, ADDED NOTES DN J DETAIL A SCALE 1 : INCH MATERIAL 0 RVSONS RV. T SRPTON O Y 0--0 PROUTON RLS N 0--0 PN 00-0, N TO SZ OR SSY, NOTS N TL SL :. N TM NO. PRT NUMR SRPTON QTY. NOT 00-0, PROUT, P-ST 0 NOTS:. SRL LL NORMTON: a) VOLTS: V b) MPS:.0 c) YLS: N/

More information