Colby College Catalogue

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Colby College Catalogue"

Transcription

1 Colby College Digital Colby Colby Catalogues College Archives: Colbiana Collection 1871 Colby College Catalogue Colby College Follow this and additional works at: Part of the Curriculum and Instruction Commons, and the Higher Education Commons Recommended Citation Colby College, "Colby College Catalogue " (1871) Colby Catalogues Paper This Book is brought to you for free and open access by the College Archives: Colbiana Collection at Digital Colby It has been accepted for inclusion in Colby Catalogues by an authorized administrator of Digital Colby For more information, please contact

2 , ** f h L H0 8 T L F LB N V R T 8 2

3

4 T L T f t pr NTH J N,8 F TH J 6 fn V ft TV F nv FF R ND T D NT LB N V R T, F R TH D R 8 2, T RV LL : PR NT D F R TH N V R T 8

5 J RN L T PR, L T N

6 B RD F TR T R v J T H PL T, D D, Pr d nt H n BN R B RN, V Pr d nt LDR D L T H LL,, Tr r r R v B F H, r t r l rn, j ^R v J ph R r, D D dd n, R v D v d N h ld n, DD R v ll H h l r, DD R v N th n l B tl r, H n H nn b l H l n, LLD H n J hhdr nd,lld R v r B rth, DD H n D nn L ll n, R v lb n P ll, ll l n, H n H nr nn d, J H H n n, H n B nj n D t lf, R v H nr V D xt r, D D R v Fr n l n rr, rdn r lb, R v n, DD H n h rl R nd l h dd n, H n J rr n rr ll, lv n H p n, H n ll rd n, LLD R v n t rn, D D H n l x nd r pb ll, R v B F h, R v R r n, * H n r H P l b r

7 TH L BR R F TH D V R T F LL N

8 F LT F N TR T N R v J T H PL N, D D, PR D NT B B PR F R F NT LL T L ND R L PH L PH R v L TH, D D, PR F R F RH T R ND L BR R N H RL H L N,, RR LL PR F R F H TR ND N T R L H T R L F RD,, PR F R F TH T ND N T R L PH L PH J HN B F T R,, PR F R F TH R ND L T N L N ND L T R T R D RD H LL,, PR F R F D RN L N J L N D T L R,, T T R

9 ^ftl***

10 T D NT N R L N R D N R J hn H rr B rr, t n r, 2 l h B rr tt H ll, lf rd, Th ld L n, t rv ll, 4 H rd R r t h ll, t rv ll, r t h ll ld r h n t n P rr, d n, lfr d t r t ll, f ld,, 2 H r l nd T ld n, L t n, N L lb rt h l r, t rv ll, r h l r

11 8 J N R L N R D N R N th n l B tl r, Jr, lt n,, 6 N L v H t l nt, R, N Fr d F ll r, r nth, 8 N t H ll ll, t rv ll, Fr n H rb rt P rl n, nthr f, N J hn H rb rt Ph lbr, dt rv ll, r Ph lbr r rt n th, r r, r H nr t rd, Pr v d n, R ", 8 N J ff r n T l r, V lb rd, N D v d b t r, P rtl nd, 2 l r n P r v l t n, h n, 6 N

12 PH R L N R D N R lb rt B rn ll n, h n, 0 br h B r r t, V lb rd, 8 N lb rt Pr tt D, V lb r, 2 ll rd R H n, rl nd, d rd t H rd, n l, ll H nt ll, t rv ll, r l d, B n r, ll L n ln P l r, lb n, H r l n t rt, B n r, J H D N TlLT N, llf r d, N H, r Dr n t r Th d r Fr l n h n h t, t rv ll, 2 h rl r ll, t rv ll, 2 h rl r n n, r nn, 0

13 0 FR H N L N R D N R lph v l th Br, P r n, 2 N J Br nb ll, B t n,, 4 N d rd J hn l rd, P r n f ld, 2 N L l lb rn h, n l, 8 J hn H r x, L t n, 6 N ll ldth t, L r n, * 0 h rl Fr n H ll, xf rd, 4 N r h n t n H ll, H r n, 6 N H nr lt n H d, n l, 2 N r B tt H rd, n l, 24 N H nr H d n, Jr, lf rd, 8 r ffr L, t rv ll, r L T V J D N N L N, ln, 24 N t v P v, t rv ll, r P v l t n R d, rdn r,, d rd ndr R d, rdn r,, b n r R ll, D r, 0 d rd H l, V lb r, N H rb rt T ld n, L t n, N r n pp rr, H l t n, 6 N

14 R n r 8 J n r ph r Fr h n 20 T t l 2 BBB V T N N N rth ll th ll

15 TH f T lt n r f

16 T R F D N* Th r t f r d n t th Fr h n l r, t t n l f d r l h r t r, th r h nt n th n l h, L t n nd r r r (H dl r nd H r n L t n, pr f rr d, f r b f r nt r, th t l n f ll t, x b f th ^n d f V r l, x r t n f r, L t n p t n f r P rt Th rd f H r n * ntr d t n, thr b f X n ph n n b r n v l nt, n nt nd d rn r ph, r th t, nd l br t t n f th nd D r n D v B rd n t r nd d t t d nt n pr p r t n, t r d tt nt v l n l f r nd R n H t r nd d t f r dv n d t nd n r x n d n th pr p r t r t d, nd n th v r t d t h h th l th pr p t nt r h v tt nd d Th h r d tt d fr th r ll t pr nt rt f t f r l r d n n ll t t n l f d r l h r t r r r r d Th t t d t f r x n t n r T d b f r n nt, nd th f r t d f th f r t t r L T R nd v d l f t bl nd tt n nt ll b l l d t p r P rt l r, f r n l n th f t n t l th n n r, l t n h t d th d r Th ll b r r d t r t th th r l r ll l t l t t d, nd t nt n thr h th t r n t d n d Th ll h v t th L br r nd L t r, nd n l v n th n t t t n ll b nt tl d t rt f t f th r r p t v r nt n th t d n h h th h v p d n x n t n

17 4 R F T D FR H N R F R T T R tr, D v L ndr L t n, L v L t n r r, H r n L t n Pr p t n, rn ld r, Pl t p l nd r t r r r, H dl x r n l t n, D ND T R tr, ( pl t d, D v L ndr l br, D v B rd n L t n, d f H r L t n r r, H r n L t n p t n, rn ld r, r H t r r r r, H dl x r n l t n, D TH RD T R l br, ( pl t d, D v B rd n r, H r r r r, H dl r p t n, B L t n, r n nd r l f T t PH R R F R T T R Tr n tr, D v L t n, p tl f H r r, Ph l pp f D th n Rh t r, h t l, D Rh t r l Pr x, nd L t r

18 ND T R n l t l tr, D v L t n, t r f H r Rh t r, h t l nd D Fr n h, tt r r P l t l n, h pl n n l x n, TH RD T R r h D ff r nt l nd nt r l l l, r B t n L t n, r d t Fr n h, B h r R d r rv n nd N v t n, D v n l x n, r h n l h L t r t r, p ld n nd h J N R R F R T T R r, D th n n th r n h n, n ll l t d h tr, ND T R

19 6 N R R F R T T R pt, n ll l t d n t t t n f th n t d t t, h pp rd th, h pl n r n, h ll r lh l T ll, nd th H r nn nd D r th ND T R nt ll t l Ph l ph, h pl n L t n, H t r f T t tr n, L TH RD T R H t r, n t t t n l H t r f n l nd Rh t r, h t l t r r d th t th t d b p r d, nd r l r x n t n t n d n th, b h t d nt, pr r t h r v n th d r f B h l r f rt L T R n nn t n th th r l r r t t n, L t r r d l v r d t th v r l l n th f ll n bj t : h tr, l, Z l, B t n, Th v r br n h f N t r l Ph l ph, nt ll t l nd r l Ph l ph, r H t r nd L t r t r, R n H t r nd L t r t r, r nd R n th l, Rh t r nd l t n, V rb l r t nd H t r f th n l h L n, Th Fr n h nd r n L n

20 T R P T L T N F TH BJ T F T D N H D P RT NT R r H t r, Pl t p l nd r t, P p l r r t n f D th n, l d r d f H r, l t f r p d, r nt n f ph l, D th n n th r n, H dl r r r, r Pr d, B r Pr p t n L T N L v, r d t, H r : d, t r nd p tl, T t : r n, r l, nd H t r, H r n L t n r r, rn ld L t n Pr p t n Th f ll n b r d n th t d f th r nd L t n L n : L dd ll nd tt r L x n, ndr L t n L x n, nth n l l D t n r, th D t n r f r nd R n nt t, R h rn r D d rl n L t n n n, L n l l tl, B rd l l n l TH T ND N T R L PH L PH tr, l br, Tr n tr, Pr j t n, n r t n f H ht nd D t n, r v n, L v ll n nd N v t n, n l t l tr, D ff r nt l nd nt r l l l, h n,

21 8 t, v l n n r n, pt, tr n H TR ND N T R L H T R J hn t n h tr, z nd ld Pr n pl f Z l, L n t nd Ph l, L l, d B t n, T nn Z l RH T R ND L h t l Rh t r, h t l L, D l t n, D Rh t r l Pr x, n l h L t r t r, p ld n nd h, n l x n, r h R d r Th r r r d f th ph r, J n r, nd n r l, n n t D l t n r r r d fr n f th f r l v r, th n r nd J n r l p n r n l rt l x r n l t n r nt n d thr h t th r H T R B rd l l n l, rn ld nd P tz n nt r ph nd H t r, n t t t n l H t r f n l nd NT LL T L ND R L PH L PH h pl n nt ll t l Ph l ph, rdl L d n v d n, h pl n F r t Pr n pl f th, h pl n P l t l n, n t t t n f th n t d t t

22 D RN L N n th d p rt nt th r l r r br n tr t n n th Fr n h nd r n L n Fr n h : tt r r nd B h r Fr n h R d r, T xt l XV t X X l r n : f rt r n r, dl r r n R d r, h ll r lh l T ll, th H r nn nd D r th D N F N Th r f t d r n p n t n n, n th t r t n n XH B T N Th r n xh b t n f th n r l t th nd f th f r t t r, t h h h n r r p rt, n t n f n l h, r, Fr n h, nd L t n v r n r n d t b r f th J n r l, h r n h t nt tl th t th d t n t n PR Z D L T N Th r Pr z D l t n f th ph r l t th nd f th pr n T r, nd f th J n r l, p n r n l rt l, t th nd f th r T r t th d l t n, n th l t d r, th pr z r rd d f ll : J n r D l t n : F r t Pr z t H r l nd T ld n nd Pr z t l h B rr tt H ll ph r D l t n : F r t Pr z t N th n l B t l r, Jr nd Pr z t J ff r n T l r Th Pr z f r th b t p t n t th n r xh b t n f 8 rd d t D l n t H l n

23 20 P BL R H P ll th t d nt r r r d t tt nd pl f p bl r h p n th bb th h t d nt r h p r nt r rd n b n p r tt d t l t f r tt nd n th r f th pl f p bl r h p n th v ll X N T N Th r p bl x n t n f ll th l t th l f h t r n th th t l nd t f th n l h br n h th t d nt r r d t xh b t h tt n nt, n n p rt f th t r t d n d t h, th t b n t n d, nd t nd t th d n h lf Th f n l x n t n f th n r l r f v b f r n nt T R B LL Th r pt n r t nt f h t d nt b n fr ll x r p n h h h tt nd n r r d l, f h n r l nd t nd h l r h p Th nt, n nn t n th th r l r t r b ll, br n th h r f r T t n, R r nt, f L br r nd n d nt l, nt t th t d nt p r nt r rd n t th l f h t r N NT ND V T N n nt n th l t Th r d f J l Th f r t v t n f f v, fr n nt th nd f ht, fr th nd dn d f D b r th th rd f n, t th l f th nd t r Th f r t t r f f ft n th nd nd th rd t r, f t lv h Th t r r r r n d t v l n v t n n th nt r, h h b pr f t bl pl d n t h n, b th h r t n r r t t d nt r ll d t l v f r th r h l th dn d b f r th f r t nd n D b r

24 2 XP N T t n, R r nt nd f L br r $4 00 $4 00 n d nt l xp n B rd fr $2 0 t $ 0 p r T 6 F l, h n nd L ht nt $ 8 0 $202 0 Th n r f r b, l th n nd tr v ll n xp n, ll v r rd n t r t n nd th h b t f th t d nt ll t r b ll r t b p d t th n nt f th d n t r P r n d tt d t dv n t nd n, f n t fr n th r ll, r r r d t p b t t n b t n tr l t n f x t d n n D T T D NT B d th pp rt n t f r t h n t r thr nth n th nt r, th d t n t d th pr p r n f r th hr t n n tr, nd th r r v r l h l r h p, th b n f t f h h b nj d b r t r t d nt h n d th d nd, n dd t n, th n t t t n ff r th f ll n H ^ r r d Th f r t t r b ll n ll d f r th t d nt b t f tt d f r ll l ll b nt b ll thr h h r, n h n d th d nd nt n h h r n n h l 2 Th f r t t r b ll n ll d f r th b t f n t l th n x fr th h l l th nd b ll, nd th f r t nd nd b ll n h r, n th nd t n b v Th f r t t r b ll n ll d f r th b t f n t l th n f r fr th h l nd th f r t b ll n h b nt r, n th nd t n b v B t n h l h ll b nt tl d t r th n n pr z n r h ll n n r v pr z h n t ll pr p r d f r ll

25 22 Th pr z, f r th pr nt r, h v b n rd d f ll : F r t pr z t r ffr L, f t rv ll nd pr z t L l lb rn h, fr th l l n t t t, r J H H n n, Pr n p l P L R L T N n d f n n th t d pr p r t r f r l l t b d p b th b nn n f th nd t r 2 t d nt r n d r d b nt t th b nn n f t r, nt l th pr nt th lv t th r r t t n, nd ll b f n d f r h b n, nl th bt n n x f r th fr th Pr d nt t d nt d l r d d f nt n n t d, t th nd f t r, t p h d f n b th p n n f th n xt t r 4 N t d nt n b x n d th h l, h h n t r t d th th t l t n th rd f th t N t d nt h n x n d n th t d f n t t r, n pr d th h l t ll h h b n x n d n n f th t r 6 x n t n n d f n t l t pl n th f r t d f th t r N t d nt ll d t b b nt t r, n r t l v t n n t r t, th t p r n fr th Pr d nt 8 T r b ll t b p d pr ptl th r th r b nd t b v n t th Tr r r nd v n th b nd, n t d nt ll b ll d t pr d th h l, h h r th n t b ll np d rr l r t n tt nd n t r t t n ll b n t d, f r t, b n d n t n fr th t h r th n, f nt n d, fr th Pr d nt nd f n t rr t d n d n t n, th t d nt ll b p nd d f r th t r, r d h r d fr th ll lt th r, th t d nd

26 2 n t d nt, h n n h r, th t p r n fr th Pr d nt, ll b bj t t f n, r h th r p n lt th F lt th n t d t th f n t d nt h ll f l t h nd h p t n t th pr p r ff r t th t pp nt d f r t t b r d, h ll n t b ll d t pr d th h l t ll t h nd d n 2 ll x f r b n fr ll x r r t b pr nt d n r t n t th ff r p r nt nd n th x r, l b f r dn d v n n n h N t d nt ll d t b rd t p bl h T RV LL L L N T T T Th n t t t n, nd r th h r f r J H H n n, r nd d p n p r r dv nt l l h l Th r f t d rr n d th r f r n t th r r nt f r d n t th n v r t R t f t t n, fr $ 00 t $6 00 nd d t fr th h l, th th r h b pr nt t th t t, ll b x n d f r d n t ll n t rd, J l 6

27 24 h J 28 6 N V R T F LL N LL L ND R 8 n r xh b t n dn d v n n, N v 22 F ll T r nd dn d, D V t n f ht 8 2 pr n T r b n dn d, F b ph r Pr z D l t n, pr l 24 pr n T r nd dn d, V t n f n r T r b n dn d v n n, 8 n r x n t n, dn d, J n x n t n f th r l b n dn d, J l J n r xh b t n, nd v n n, J l 22 * x n t n f r d n, T d, J l 2 nn v r r f L t r r t, T d, J l 2 t n f th B rd f Tr t, dn d, J l 24 t n f th l n t n, dn d, J l 24 n nt, Th r d, J l 2 V t n f f v F ll T r b n, dn d v n n, 28 * x n t n f r d n, dn d, 28 * t ht l, t R t t n H ll Th x n t n ll b n r t n

28

29 N V R T F LL N RB N t

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Ed H. H w H Ed. en 2: Ed. o o o z. o o. Q Ed. Ed Q to. PQ in o c3 o o. Ed P5 H Z. < u z. Ed H H Z O H U Z. > to. <! Ed Q. < Ed > Es.

Ed H. H w H Ed. en 2: Ed. o o o z. o o. Q Ed. Ed Q to. PQ in o c3 o o. Ed P5 H Z. < u z. Ed H H Z O H U Z. > to. <! Ed Q. < Ed > Es. d n 2: d t d t d! d d 52 d t d d P in t d. d P5 d - d d , d P il 0) m d p P p x d d n N r -^ T) n «n - P & J (N 0 ' 4 «"«5 -» % «D *5JD V 9 * * /J -2.2 " ^ 0 n 0) - P - i- 0) G V V - 1(2). i 1 1 & i '

More information

, (1). -, [9], [1]. 1.. T =[ a] R: _(t)=f((t)) _ L(t) () = x f, L(t) T., L(t), L() = L(a ; ) = L(a). (2) - : L n (t) =(L n )(t) = 1=n R supp [ 1], 1R

, (1). -, [9], [1]. 1.. T =[ a] R: _(t)=f((t)) _ L(t) () = x f, L(t) T., L(t), L() = L(a ; ) = L(a). (2) - : L n (t) =(L n )(t) = 1=n R supp [ 1], 1R 25 3(514) 517.988..,..,.. -.,.., -, -. : _x(t) =f(t x(t)) _ L(t) (1) L(t) _.. - -, f(t x(t)) L(t). _ ([1],. 1, x 8,. 41),. [2]{[4],., [2]{[4],, [1]. - x(t) =x f( x())dl() t {, {.. [5]{[7]. L(t),. [8] (1),

More information

I if +5sssi$ E sr. Egglg[[l[aggegr glieiffi*gi I I a. gl$[fli$ilg1li3fi[ Ell F rss. F$EArgi. SEgh*rqr. H uf$:xdx. FsfileE

I if +5sssi$ E sr. Egglg[[l[aggegr glieiffi*gi I I a. gl$[fli$ilg1li3fi[ Ell F rss. F$EArgi. SEgh*rqr. H uf$:xdx. FsfileE (tl Sh*q +sss$!! ll ss s ;s$ll s ; B 3 $ Sest -9[*; s$t 1,1 - e^ -" H u$xdx fd $A sfle *9,9* '. s. \^ >X!l P s H 2.ue ^ O - HS 1- -l ( l[[l[e lff* l$[fl$l1l3f[ U, -.1 $tse;es s TD T' ' t B $*l$ \l - 1

More information

I;;"" I _ t. . - I...AJ_ ~I 11 \_-., I. LIfI.l..(!;O '{. ~- --~--- _.L...,.._ J 5" i. I! I \ 1/ \. L, :,_. RAmE ABSTRACT

I;; I _ t. . - I...AJ_ ~I 11 \_-., I. LIfI.l..(!;O '{. ~- --~--- _.L...,.._ J 5 i. I! I \ 1/ \. L, :,_. RAmE ABSTRACT 5 ;; _L_ 7 9 8 A Ll(;O '{ L _ OFFCAL RETURNS GENERAL ELECTON RAmE 98 9 w ;; (k4(ap 'A ' lee S'T'lTE 5'C TU AS c ; _ l6l>'

More information

On reaching head-to-tail ratios for balanced and unbalanced coins

On reaching head-to-tail ratios for balanced and unbalanced coins Journal of Statistical Planning and Inference 0 (00) 0 0 www.elsevier.com/locate/jspi On reaching head-to-tail ratios for balanced and unbalanced coins Tamas Lengyel Department of Mathematics, Occidental

More information

Expanding brackets and factorising

Expanding brackets and factorising Chapter 7 Expanding brackets and factorising This chapter will show you how to expand and simplify expressions with brackets solve equations and inequalities involving brackets factorise by removing a

More information

THE POISSON TRANSFORM^)

THE POISSON TRANSFORM^) THE POISSON TRANSFORM^) BY HARRY POLLARD The Poisson transform is defined by the equation (1) /(*)=- /" / MO- T J _M 1 + (X t)2 It is assumed that a is of bounded variation in each finite interval, and

More information

fnm 'et Annual Meeting

fnm 'et Annual Meeting UUVtK Ht.t, A 0 8 4 S.. Rittin Nub t, n L Y t U N i, n ' A N n, t\ V n b n k pny' ull N) 0 R Z A L A V N U X N S N R N R H A V N U R A P A R K A L A N Y Buin Add. N. Stt ity wn / Pvin) Ali l) lil tal?l

More information

NOTE ON FIBONACCI PRIMALITY TESTING John Brillhart University of Arizona, Tucson, AZ (Submitted August 1996-Final Revision January 1997)

NOTE ON FIBONACCI PRIMALITY TESTING John Brillhart University of Arizona, Tucson, AZ (Submitted August 1996-Final Revision January 1997) John Brillhart University of Arizona, Tucson, AZ 85721 (Submitted August 1996-Final Revision January 1997) 1. INTRODUCTION One of the most effective ways of proving an integer N is prime is to show first

More information

SPECTRAL ORDER PRESERVING MATRICES AND MUIRHEAD'S THEOREM

SPECTRAL ORDER PRESERVING MATRICES AND MUIRHEAD'S THEOREM TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 200, 1974 SPECTRAL ORDER PRESERVING MATRICES AND MUIRHEAD'S THEOREM BY KONG-MING chongo.1) ABSTRACT. In this paper, a characterization is given

More information

Focus rules for segments. Focus and defocus rules for concatenation. Mlength with a while loop. Mlength with a while loop.

Focus rules for segments. Focus and defocus rules for concatenation. Mlength with a while loop. Mlength with a while loop. The function nth-cell Separation Logic Part 2 Returns the i-th cell of a list: Arthur Charguéraud February 2015 let rec nth_cell (i:int) (p: a cell) = if i = 0 then p else nth_cell (i-1) (p.tl) Why is

More information

Chem 6 Sample exam 2 (150 points total) NAME:

Chem 6 Sample exam 2 (150 points total) NAME: hem 6 Sample exam 2 (150 points total) @ This is a closed book exam to which the onor Principle applies. @ The last page contains equations and physical constants; you can detach it for easy reference.

More information

Power Board 715G5246P02W21002S (For 42RL7500)

Power Board 715G5246P02W21002S (For 42RL7500) Key omponent Power Board GP0W00S (For RL00) SG0 DSPL-0N-AF 0 0PF 0V SG0 DSPL-0N-AF BOX 0 00PF 0V t R0 0K L0 0NF 0V change to.mm I0 D D D D AP00DG 0 PF L0 MH MH R0 0 0NF 0V TVRKFAOZF R- FB0 SG0 DSPL-0N-AF

More information

Balanced preamp - Digital control

Balanced preamp - Digital control TSOP Vdd U V OUT GN uf xial GN GN Vdd J Prog.Header J Prog.Header MLR V GN PG PG cc0 cc cc cc cc MLR cc cpwr U VSS V R0/IN0 R0/INT R/IN R/SI R/IN/VREF R/SO 9 R/IN R/P 0 R/T0KI R/SK R/MLR/VPP R/SS R/OS/LKO

More information

4r, o I. >fi. a IE. v atr. ite. a z. a til. o a. o o. 0..c. E lrl .',,# View thousands of Crane Specifications on FreeCraneSpecs.

4r, o I. >fi. a IE. v atr. ite. a z. a til. o a. o o. 0..c. E lrl .',,# View thousands of Crane Specifications on FreeCraneSpecs. i View husns Crne Speiiins n reecrnespes.m :: :r R: 8 @ il llj v u L u 4r,? >i C) lrl? n R 0&l r'q1 rlr n rrei i 5 n llvvj lv 8 s S llrvvj Sv TT [ > 1 \ l? l:i rg l n - l l. l8 l l 5 l u r l 9? { q i :{r.

More information

elegant Pavilions Rediscover The Perfect Destination

elegant Pavilions Rediscover The Perfect Destination Pv Rv T Pf D W... T O Lv! Rv p f f v. T f p, f f, j f f, bw f p f f w-v. T f bk pv. Pv w b f v, pv f. W, w w, w f, pp w w pv. W pp v w v. Tk f w v k w w j x v f. W v p f b f v j. S f f... Tk Y! 2 3 p Pv

More information

CHEM 130 Exp. 8: Molecular Models

CHEM 130 Exp. 8: Molecular Models CHEM 130 Exp. 8: Molecular Models In this lab, we will learn and practice predicting molecular structures from molecular formulas. The Periodic Table of the Elements IA 1 H IIA IIIA IVA VA VIA VIIA 3 5

More information

MTS 105 LECTURE 5: SEQUENCE AND SERIES 1.0 SEQUENCE

MTS 105 LECTURE 5: SEQUENCE AND SERIES 1.0 SEQUENCE MTS 105 LECTURE 5: SEQUENCE AND SERIES 1.0 SEQUENCE A sequence is an endless succession of numbers placed in a certain order so that there is a first number, a second and so on. Consider, for example,

More information

EQUATIONS WHOSE ROOTS ARE T I E nth POWERS OF T I E ROOTS OF A GIVEN CUBIC EQUATION

EQUATIONS WHOSE ROOTS ARE T I E nth POWERS OF T I E ROOTS OF A GIVEN CUBIC EQUATION EQUATIONS WHOSE ROOTS ARE T I E nth POWERS OF T I E ROOTS OF A GIVEN CUBIC EQUATION N. A, DRAiMand MARJORIE BICKNELL Ventura, Calif, and Wilcox High School, Santa Clara, Calif. Given the cubic equation

More information

The Periodic Table of Elements

The Periodic Table of Elements The Periodic Table of Elements 8 Uuo Uus Uuh (9) Uup (88) Uuq (89) Uut (8) Uub (8) Rg () 0 Ds (9) 09 Mt (8) 08 Hs (9) 0 h () 0 Sg () 0 Db () 0 Rf () 0 Lr () 88 Ra () 8 Fr () 8 Rn () 8 At (0) 8 Po (09)

More information

Lecture 12: Detailed balance and Eigenfunction methods

Lecture 12: Detailed balance and Eigenfunction methods Miranda Holmes-Cerfon Applied Stochastic Analysis, Spring 2015 Lecture 12: Detailed balance and Eigenfunction methods Readings Recommended: Pavliotis [2014] 4.5-4.7 (eigenfunction methods and reversibility),

More information

R k. t + 1. n E t+1 = ( 1 χ E) W E t+1. c E t+1 = χ E Wt+1 E. Γ E t+1. ) R E t+1q t K t. W E t+1 = ( 1 Γ E t+1. Π t+1 = P t+1 /P t

R k. t + 1. n E t+1 = ( 1 χ E) W E t+1. c E t+1 = χ E Wt+1 E. Γ E t+1. ) R E t+1q t K t. W E t+1 = ( 1 Γ E t+1. Π t+1 = P t+1 /P t R k E 1 χ E Wt E n E t+1 t t + 1 n E t+1 = ( 1 χ E) W E t+1 c E t+1 = χ E Wt+1 E t + 1 q t K t Rt+1 E 1 Γ E t+1 Π t+1 = P t+1 /P t W E t+1 = ( 1 Γ E t+1 ) R E t+1q t K t Π t+1 Γ E t+1 K t q t q t K t j

More information

Ëâ,a E :lëë, ËgËEggEËËgË ËiË

Ëâ,a E :lëë, ËgËEggEËËgË ËiË 4 Ë s F Ë3 ËËs *s ôl s{ëaëëëëë {) è) (ll '* ËË Ë Ër rëë s: 5 Ë ËË Ë3s âëëëësëëëë ô r.9 fë;uëë;ëë *Ë =ËfËâ$âË$[Ë$ Ë ËË FêËËËËËrËËËË.Ë:eË*cs srrëf rl $Ël*ËË s66- Ë3 ËËË ËËs.4 Ëâ, :lëë, ËËËËË ËË.Ë $ËFj ËÉË......l"*ÂlÉËËr

More information

ESE 403 Operations Research Fall Examination 1

ESE 403 Operations Research Fall Examination 1 Name: Slutin ESE 403 Operatins Research Fall 2010 Examinatin 1 Clsed bk/ntes/hmewrk/cellphne examinatin. Yu may use a calculatr. Please write n ne side f the paper nly. Extra pages will be supplied upn

More information

8. Relax and do well.

8. Relax and do well. CHEM 1225 Exam I John I. Gelder February 4, 1999 Name KEY TA's Name Lab Section Please sign your name below to give permission to post your course scores on homework, laboratories and exams. If you do

More information

4.06 Periodic Table and Periodic Trends

4.06 Periodic Table and Periodic Trends 4.06 Periodic Table and Periodic Trends Dr. Fred Omega Garces Chemistry 100, Miramar College 1 4.06 Periodic Table and Periodic Trend The Periodic Table and the Elements What is the periodic table? What

More information

Series RC and RL Time Domain Solutions

Series RC and RL Time Domain Solutions ECE2205: Circuits and Systems I 6 1 Series RC and RL Time Domain Solutions In the last chapter, we saw that capacitors and inductors had element relations that are differential equations: i c (t) = C d

More information

NAME: 3rd (final) EXAM

NAME: 3rd (final) EXAM 1 Chem 64 Winter 2003 AME: 3rd (final) EXAM THIS EXAM IS WORTH 100 POITS AD COTAIS 9 QUESTIOS THEY ARE OT EQUALLY WEIGHTED! YOU SHOULD ATTEMPT ALL QUESTIOS AD ALLOCATE YOUR TIME ACCORDIGLY IF YOU DO'T

More information

ECE 650 Lecture #10 (was Part 1 & 2) D. van Alphen. D. van Alphen 1

ECE 650 Lecture #10 (was Part 1 & 2) D. van Alphen. D. van Alphen 1 ECE 650 Lecture #10 (was Part 1 & 2) D. van Alphen D. van Alphen 1 Lecture 10 Overview Part 1 Review of Lecture 9 Continuing: Systems with Random Inputs More about Poisson RV s Intro. to Poisson Processes

More information

GCE Mathematics. Mark Scheme for June Unit 4732: Probability and Statistics 1. Advanced Subsidiary GCE. Oxford Cambridge and RSA Examinations

GCE Mathematics. Mark Scheme for June Unit 4732: Probability and Statistics 1. Advanced Subsidiary GCE. Oxford Cambridge and RSA Examinations GCE Mathematics Unit 47: Probability and Statistics Advanced Subsidiary GCE Mark Scheme f June 05 Oxfd Cambridge and RSA Examinations OCR (Oxfd Cambridge and RSA is a leading UK awarding body, providing

More information

1 Introduction This work follows a paper by P. Shields [1] concerned with a problem of a relation between the entropy rate of a nite-valued stationary

1 Introduction This work follows a paper by P. Shields [1] concerned with a problem of a relation between the entropy rate of a nite-valued stationary Prexes and the Entropy Rate for Long-Range Sources Ioannis Kontoyiannis Information Systems Laboratory, Electrical Engineering, Stanford University. Yurii M. Suhov Statistical Laboratory, Pure Math. &

More information

^ ) = ^ : g ' f ^4(x)=a(xr + /xxr,

^ ) = ^ : g ' f ^4(x)=a(xr + /xxr, Edited by Stanley Rablnowitz Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence may also be sent to

More information

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009 Schedule H-6.lb SOUTHWSTRN LCTRIC POWR COMPANY SCHDUL H-6.1b NUCLAR UNIT OUTAG DATA For the Test Year nded March 31, 29 This schedule is not applicable to SVvPCO. 5 Schedule H-6.1 c SOUTHWSTRN LCTRIC POWR

More information

MATHEMATICS PAPER IB COORDINATE GEOMETRY(2D &3D) AND CALCULUS. Note: This question paper consists of three sections A,B and C.

MATHEMATICS PAPER IB COORDINATE GEOMETRY(2D &3D) AND CALCULUS. Note: This question paper consists of three sections A,B and C. MATHEMATICS PAPER IB COORDINATE GEOMETRY(D &3D) AND CALCULUS. TIME : 3hrs Ma. Marks.75 Note: This question paper consists of three sections A,B and C. SECTION A VERY SHORT ANSWER TYPE QUESTIONS. 0X =0.

More information

PROBLEMS FOR EXPERIMENT ES: ESTIMATING A SECOND Solutions

PROBLEMS FOR EXPERIMENT ES: ESTIMATING A SECOND Solutions Massachusetts Institute of Technology Physics Department 801X Fall 2002 PROBLEMS FOR EXPERIMENT ES: ESTIMATING A SECOND Solutions Problem 1: Use your calculator or your favorite software program to compute

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Dr Gerhard Roth COMP 40A Winter 05 Version Linear algebra Is an important area of mathematics It is the basis of computer vision Is very widely taught, and there are many resources

More information

PATTERN CLASS SCORE SHEET AMATEUR DATE:---, _v' ' I ENTRY _...-.#Ji)\,,41()!'<AIL - " WORK OVERALL FORM & PRESENTATION

PATTERN CLASS SCORE SHEET AMATEUR DATE:---, _v' ' I ENTRY _...-.#Ji)\,,41()!'<AIL -  WORK OVERALL FORM & PRESENTATION /Y ;g PtMriJeuv AMERICAN HQRSE /tna +f u v Se le cf YOUTH YOUTH YOUTH AMATEUR LEVEL1 < LEVEL1 SHOW: AMATEUR DATE:,. JUDGE: lb, )p, ') _v' ' I _...#Ji)\,,1()!'

More information

Spatial Ergodicity of the Harris Flows

Spatial Ergodicity of the Harris Flows Communications on Stochastic Analysis Volume 11 Number 2 Article 6 6-217 Spatial Ergodicity of the Harris Flows E.V. Glinyanaya Institute of Mathematics NAS of Ukraine, glinkate@gmail.com Follow this and

More information

MA 266 Review Topics - Exam # 2 (updated)

MA 266 Review Topics - Exam # 2 (updated) MA 66 Reiew Topics - Exam # updated Spring First Order Differential Equations Separable, st Order Linear, Homogeneous, Exact Second Order Linear Homogeneous with Equations Constant Coefficients The differential

More information

CHAPTER 11 Vector-Valued Functions

CHAPTER 11 Vector-Valued Functions CHAPTER Vector-Valued Functions Section. Vector-Valued Functions...................... 9 Section. Differentiation and Integration of Vector-Valued Functions.... Section. Velocit and Acceleration.....................

More information

Introduction to Magnetohydrodynamics (MHD)

Introduction to Magnetohydrodynamics (MHD) Introduction to Magnetohydrodynamics (MHD) Tony Arber University of Warwick 4th SOLARNET Summer School on Solar MHD and Reconnection Aim Derivation of MHD equations from conservation laws Quasi-neutrality

More information

q x = k T 1 T 2 Q = k T 1 T / 12

q x = k T 1 T 2 Q = k T 1 T / 12 Conductive oss through a Window Pane q T T 1 Examine the simple one-dimensional conduction problem as heat flow through a windowpane. The window glass thickness,, is 1/8 in. If this is the only window

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 14 The CMOS Inverter: dynamic behavior (sizing, inverter

More information

F l a s h-b a s e d S S D s i n E n t e r p r i s e F l a s h-b a s e d S S D s ( S o-s ltiad t e D r i v e s ) a r e b e c o m i n g a n a t t r a c

F l a s h-b a s e d S S D s i n E n t e r p r i s e F l a s h-b a s e d S S D s ( S o-s ltiad t e D r i v e s ) a r e b e c o m i n g a n a t t r a c L i f e t i m e M a n a g e m e n t o f F l a-b s ah s e d S S D s U s i n g R e c o v e r-a y w a r e D y n a m i c T h r o t t l i n g S u n g j i n L e, e T a e j i n K i m, K y u n g h o, Kainmd J

More information

H A N S -O L A V E N G E R,

H A N S -O L A V E N G E R, O n -l i n e P r o c e e d i n gs o f t h e 7 t h M e d i t e r r a n e a n M o r p h o l o g y M e e t i n g 1 M o r p h o l o g y a n d D i a c h r o n y O n -l i n e P r o c e e d i n g s o f t h e

More information

Is the superposition of many random spike trains a Poisson process?

Is the superposition of many random spike trains a Poisson process? Is the superposition of many random spike trains a Poisson process? Benjamin Lindner Max-Planck-Institut für Physik komplexer Systeme, Dresden Reference: Phys. Rev. E 73, 2291 (26) Outline Point processes

More information

INVERSE TERNARY CONTINUED FRACTIONS

INVERSE TERNARY CONTINUED FRACTIONS I93I-1 TERNARY CONTINUED FRACTIONS 565 INVERSE TERNARY CONTINUED FRACTIONS BY D. N. LEHMER In Jacobi's extension of the continued fraction algorithm* we are concerned with three series of numbers given

More information

Chemistry 112 Name Exam I Form A Section January 29,

Chemistry 112 Name Exam I Form A Section January 29, Chemistry 112 Name Exam I Form A Section January 29, 2013 email IMPORTANT: On the scantron (answer sheet), you MUST clearly fill your name, your student number, section number, and test form (white cover

More information

Adiabatic Expansion (DQ = 0)

Adiabatic Expansion (DQ = 0) Adiabatic Expansion (DQ = 0) Occurs if: change is made sufficiently quickly and/or with good thermal isolation. Governing formula: PV g = constant where g = C P /C V Adiabat P Isotherms V Because PV/T

More information

Halogens HALOGENS. Parts 2A and 2B. Chem : Feb. 19, 20 and March 3. Compare the properties and reactivity of the halogens and halides

Halogens HALOGENS. Parts 2A and 2B. Chem : Feb. 19, 20 and March 3. Compare the properties and reactivity of the halogens and halides Chem. 125-126: Feb. 19, 20 and March 3 Experiment 3 Session 2 (Three hour lab) Complete Experiment 3 Parts 2B and 3 Complete team report Complete discussion presentation Parts 2A and 2B Compare the properties

More information

Geometry Chapter 8: Area Review PA Anchors: A3; B2; Cl. .1.t+~4 -~-J. ""T... Sl. J":..2.l.. -+-Jw. A =- A(~)'" ~ A :..!w-l-~

Geometry Chapter 8: Area Review PA Anchors: A3; B2; Cl. .1.t+~4 -~-J. T... Sl. J:..2.l.. -+-Jw. A =- A(~)' ~ A :..!w-l-~ Geometry Chapter 8: Area Review PA Anchors: A3; B2; Cl 1. Find the missing value given BCDA is a rectangle. Perimeter = 62 cm Area =? V:. d.t-\" ~vj B.--- ---,c 17 em ~ J. ':. ~). -:: - '0..., rj ~ -;:,

More information

Deterministic Dynamic Programming

Deterministic Dynamic Programming Deterministic Dynamic Programming 1 Value Function Consider the following optimal control problem in Mayer s form: V (t 0, x 0 ) = inf u U J(t 1, x(t 1 )) (1) subject to ẋ(t) = f(t, x(t), u(t)), x(t 0

More information

Lecture 2. Fading Channel

Lecture 2. Fading Channel 1 Lecture 2. Fading Channel Characteristics of Fading Channels Modeling of Fading Channels Discrete-time Input/Output Model 2 Radio Propagation in Free Space Speed: c = 299,792,458 m/s Isotropic Received

More information

E5 Lewis Acids and Bases: lab 2. Session two lab Parts 2B, 3, and 4. Session one lab Parts 1and 2A. Aquo Complex Ions

E5 Lewis Acids and Bases: lab 2. Session two lab Parts 2B, 3, and 4. Session one lab Parts 1and 2A. Aquo Complex Ions E5 Lewis Acids and Bases: lab 2 Session one lab Parts 1and 2A Session two lab Parts 2B, 3, and 4 Part 2B. Complexation, Structure and Periodicity Compare the reactivity of aquo complex ions containing

More information

Nagoya Institute of Technology

Nagoya Institute of Technology 09.03.19 1 2 OFDM SC-FDE (single carrier-fde)ofdm PAPR 3 OFDM SC-FDE (single carrier-fde)ofdm PAPR 4 5 Mobility 2G GSM PDC PHS 3G WCDMA cdma2000 WLAN IEEE802.11b 4G 20112013 WLAN IEEE802.11g, n BWA 10kbps

More information

210H-3 HA 289 HA H-3. f80 f160. f140. f125. f50. Type. Standard type. Adaptable fluid. Seal material. Phosphate ester fluid. Water in oil fluid

210H-3 HA 289 HA H-3. f80 f160. f140. f125. f50. Type. Standard type. Adaptable fluid. Seal material. Phosphate ester fluid. Water in oil fluid 288 28 Type Nominal pressure Maximum allowable pressure roof test pressure Minimum operating pressure orking speed range orking temperature range (ambient/fluid temperature) Structure of cushioning Adaptable

More information

ON A CONJECTURE OF BALOG ADOLF HILDEBRAND

ON A CONJECTURE OF BALOG ADOLF HILDEBRAND PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 95. Number 4. December 1985 ON A CONJECTURE OF BALOG ADOLF HILDEBRAND Abstract. A conjecture of A. Balog is proved which gives a sufficient condition

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. 0 Section. Rolle s Theorem and the Mean Value Theorem. 07 Section. Increasing and Decreasing Functions and the First

More information

Chemistry Standard level Paper 1

Chemistry Standard level Paper 1 Chemistry Standard level Paper 1 Thursday 12 May 2016 (morning) 45 minutes Instructions to candidates Do not open this examination paper until instructed to do so. Answer all the questions. For each question,

More information

The exponential distribution and the Poisson process

The exponential distribution and the Poisson process The exponential distribution and the Poisson process 1-1 Exponential Distribution: Basic Facts PDF f(t) = { λe λt, t 0 0, t < 0 CDF Pr{T t) = 0 t λe λu du = 1 e λt (t 0) Mean E[T] = 1 λ Variance Var[T]

More information

6. Molecular structure and spectroscopy I

6. Molecular structure and spectroscopy I 6. Molecular structure and spectroscopy I 1 6. Molecular structure and spectroscopy I 1 molecular spectroscopy introduction 2 light-matter interaction 6.1 molecular spectroscopy introduction 2 Molecular

More information

Generation of bandlimited sync transitions for sine waveforms

Generation of bandlimited sync transitions for sine waveforms Generation of bandlimited sync transitions for sine waveforms Vadim Zavalishin May 4, 9 Abstract A common way to generate bandlimited sync transitions for the classical analog waveforms is the BLEP method.

More information

Trillingsdempende materialen basis & eigenschappen Berekenen en toepassen op trillingsisolatie van technische installaties.

Trillingsdempende materialen basis & eigenschappen Berekenen en toepassen op trillingsisolatie van technische installaties. Trillingsdempende materialen basis & eigenschappen Berekenen en toepassen op trillingsisolatie van technische installaties Patrick Carels KVIV Studiedag Ingenieurshuis - Antwerpen www.cdm.eu 23/9/206 Content

More information

Section B: Electrical Engineering Answer ALL questions

Section B: Electrical Engineering Answer ALL questions Section B: Electrical Engineering Answer ALL questions EE8) (0 Marks) The transient current flowing in an RL electrical circuit is a solution of the first order differential equation: di R + i = 0. dt

More information

MATCHINGS EXTEND TO HAMILTONIAN CYCLES IN 5-CUBE 1

MATCHINGS EXTEND TO HAMILTONIAN CYCLES IN 5-CUBE 1 Discussiones Mathematicae Graph Theory xx (xxxx) 5 doi:.75/dmgt.2 MATCHINGS EXTEND TO HAMILTONIAN CYCLES IN 5-CUBE Fan Wang 2 School of Sciences Nanchang University Nanchang, Jiangxi, P.R. China e-mail:

More information

H 2 -optimal model reduction of MIMO systems

H 2 -optimal model reduction of MIMO systems H 2 -optimal model reduction of MIMO systems P. Van Dooren K. A. Gallivan P.-A. Absil Abstract We consider the problem of approximating a p m rational transfer function Hs of high degree by another p m

More information

AN Lx REMAINDER THEOREM FOR AN INTEGRODIFFERENTIAL EQUATION WITH ASYMPTOTICALLY PERIODIC SOLUTION KENNETH B. HANNSGEN

AN Lx REMAINDER THEOREM FOR AN INTEGRODIFFERENTIAL EQUATION WITH ASYMPTOTICALLY PERIODIC SOLUTION KENNETH B. HANNSGEN proceedings of the american mathematical society Volume 73, Number 3, March 1979 AN Lx REMAINDER THEOREM FOR AN INTEGRODIFFERENTIAL EQUATION WITH ASYMPTOTICALLY PERIODIC SOLUTION KENNETH B. HANNSGEN Abstract.

More information

VARGA S THEOREM IN NUMBER FIELDS

VARGA S THEOREM IN NUMBER FIELDS VARGA S THEOREM IN NUMBER FIELDS PETE L. CLARK AND LORI D. WATSON Abstract. We give a number field version of a recent result of Varga on solutions of polynomial equations with binary input variables and

More information

Ceu Approved as to form: Barbara Y. hinpoch, Mayor

Ceu Approved as to form: Barbara Y. hinpoch, Mayor CTY OF RENTON, WASHNGTON ORDNANCE NO 4028 AN ORDNANCE OF THE CTY OF RENTON, WASHNGTON, ESTABLSHNG A SPECAL ASSESSMENT DSTRCT FOR SANTARY SEWER SERCE N THE ADAMS STA LD NO 25 SERCE AREA AND ESTABLSHNG THE

More information

A~(A'~) = i,(t) (1.34)

A~(A'~) = i,(t) (1.34) GENERAL RESISTIVE CIRCUITS 225 Nonlinear branch equation In vector notation, Eq. (1.31) becomes simply Since the independent current sources do not form cut sets (by assumption), Eq. (1.14) remains valid.

More information

DISTRIBUTED BY: National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road. Springfield Va.

DISTRIBUTED BY: National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road. Springfield Va. '" I " " "" ll '" I'" ' " P"-' I II -«...-.,. ' M»^..l^..l I! Ilium llljlll '^' '^'^ " " '!»"I AD-757 354 SYMMETRIC SIMPLE GAMES Robert James Weber Cornell University Prepared for: Office of Naval Research

More information

1.02 Elements, Symbols and Periodic Table

1.02 Elements, Symbols and Periodic Table .0 Elements, Symbols and Periodic Table Dr. Fred O. Garces Chemistry Miramar College.0 Elements, Symbols and the Periodic Table January 0 The Elements: Building block of Matter The periodic table of the

More information

2. T H E , ( 7 ) 2 2 ij ij. p i s

2. T H E , ( 7 ) 2 2 ij ij. p i s M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X A N A L Y S I S O F T E M P E R A T U R E D I S T R I B U T I O N I N C O M P O S I T E P L A T E S D U R I N G T H E R M A

More information

First Order ODEs, Part II

First Order ODEs, Part II Craig J. Sutton craig.j.sutton@dartmouth.edu Department of Mathematics Dartmouth College Math 23 Differential Equations Winter 2013 Outline Existence & Uniqueness Theorems 1 Existence & Uniqueness Theorems

More information

(5) difference of squares,

(5) difference of squares, EOCT REVIEW UNIT 5 Quadratic Functions Name Kut Write each expression in factored form. 1. X2-2x - 15 (X>5')(X f 3) 2. X2-18x + 81 (x:-q)(x-q) (1)' (X, ) z- Complete each square and write the resulting

More information

GCE AS. Mathematics. Mark Schemes. January 2007

GCE AS. Mathematics. Mark Schemes. January 2007 GCE AS Mathematics January 007 Mark Schemes Issued: April 007 NORTHERN IRELAND GENERAL CERTIFICATE OF SECONDARY EDUCATION (GCSE) AND NORTHERN IRELAND GENERAL CERTIFICATE OF EDUCATION (GCE) Introduction

More information

APPLICATION TO THE BINOMIAL SUMMATION OF A LAPLACIAN METHOD FOR THE EVALUATION OF DEFINITE INTEGRALS. Introduction.

APPLICATION TO THE BINOMIAL SUMMATION OF A LAPLACIAN METHOD FOR THE EVALUATION OF DEFINITE INTEGRALS. Introduction. E. C. MOLINA (New York - U. S. A) APPLICATION TO THE BINOMIAL SUMMATION OF A LAPLACIAN METHOD FOR THE EVALUATION OF DEFINITE INTEGRALS Introduction. The numerical evaluation of the incomplete Binomial

More information

PhysicsAndMathsTutor.com. GCE Edexcel GCE. Core Mathematics C2 (6664) January Mark Scheme (Results) Core Mathematics C2 (6664) Edexcel GCE

PhysicsAndMathsTutor.com. GCE Edexcel GCE. Core Mathematics C2 (6664) January Mark Scheme (Results) Core Mathematics C2 (6664) Edexcel GCE GCE Edexcel GCE Core Mathematics C (666) January 006 Mark Scheme (Results) Edexcel GCE Core Mathematics C (666) January 006 666 Core Mathematics C Mark Scheme. (a) +-5 + c = 0 or - + c = 0 c = A () (b)

More information

Mathematics Extension 1

Mathematics Extension 1 NORTH SYDNEY GIRLS HIGH SCHOOL 05 TRIAL HSC EXAMINATION Mathematics Etension General Instructions Reading Time 5 minutes Working Time hours Write using black or blue pen Black pen is preferred Board approved

More information

Developing a Distributed Java-based Speech Recognition Engine

Developing a Distributed Java-based Speech Recognition Engine The ITB Journal Volume 5 Issue 1 Article 2 2004 Developing a Distributed Java-based Speech Recognition Engine Tony Ayers Institute of Technology Blanchardstown, tony.ayers@itb.ie Brian Nolan Institute

More information

Sensible Heat and Enthalpy Calculations

Sensible Heat and Enthalpy Calculations Sensible Heat and Enthalpy Calculations Sensible Heat - The amount of heat that must be added when a substance undergoes a change in temperature from 298 K to an elevated temperature without a change in

More information

Binding Energy and Mass defect

Binding Energy and Mass defect Binding Energy and Mass defect Particle Relative Electric Charge Relative Mass Mass (kg) Charge (C) (u) Electron -1-1.60 x 10-19 5.485779 x 10-4 9.109390 x 10-31 Proton +1 +1.60 x 10-19 1.007276 1.672623

More information

Session 5 Heat Conduction in Cylindrical and Spherical Coordinates I

Session 5 Heat Conduction in Cylindrical and Spherical Coordinates I Session 5 Heat Conduction in Cylindrical and Spherical Coordinates I 1 Introduction The method of separation of variables is also useful in the determination of solutions to heat conduction problems in

More information

SAMPLE QUESTION PAPER MATHEMATICS CLASS XII :

SAMPLE QUESTION PAPER MATHEMATICS CLASS XII : SAMPLE QUESTION PAPER MATHEMATICS CLASS XII : 05-6 TYPOLOGY VSA ( M) L A I (4M) L A II (6M) MARKS %WEIGHTAGE Remembering 3, 6, 8, 9, 5 0 0% Understanding, 9, 0 4, 6 % Applications 4 3, 5, 6, 7, 0 9 9%

More information

Sixth Term Examination Papers 9475 MATHEMATICS 3

Sixth Term Examination Papers 9475 MATHEMATICS 3 Sixth Term Examination Papers 9475 MATHEMATICS 3 Morning WEDNESDAY 26 JUNE 2013 Time: 3 hours Additional Materials: Answer Booklet Formulae Booklet INSTRUCTIONS TO CANDIDATES Please read this page carefully,

More information

The Mathematics of Harmonic Oscillators

The Mathematics of Harmonic Oscillators Th Mhcs of Hronc Oscllors Spl Hronc Moon In h cs of on-nsonl spl hronc oon (SHM nvolvng sprng wh sprng consn n wh no frcon, you rv h quon of oon usng Nwon's scon lw: con wh gvs: 0 Ths s sos wrn usng h

More information

Background and Definitions...2. Legendre s Equation, Functions and Polynomials...4 Legendre s Associated Equation and Functions...

Background and Definitions...2. Legendre s Equation, Functions and Polynomials...4 Legendre s Associated Equation and Functions... Legendre Polynomials and Functions Reading Problems Outline Background and Definitions...2 Definitions...3 Theory...4 Legendre s Equation, Functions and Polynomials...4 Legendre s Associated Equation and

More information

Semantics and Pragmatics of NLP

Semantics and Pragmatics of NLP Semantics and Pragmatics of NLP Alex Ewan School of Informatics University of Edinburgh 28 January 2008 1 2 3 Taking Stock We have: Introduced syntax and semantics for FOL plus lambdas. Represented FOL

More information

Module 7 (Lecture 27) RETAINING WALLS

Module 7 (Lecture 27) RETAINING WALLS Module 7 (Lecture 27) RETAINING WALLS Topics 1.1 RETAINING WALLS WITH METALLIC STRIP REINFORCEMENT Calculation of Active Horizontal and vertical Pressure Tie Force Factor of Safety Against Tie Failure

More information

A Holder condition for Brownian local time

A Holder condition for Brownian local time J. Math. Kyoto Univ. 1- (196) 195-1. A Holder condition for Brownian local time By H. P. MCKEAN, JR.' (Communicated by Prof. K. Ito, November, 1961) Given a standard Brownian motion on l e beginning at,

More information

Uai~,ersily of Michigan, Ann Arbor, MI 48109, USA

Uai~,ersily of Michigan, Ann Arbor, MI 48109, USA Di~rete l~tatlueraafics 44(1983) 293--2'98 P/o,l'tll-Holland Pttblishing Company 293 A NOTE ON ABEL POLYNOMLALS LABELED FORESTS AND hooted Bruce E. SAGAN* Uai~,ersily of Michigan, Ann Arbor, MI 48109,

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

Calculating Forward Rate Curves Based on Smoothly Weighted Cubic Splines

Calculating Forward Rate Curves Based on Smoothly Weighted Cubic Splines Calculating Forward Rate Curves Based on Smoothly Weighted Cubic Splines February 8, 2017 Adnan Berberovic Albin Göransson Jesper Otterholm Måns Skytt Peter Szederjesi Contents 1 Background 1 2 Operational

More information

ACCELERATED LIFE MODELS WHEN THE STRESS IS NOT CONSTANT

ACCELERATED LIFE MODELS WHEN THE STRESS IS NOT CONSTANT KYBERNETIKA- VOLUME 26 (1990), NUMBER 4 ACCELERATED LIFE MODELS WHEN THE STRESS IS NOT CONSTANT VILIJANDAS BAGDONAVICIUS 1 The concept of a relation functional is defined and the accelerated life models

More information

Lecture 20. Chemical Potential

Lecture 20. Chemical Potential Lecture 20 Chemical Potential Reading: Lecture 20, today: Chapter 10, sections A and B Lecture 21, Wednesday: Chapter 10: 10 17 end 3/21/16 1 Pop Question 7 Boltzmann Distribution Two systems with lowest

More information

Example: Helium has an atomic number of 2. Every helium atom has two protons in its nucleus.

Example: Helium has an atomic number of 2. Every helium atom has two protons in its nucleus. 59 Atomic terms - ATOMIC NUMBER: The number of protons in the atomic nucleus. Each ELEMENT has the SAME NUMBER OF PROTONS in every nucleus. In neutral atoms, the number of ELECTRONS is also equal to the

More information

where F denoting the force acting on V through V, ν is the unit outnormal on V. Newton s law says (assume the mass is 1) that

where F denoting the force acting on V through V, ν is the unit outnormal on V. Newton s law says (assume the mass is 1) that Chapter 5 The Wave Equation In this chapter we investigate the wave equation 5.) u tt u = and the nonhomogeneous wave equation 5.) u tt u = fx, t) subject to appropriate initial and boundary conditions.

More information

Primitive Digraphs with the Largest Scrambling Index

Primitive Digraphs with the Largest Scrambling Index Primitive Digraph with the Larget Scrambling Index Mahmud Akelbek, Steve Kirkl 1 Department of Mathematic Statitic, Univerity of Regina, Regina, Sakatchewan, Canada S4S 0A Abtract The crambling index of

More information