Theoretische Festkörperphysik: Anwendungsbeispiel. (File Bsp_theofkp.pdf unter Vorlesung anklicken!

Size: px
Start display at page:

Download "Theoretische Festkörperphysik: Anwendungsbeispiel. (File Bsp_theofkp.pdf unter Vorlesung anklicken!"

Transcription

1 Theoretische Festkörperphysik: Anwendungsbeispiel (File Bsp_theofkp.pdf unter Vorlesung anklicken!) Vorlesung, Erlangen. WS 2008/2009

2 First-principles calculations in materials science??? Formation enthalpy H f of the B2 Phase for CoAl, NiAl, FeAl Jaguar XJ with Al-based car frame System H f [ev/atom] FeAl,B2 FeAl,B2 CoAl,B2 CoAl,B2 NiAl,B2 NiAl,B2 Exp. DFT Exp. DFT Exp. DFT -0, ,56-0, ,66 Exp.: P. Villars and M. Calvert, Experimental Handbook of Crystallographic Data (Materials Park, Ohio, 1991) Theo.: S. Müller. J. Phys.: Condens. Matter 15 (2003) R1429. mass reduced by ~ 200 kg (thanks to FORD Motor Company, Michigan, USA)

3 Modelling materials properties demands the consideration of huge configuration spaces TEM huge model systems Al-rich Al-Li: precursor δ T. Sato and A. Kamino, Mat. Sci. Eng. A 146 (1991) 161 T Prediction S. Müller, R. Podloucky, and W. Wolf, submitted temperature time!!! impossible to handle directly via DFT!!!

4 Electronic structure of materials (band structure, density of states ) Crystallographic atomic structure (relaxation, reconstruction, buckling ) Energetics (stability ) Activation barriers Density Functional Theory Nudge Elastic Band Method, Molecular Dynamics, Transition State Theory Vibronic properties (phonon spectra ) Dynamics (diffusion ) Ground state search in huge configuration spaces Multi-scale modeling (from atomic to mesoscopic scale) Short-range order Cluster Expansion Monte-Carlo Methods (UNCLE) Multi-site adsorption Segregation Nucleation Diffusion Precipitation

5 Precipitation in Al-rich Al-Zn alloys Quenching a solid solution into the two-phase region Formation of coherent Zn-precipitates: Coherent phase boundary calculated** experimental* 1000 Å Al x Zn (R. Ramlau and H. Löffler, phys. stat. sol. (a), 79, p.141 (1983)) * J. L. Murray, Bulletin of Alloy Phase Diagrams 4, 55 (1983). ** S. Müller et al., Europhys. Lett. 55, 33 (2001).

6 Treating long-range interactions: The mixed-space presentation Problem: Real-space CE fails to predict the energy of long-periodic coherent structures! Intrinsic fault of any finite Cluster Expansion: A n B n -Superlattice Ansatz: Range of interactions: H f = 0 for n Transform portion of interactions to reciprocal space Easiest to do for pair interactions Mixed-space form: H(σ) = Σ J(k) S(k,σ) 2 + Σ D f J f Π f k 3,4 body

7 Treating long-range interactions: The mixed-space presentation Solving the problem : J(k) = J CS (k) + J SR (k) Constituent Strain (CS): Contains the correct longperiodic superlattice limit Short-Ranged (SR) interactions that are ignored by J CS ( chemical part ) can be constructed from the equilibrium constituent strain

8 Coherency strain energy Epitaxial softening qal 0,6 Epitaxial Strain Energy : fcc-al Film (A) Epitaxial Strain Energy : Deform 0,5 (111) to the substrate lattice Deform toathe substrate lattice Film (A) EAepi (G,a) parameter and relax along G. epi (100) 0,4 (G,a) E q(a,g) = G A parameter a and relax along G. Coherency strain of q(a,g) = EAhydro (a) 0,3 EAhydro(a) GPdx-superlattices Cu1-x (201) Hydrostatic Deformation Energy : aal 0,2 Hydrostatic Deformation Energy : (110) Deform hydrostatically to the Substrate Deform hydrostatically to the 0,1 substrate lattice parameter a. Substrate 6,6 6,8 7,0 parameter 7,2 7,4 7,6 substrate lattice a. Elasticity theory: a Lattice parameter a [a.u.] Elasticity theory: a BB However: qharm q(a,g) (G) = 1 B qharm (G) = 1 - CC γγ(a,g) harm (G) Pd Cu C11 + γharm (G) B = 1/3 (C11 + 2C12 ): Bulk Modulus B = 1/ C12 ): Bulk Modulus = C(C 44 ½ (C11 C12): Elastic anisotropy parameter =γ C44 (G): ½ (C x12pd ): function Elastic anisotropy parameter 11 C Geometric of spherical angles harm γharm (G): Geometric function of spherical angles with l bl (a) Kl (G) = l Al (x) Kl (G) ECSeq (a,g) γ (a,g) = γharm (G) + ECSeq (x,g)

9 Treating long-range interactions: The mixed-space presentation E CS (σ) for any arbitrary structure σ can be calculated via This ansatz solves long-periodic superlattice problem! Mixed-Space Cluster Expansion (MSCE): Σ Σ k 3,4 body H(σ) = J(k) S(k,σ) 2 + D f J f Π f + E CS (σ) A. Zunger, NATO ASI on Statics and Dynamics of Alloy Phase Transformations (Plenum Press, New York, 1994), 361.

10 Size-shape-relation of precipitates Separate MSCE-Hamiltonians into two parts: Σ Σ k 3,4 body H(σ) = J(k) S(k,σ) 2 + D f J f Π f + E CS (σ) H = E chem + E CS (T 0) (N Zn = 2175) (S. Müller et al., Acta Mater. 48 (2000) 4007) Chemical part: compact shape Strain part: flat (111) layer: Softest direction in fcc-zn* * S. Müller et al., Phys. Rev. B 60, (1999).

11 fcc-zn precipitate: flattening along [111] 4248 Zn atoms (r p sphere = 25 Å)

12 Flattening along [111]: Instability von fcc-zn fcc-zn Density Of States DOS [a.u.] Energy [mev/atom] (c/a) [%] = ,8 0,9 1,0 1,1 1, a c (c/a) [%] hcp-zn E F DOS [a.u.] (c/a) [%] = 15 E(eV) G (S. Müller, L.-W. Wang, A. Zunger, C. Wolverton, Phys. Rev. B 60, (1999) ) E F E(eV)

13 Calculated coherent fcc-zn precipitates in Al-Zn as function of precipitate size and temperature 300K Temp. [K] 200K 30K a c Number of Zn-atoms

14 How do to kinetics in real time???

15 Bridging time scales Idea: Force selected atoms to exchange process Calculate corresponding simulation time afterwards Prerequisite: Calculation of energy change δe(i) for all possible atomic exchanges i (restriction to NN) From DFT calculations or experiment Energy B A δe(i) from MSCE (S. Müller, J. Phys.: Condens. Matter 15 (2003) R1429.)

16 Configuration-dependent activation barriers* L1 2 (Al 3 Li) (In collaboration with R. Podloucky, Univ. Wien, Austria, and W. Wolf, Materials Design, Le Mans, France) 0,8 Activation barrier [ev] 0,6 0,4 0,2 0,0 Al at Li-site Al at Al-site calc. of phonon spectra Diffusion coefficients as function of structure and temperature Trafo to real time 0,5 Activation barrier [ev] 0,4 0,3 0,2 0,1 +: no exp. parameters -: no transformation to real time because E = E(T) 0,0 Li at Li-site Li at Al-site (* calculated by the Nudge Elastic Band Method; R. Podloucky, Vienna)

17 Phonon spectra:al 31 Li Li migration (Walter Wolf, Materials Science, France) Relaxed Structure Al-vacancy Formation Li migration Al 31 Li Al 30 Li Al 30 Li

18 Configuration-dependent activation barriers* L1 2 (Al 3 Li) (In collaboration with R. Podloucky, Univ. Wien, Austria, and W. Wolf, Materials Design, Le Mans, France) Diffusion coefficient [m 2 /sec] 1e-11 1e-12 1e-13 1e-14 1e-15 Temperature [K] calc. of phonon spectra calculated Diffusion coefficients Bakker et al., 1990 Wen et al., 1980 as function of structure Costas, 1963 and temperature Verlinden and Gijbels, 1980 Trafo to real time T melt = 933K 1e : no exp. parameters -: no transformation to real time because E = E(T) 1000/T [K -1 ] (* calculated by the Nudge Elastic Band Method; R. Podloucky, Vienna)

19 Al-rich Size-shape relation of precipitates (no Al atoms are shown) Al-Li Al-Cu Al-Zn Percentage of energy parts nm 2 nm (T = 473K, t = 86.4 ks) (T = 373K, t=1.6*10 5 ks) S. Müller, W. Wolf, R. Podloucky, subm. J. Wang et al., Acta Mat. 53 (2005) 2759 E chem nm mean precipitate diameter [nm] mean precipitate diameter [nm] E chem E CS Å (T = 250K, t = 1.2 ks) S. Müller, J. Phys.: Condens. Matter 15 (2003) R1429 E chem E CS mean precipitate diameter [nm] (S. T. Müller, Sato and Advances A. Kamino, in Solid State Physics, T. J. Konno, ed. B. K. Kramer Hiraga, and (Springer, Berlin), R. Ramlau Vol. 44, and 415 H. Löffler, (2004).) Mat. Sci. Eng. A 146 (1991) 161 M. Kawasaki, Scripta Met. 44 (2001) 2303 phys. stat. sol. (a), 79, p.141 (1983))

20 Size vs. shape of precipitates in Al-Zn: Comparison between experiment and prediction a c Axial c/a ratio 1,0 0,8 0,6 0,4 0,2 T = 300K T = 200K (x = 0.068) (x = 0.138) exp.1 (T = 200K) exp.2 (T = 300K) exp.3 (T = 300K) exp.4 (T = 300K) exp.5 (T = 300K) theory (T = 300K) theory (T = 200K) Ref.1: J. Deguercy et al., Acta Metall. 30, 1921 (1982). Ref.2: G. Laslaz and P. Guyot, Acta Metall. 25, 277 (1977). Ref.3: E. Bubeck et al., Cryst. Res. Tech. 20, 97 (1985). Ref.4: V. Gerold, W. Siebke, and G. Tempus, Phys. Stat Sol. A 104, 141 (1987). Ref.5: M. Fumeron et al., Scripta Metall. 14, 189 (1980) Mean precipitate radius r m [nm] (S. Müller et al., Europhys. Lett. 55 (2001) 33)

21 Al-6.8% Zn: Simulation of aging process T = 373 K Aging time: 0.02 sec.

22 Reduce Temperature to T = 300K... T = 373 K Aging time: 20.0 sec.

23 END OF REAL TIME -SIMULATION T = 300 K Aging time: 40.0 sec.

24 Qualitative comparison with typical TEM-picture T = 300 K Aging time: 40.0 sec.

25 ZOOM: [111]-planes T = 300 K Aging time: 40.0 sec.

26 Al-Zn: Average diameter of Zn-precipitates as function of aging time (T = 250K) Time t [sec] log(d m ) [Å] our calc. slope = +1/ Mean precipitate diameter d m [Å] Power law: d m t α MSCE: α = 0.31 Ostwald-ripening: α = 1/ log(t) [sec] (S. Müller, L.-W. Wang, and A. Zunger, Model. Sim. Mater. Sci. Eng. 10 (2002) 131;

27 T = 200 K T = 300 K t = 30 sec t = 1 min

28 fcc-zn precipitates: A multi-scale example (c/a) [%] = E F E(eV) 60 Energy [mev/atom] fcc-zn hcp-zn 0,8 0,9 1,0 1,1 1, (c/a) [%]

First-principles growth kinetics and morphological evolution of Cu nanoscale particles in Al

First-principles growth kinetics and morphological evolution of Cu nanoscale particles in Al Acta Materialia 53 (2005) 2759 2764 www.actamat-journals.com First-principles growth kinetics and morphological evolution of Cu nanoscale particles in Al Jianwei Wang a, C. Wolverton b, Stefan Müller c,

More information

ELEMENTARY DIFFUSION PROCESSES IN AL-CU-ZN ALLOYS: AN AB INITIO STUDY

ELEMENTARY DIFFUSION PROCESSES IN AL-CU-ZN ALLOYS: AN AB INITIO STUDY ELEMENTARY DIFFUSION PROCESSES IN AL-CU-ZN ALLOYS: AN AB INITIO STUDY S. GRABOWSKI AND P. ENTEL Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universität Duisburg, 47048 Duisburg, Germany E-mail:

More information

STRONG CONFIGURATIONAL DEPENDENCE OF ELASTIC PROPERTIES OF A CU-ZR BINARY MODEL METALLIC GLASS

STRONG CONFIGURATIONAL DEPENDENCE OF ELASTIC PROPERTIES OF A CU-ZR BINARY MODEL METALLIC GLASS Chapter 3 STRONG CONFIGURATIONAL DEPENDENCE OF ELASTIC PROPERTIES OF A CU-ZR BINARY MODEL METALLIC GLASS We report the strong dependence of elastic properties on configurational changes in a Cu-Zr binary

More information

First-principles calculations of bulk and interfacial thermodynamic properties for fcc-based Al-Sc alloys

First-principles calculations of bulk and interfacial thermodynamic properties for fcc-based Al-Sc alloys PHYSICAL REVIEW B VOLUME 57, NUMBER 18 1 MAY 1998-II First-principles calculations of bulk and interfacial thermodynamic properties for fcc-based Al-Sc alloys Mark Asta, S. M. Foiles, and A. A. Quong*

More information

Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces

Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces Magnetism Coordination Small Ferromagnets Superlattices Basic properties of a permanent magnet Magnetization "the strength of the magnet" depends

More information

Calculation of the elastic energy of a solid solution

Calculation of the elastic energy of a solid solution Calculation of the elastic energy of a solid solution Volker Mohles, Barend Thijsse, Emmanuel Jannot To cite this version: Volker Mohles, Barend Thijsse, Emmanuel Jannot. Calculation of the elastic energy

More information

Cu-Au, Ag-Au, Cu-Ag and Ni-Au intermetallics: First-principles study of phase diagrams and structures

Cu-Au, Ag-Au, Cu-Ag and Ni-Au intermetallics: First-principles study of phase diagrams and structures Cu-Au, Ag-Au, Cu-Ag and Ni-Au intermetallics: First-principles study of phase diagrams and structures V. Ozoliņš, C. Wolverton, and Alex Zunger National Renewable Energy Laboratory, Golden, CO 841 (September

More information

Diffusion in multicomponent solids. Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI

Diffusion in multicomponent solids. Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI Diffusion in multicomponent solids nton Van der Ven Department of Materials Science and Engineering University of Michigan nn rbor, MI Coarse graining time Diffusion in a crystal Two levels of time coarse

More information

An EAM potential for the dynamical simulation of Ni-Al alloys

An EAM potential for the dynamical simulation of Ni-Al alloys J. At. Mol. Sci. doi: 10.4208/jams.022310.031210a Vol. 1, No. 3, pp. 253-261 August 2010 An EAM potential for the dynamical simulation of Ni-Al alloys Jian-Hua Zhang, Shun-Qing Wu, Yu-Hua Wen, and Zi-Zhong

More information

Publications W. Dieterich (after 2000)

Publications W. Dieterich (after 2000) Publications W. Dieterich (after 2000) (115) R. Kenzler, F. Eurich, P. Maass, B. Rinn, J. Schropp, E. Bohl, W. Dieterich Phase-separation in confined geometries: Solving the Cahn-Hilliard equation with

More information

Available online at Physics Procedia 15 (2011) Stability and Rupture of Alloyed Atomic Terraces on Epitaxial Interfaces

Available online at   Physics Procedia 15 (2011) Stability and Rupture of Alloyed Atomic Terraces on Epitaxial Interfaces Available online at www.sciencedirect.com Physics Procedia 15 (2011) 64 70 Stability and Rupture of Alloyed Atomic Terraces on Epitaxial Interfaces Michail Michailov Rostislaw Kaischew Institute of Physical

More information

Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions

Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions Susan B. Sinnott Department of Materials Science and Engineering Penn State University September 16, 2016

More information

T. Egami. Model System of Dense Random Packing (DRP)

T. Egami. Model System of Dense Random Packing (DRP) Introduction to Metallic Glasses: How they are different/similar to other glasses T. Egami Model System of Dense Random Packing (DRP) Hard Sphere vs. Soft Sphere Glass transition Universal behavior History:

More information

Obtaining Ising-like expansions for binary alloys from first principles

Obtaining Ising-like expansions for binary alloys from first principles INSTITUTE OF PHYSICS PUBLISHING MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING Modelling Simul. Mater. Sci. Eng. 1 (22) 685 76 PII: S965-393(2)4123-4 Obtaining Ising-like expansions for

More information

Density Functional Theory of the Interface between Solid and Superfluid Helium 4

Density Functional Theory of the Interface between Solid and Superfluid Helium 4 Density Functional Theory of the Interface between Solid and Superfluid Helium 4 Frédéric Caupin and Tomoki Minoguchi Laboratoire de Physique Statistique de l Ecole Normale Supérieure associé aux Universités

More information

COMPUTATIONAL INVESTIGATION OF THE EFFECT OF CLUSTER IMPACT ENERGY ON THE MICROSTRUCTURE OF FILMS GROWN BY CLUSTER DEPOSITION

COMPUTATIONAL INVESTIGATION OF THE EFFECT OF CLUSTER IMPACT ENERGY ON THE MICROSTRUCTURE OF FILMS GROWN BY CLUSTER DEPOSITION COMPUTATIONAL INVESTIGATION OF THE EFFECT OF CLUSTER IMPACT ENERGY ON THE MICROSTRUCTURE OF FILMS GROWN BY CLUSTER DEPOSITION AVINASH M. DONGARE, DEREK D. HASS, AND LEONID V. ZHIGILEI Department of Materials

More information

A theoretical study of stability, electronic, and optical properties of GeC and SnC

A theoretical study of stability, electronic, and optical properties of GeC and SnC JOURNAL OF APPLIED PHYSICS VOLUME 88, NUMBER 11 1 DECEMBER 2000 A theoretical study of stability, electronic, and optical properties of GeC and SnC Ravindra Pandey a) Department of Physics, Michigan Technological

More information

ATOMISTIC MODELING OF BORON ACTIVATION AND DIFFUSION IN STRAINED SIGE

ATOMISTIC MODELING OF BORON ACTIVATION AND DIFFUSION IN STRAINED SIGE ATOMISTIC MODELING OF BORON ACTIVATION AND DIFFUSION IN STRAINED SIGE Scott T. Dunham,, Jakyoung Song, and Chihak Ahn Dept. of Electrical Engineering, Dept. of Physics University of Washington, Box 35500,

More information

Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC

Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC Jin-Xun Liu, Hai-Yan Su, Da-Peng Sun, Bing-Yan Zhang, and Wei-Xue Li* State Key Laboratory of Catalysis, Dalian Institute

More information

Recent activities in TP C6:

Recent activities in TP C6: Recent activities in TP C6: Adsorption, diffusion, and reaction at MoO 3 and V 2 O 5 substrate K. Hermann, M. Gruber, and X. Shi Theory Department, Fritz-Haber-Institut, Berlin Sfb 546 Workshop, Schmöckwitz,

More information

Tight-binding Hamiltonians from Solids to Molecules

Tight-binding Hamiltonians from Solids to Molecules Tight-binding Hamiltonians from Solids to Molecules D.A. Papaconstantopoulos Department of Computational and Data Sciences George Mason University, Fairfax Collaborators M.J. Mehl, NRL A. Shabaev, GMU

More information

First-principles based design of Pt- and Pd-based catalysts for benzene hydrogenation

First-principles based design of Pt- and Pd-based catalysts for benzene hydrogenation 1 1 First-principles based design of Pt- and Pd-based catalysts for benzene hydrogenation Maarten K. Sabbe, Gonzalo Canduela, Marie- Françoise Reyniers, Guy B. Marin Introduction: benzene hydrogenation

More information

Fitting of accurate interatomic pair potentials for bulk metallic alloys using unrelaxed LDA energies

Fitting of accurate interatomic pair potentials for bulk metallic alloys using unrelaxed LDA energies PHYSICAL REVIEW B VOLUME 60, NUMBER 3 15 JULY 1999-I Fitting of accurate interatomic pair potentials for bulk metallic alloys using unrelaxed LDA energies L. G. Ferreira,* V. Ozoliņš, and Alex Zunger National

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters X. Lin 1,, J. C. Lu 1,, Y. Shao 1,, Y. Y. Zhang

More information

Tight-binding molecular dynamics study of palladium

Tight-binding molecular dynamics study of palladium PHYSICAL REVIEW B 79, 064107 2009 Tight-binding molecular dynamics study of palladium A. Shabaev and D. A. Papaconstantopoulos George Mason University, Fairfax, Virginia 22030, USA Received 24 September

More information

Molecular Dynamics Simulations of Fusion Materials: Challenges and Opportunities (Recent Developments)

Molecular Dynamics Simulations of Fusion Materials: Challenges and Opportunities (Recent Developments) Molecular Dynamics Simulations of Fusion Materials: Challenges and Opportunities (Recent Developments) Fei Gao gaofeium@umich.edu Limitations of MD Time scales Length scales (PBC help a lot) Accuracy of

More information

Quantum Monte Carlo Simulations of Exciton Condensates

Quantum Monte Carlo Simulations of Exciton Condensates Quantum Monte Carlo Simulations of Exciton Condensates J. Shumway a and D. M. Ceperley b a Dept. of Physics and Astronomy, Arizona State University, Tempe, AZ 8583 b Dept. of Physics, University of Illinois,

More information

Monte Carlo simulations of alloy segregation in PtAg octahedral nanoparticles

Monte Carlo simulations of alloy segregation in PtAg octahedral nanoparticles Monte Carlo simulations of alloy segregation in PtAg octahedral nanoparticles Louis C. Jones 6/8/12 Abstract Simulations were carried out to investigate phase segregation of insoluble alloy nanoparticles

More information

SMARTMET project: Towards breaking the inverse ductility-strength relation

SMARTMET project: Towards breaking the inverse ductility-strength relation SMARTMET project: Towards breaking the inverse ductility-strength relation B. Grabowski, C. Tasan SMARTMET ERC advanced grant 3.8 Mio Euro for 5 years (Raabe/Neugebauer) Adaptive Structural Materials group

More information

Upper Critical Dimension for Irreversible Cluster Nucleation and Growth. Abstract

Upper Critical Dimension for Irreversible Cluster Nucleation and Growth. Abstract Upper Critical Dimension for Irreversible Cluster Nucleation and Growth Feng Shi, Yunsic Shim, and Jacques G. Amar Department of Physics & Astronomy University of Toledo, Toledo, OH 43606 (Dated: December

More information

Introduction of XPS Absolute binding energies of core states Applications to silicone Outlook

Introduction of XPS Absolute binding energies of core states Applications to silicone Outlook Core level binding energies in solids from first-principles Introduction of XPS Absolute binding energies of core states Applications to silicone Outlook TO and C.-C. Lee, Phys. Rev. Lett. 118, 026401

More information

Supporting Information

Supporting Information Supporting Information Thermal Stability of Metal Nanocrystals: An Investigation of the Surface and Bulk Reconstructions of Pd Concave Icosahedra Kyle D. Gilroy, a,ϯ Ahmed O. Elnabawy, b,ϯ Tung-Han Yang,

More information

Structure Refinements of II-VI Semiconductor Nanoparticles based on PDF Measurements

Structure Refinements of II-VI Semiconductor Nanoparticles based on PDF Measurements Structure Refinements of II-VI Semiconductor Nanoparticles based on PDF Measurements Reinhard B. Neder Institut für Physik der kondensierten Materie Lehrstuhl für Kristallographie und Strukturphysik Universität

More information

First principles computer simulations of Li 10 GeP 2 S 12 and related lithium superionic conductors

First principles computer simulations of Li 10 GeP 2 S 12 and related lithium superionic conductors First principles computer simulations of Li 10 GeP 2 S 12 and related lithium superionic conductors N. A. W. Holzwarth Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, USA Introduction

More information

Ab initio Berechungen für Datenbanken

Ab initio Berechungen für Datenbanken J Ab initio Berechungen für Datenbanken Jörg Neugebauer University of Paderborn Lehrstuhl Computational Materials Science Computational Materials Science Group CMS Group Scaling Problem in Modeling length

More information

Structural and Optical Properties of ZnSe under Pressure

Structural and Optical Properties of ZnSe under Pressure www.stmjournals.com Structural and Optical Properties of ZnSe under Pressure A. Asad, A. Afaq* Center of Excellence in Solid State Physics, University of the Punjab Lahore-54590, Pakistan Abstract The

More information

Surface Complexes in Catalysis

Surface Complexes in Catalysis Surface Complexes in Catalysis David Karhánek Ústav organické technologie, VŠCHT Praha Institut für Materialphysik, Universität Wien XXXVII Symposium on Catalysis, Prague, October 7-8, 2005. Research Methodologies:

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2015 Supplementary Information Insights into the Synergistic Role of Metal-Lattice

More information

Kinetic Monte Carlo: from transition probabilities to transition rates

Kinetic Monte Carlo: from transition probabilities to transition rates Kinetic Monte Carlo: from transition probabilities to transition rates With MD we can only reproduce the dynamics of the system for 100 ns. Slow thermallyactivated processes, such as diffusion, cannot

More information

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23 1 Lecture contents Stress and strain Deformation potential Few concepts from linear elasticity theory : Stress and Strain 6 independent components 2 Stress = force/area ( 3x3 symmetric tensor! ) ij ji

More information

Les Houches School of Foam: Introduction to Coarsening

Les Houches School of Foam: Introduction to Coarsening Les Houches School of Foam: Introduction to Coarsening Andrew Belmonte The W. G. Pritchard Laboratories Department of Mathematics, Penn State University 1 What is Coarsening? (for a foam) Initial foam

More information

arxiv:cond-mat/ v1 17 Mar 1993

arxiv:cond-mat/ v1 17 Mar 1993 dvi file made on February 1, 2008 Angular Momentum Distribution Function of the Laughlin Droplet arxiv:cond-mat/9303030v1 17 Mar 1993 Sami Mitra and A. H. MacDonald Department of Physics, Indiana University,

More information

Prerequisites for reliable modeling with first-principles methods. P. Kratzer Fritz-Haber-Institut der MPG D Berlin-Dahlem, Germany

Prerequisites for reliable modeling with first-principles methods. P. Kratzer Fritz-Haber-Institut der MPG D Berlin-Dahlem, Germany Prerequisites for reliable modeling with first-principles methods P. Kratzer Fritz-Haber-Institut der MPG D-14195 Berlin-Dahlem, Germany Prerequisites for modeling (I) Issues to consider when applying

More information

EFFECTS OF STOICHIOMETRY ON POINT DEFECTS AND IMPURITIES IN GALLIUM NITRIDE

EFFECTS OF STOICHIOMETRY ON POINT DEFECTS AND IMPURITIES IN GALLIUM NITRIDE EFFECTS OF STOICHIOMETRY ON POINT DEFECTS AND IMPURITIES IN GALLIUM NITRIDE C. G. VAN DE WALLE AND J. E. NORTHRUP Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 930, USA E-mail: vandewalle@parc.com

More information

Derivation of TTT diagrams with kinetic Monte-Carlo simulations

Derivation of TTT diagrams with kinetic Monte-Carlo simulations Derivation of TTT diagrams with kinetic Monte-Carlo simulations A. Gupta, B. Dutta, T. Hickel, J. Neugebauer Department of Computational Materials Design Düsseldorf, Germany 15. September, 2016 BRITS Workshop,

More information

First principles computer simulations of Li 10 GeP 2 S 12 and related lithium superionic conductors*

First principles computer simulations of Li 10 GeP 2 S 12 and related lithium superionic conductors* First principles computer simulations of Li 10 GeP 2 S 12 and related lithium superionic conductors* N. A. W. Holzwarth Wake Forest University, Winston-Salem, NC, USA, 27109 Motivation and background information

More information

Surface stress and relaxation in metals

Surface stress and relaxation in metals J. Phys.: Condens. Matter 12 (2000) 5541 5550. Printed in the UK PII: S0953-8984(00)11386-4 Surface stress and relaxation in metals P M Marcus, Xianghong Qian and Wolfgang Hübner IBM Research Center, Yorktown

More information

Equilibrium state of a metal slab and surface stress

Equilibrium state of a metal slab and surface stress PHYSICAL REVIEW B VOLUME 60, NUMBER 23 15 DECEMBER 1999-I Equilibrium state of a metal slab and surface stress P. M. Marcus IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York

More information

Document Version Publisher s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Document Version Publisher s PDF, also known as Version of Record (includes final page, issue and volume numbers) Parametrization of modified embedded-atom-method potentials for Rh, Pd, Ir, and Pt based on density functional theory calculations, with applications to surface properties Beurden, van, P.; Kramer, G.J.

More information

Bulk Structures of Crystals

Bulk Structures of Crystals Bulk Structures of Crystals 7 crystal systems can be further subdivided into 32 crystal classes... see Simon Garrett, "Introduction to Surface Analysis CEM924": http://www.cem.msu.edu/~cem924sg/lecturenotes.html

More information

First Principles Calculation of Defect and Magnetic Structures in FeCo

First Principles Calculation of Defect and Magnetic Structures in FeCo Materials Transactions, Vol. 47, No. 11 (26) pp. 2646 to 26 Special Issue on Advances in Computational Materials Science and Engineering IV #26 The Japan Institute of Metals First Principles Calculation

More information

Defects and diffusion in metal oxides: Challenges for first-principles modelling

Defects and diffusion in metal oxides: Challenges for first-principles modelling Defects and diffusion in metal oxides: Challenges for first-principles modelling Karsten Albe, FG Materialmodellierung, TU Darmstadt Johan Pohl, Peter Agoston, Paul Erhart, Manuel Diehm FUNDING: ICTP Workshop

More information

The Magnetic Properties of Superparamagnetic Particles by a Monte Carlo Method

The Magnetic Properties of Superparamagnetic Particles by a Monte Carlo Method The Magnetic Properties of Superparamagnetic Particles by a Monte Carlo Method D. A. Dimitrov and G. M. Wysin Department of Physics Kansas State University Manhattan, KS 6656-261 (June 19, 1996) We develop

More information

Selectivity in the initial C-H bond cleavage of n-butane on PdO(101)

Selectivity in the initial C-H bond cleavage of n-butane on PdO(101) Supporting Information for Selectivity in the initial C-H bond cleavage of n-butane on PdO(101) Can Hakanoglu (a), Feng Zhang (a), Abbin Antony (a), Aravind Asthagiri (b) and Jason F. Weaver (a) * (a)

More information

Composition-dependent structural properties in ScGaN alloy films: A combined experimental and theoretical study

Composition-dependent structural properties in ScGaN alloy films: A combined experimental and theoretical study JOURNAL OF APPLIED PHYSICS 98, 123501 2005 Composition-dependent structural properties in ScGaN alloy films: A combined experimental and theoretical study Costel Constantin, Muhammad B. Haider, David Ingram,

More information

On Dynamic and Elastic Stability of Lanthanum Carbide

On Dynamic and Elastic Stability of Lanthanum Carbide Journal of Physics: Conference Series On Dynamic and Elastic Stability of Lanthanum Carbide To cite this article: B D Sahoo et al 212 J. Phys.: Conf. Ser. 377 1287 Recent citations - Theoretical prediction

More information

Supplementary Information for. Universal elastic-hardening-driven mechanical instability in α-quartz and quartz. homeotypes under pressure

Supplementary Information for. Universal elastic-hardening-driven mechanical instability in α-quartz and quartz. homeotypes under pressure Supplementary Information for Universal elastic-hardening-driven mechanical instability in α-quartz and quartz homeotypes under pressure Juncai Dong, Hailiang Zhu, and Dongliang Chen * Beijing Synchrotron

More information

Properties of Individual Nanoparticles

Properties of Individual Nanoparticles TIGP Introduction technology (I) October 15, 2007 Properties of Individual Nanoparticles Clusters 1. Very small -- difficult to image individual nanoparticles. 2. New physical and/or chemical properties

More information

ATOMISTIC MODELING OF DIFFUSION IN ALUMINUM

ATOMISTIC MODELING OF DIFFUSION IN ALUMINUM ATOMISTIC MODELING OF DIFFUSION IN ALUMINUM S. GRABOWSKI, K. KADAU and P. ENTEL Theoretische Physik, Gerhard-Mercator-Universität Duisburg, 47048 Duisburg, Germany (Received...) Abstract We present molecular-dynamics

More information

Modeling the sputter deposition of thin film photovoltaics using long time scale dynamics techniques

Modeling the sputter deposition of thin film photovoltaics using long time scale dynamics techniques Loughborough University Institutional Repository Modeling the sputter deposition of thin film photovoltaics using long time scale dynamics techniques This item was submitted to Loughborough University's

More information

for investigating Lars Heinke Fritz-Haber-Institute of the Max-Planck-Society, Berlin Jörg Kärger University Leipzig

for investigating Lars Heinke Fritz-Haber-Institute of the Max-Planck-Society, Berlin Jörg Kärger University Leipzig Using kinetic Monte Carlo simulations for investigating surface barriers in nanoporous materials Lars Heinke Fritz-Haber-Institute of the Max-Planck-Society, Berlin Jörg Kärger University Leipzig Com-Phys-09

More information

Oxidation of Germanium and Silicon surfaces (100): a comparative study through DFT methodology

Oxidation of Germanium and Silicon surfaces (100): a comparative study through DFT methodology IOP Conference Series: Materials Science and Engineering Oxidation of Germanium and Silicon surfaces (100): a comparative study through DFT methodology To cite this article: C Mastail et al 2012 IOP Conf.

More information

KINETICS OF OXIDE GROWTH ON METAL SURFACES

KINETICS OF OXIDE GROWTH ON METAL SURFACES KINETICS OF OXIDE GROWTH ON METAL SURFACES A. Vlad Faculty of Science, University of Oradea, RO-410087 Oradea, Romania Max-Planck-Institut für Metallforschung, D-70569, Stuttgart, Germany Abstract: A short

More information

IAP 2006: From nano to macro: Introduction to atomistic modeling techniques and application in a case study of modeling fracture of copper (1.

IAP 2006: From nano to macro: Introduction to atomistic modeling techniques and application in a case study of modeling fracture of copper (1. IAP 2006: From nano to macro: Introduction to atomistic modeling techniques and application in a case study of modeling fracture of copper (1.978 PDF) http://web.mit.edu/mbuehler/www/teaching/iap2006/intro.htm

More information

Structure of Surfaces

Structure of Surfaces Structure of Surfaces C Stepped surface Interference of two waves Bragg s law Path difference = AB+BC =2dsin ( =glancing angle) If, n =2dsin, constructive interference Ex) in a cubic lattice of unit cell

More information

Surface composition of ordered alloys: An off-stoichiometric effect

Surface composition of ordered alloys: An off-stoichiometric effect Downloaded from orbit.dtu.dk on: Dec 17, 2017 Surface composition of ordered alloys: An off-stoichiometric effect Ruban, Andrei Published in: Physical Review B (Condensed Matter and Materials Physics)

More information

Magnetic properties of spherical fcc clusters with radial surface anisotropy

Magnetic properties of spherical fcc clusters with radial surface anisotropy Magnetic properties of spherical fcc clusters with radial surface anisotropy D. A. Dimitrov and G. M. Wysin Department of Physics Kansas State University Manhattan, KS 66506-2601 (December 6, 1994) We

More information

Supporting information

Supporting information Supporting information Toward a Janus Cluster: Regiospecific Decarboxylation of Ag 44 (4- MBA) 30 @Ag Nanoparticles Indranath Chakraborty, Anirban Som, Tuhina Adit Maark, Biswajit Mondal, Depanjan Sarkar

More information

LEAD-CHALCOGENIDES UNDER PRESSURE: AB-INITIO STUDY

LEAD-CHALCOGENIDES UNDER PRESSURE: AB-INITIO STUDY International Conference on Ceramics, Bikaner, India International Journal of Modern Physics: Conference Series Vol. 22 (2013) 612 618 World Scientific Publishing Company DOI: 10.1142/S201019451301074X

More information

Igor A. Abrikosov Department of Physics, Chemistry, and Biology (IFM), Linköping University, Sweden

Igor A. Abrikosov Department of Physics, Chemistry, and Biology (IFM), Linköping University, Sweden Correlation between electronic structure, magnetism and physical properties of Fe-Cr alloys: ab initio modeling Igor A. Abrikosov Department of Physics, Chemistry, and Biology (IFM), Linköping University,

More information

Key concepts in Density Functional Theory (II)

Key concepts in Density Functional Theory (II) Kohn-Sham scheme and band structures European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Present Address: LPMCN Université

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Non-empirical prediction of impurity segregation in α-fe from first principles. Abstract

Non-empirical prediction of impurity segregation in α-fe from first principles. Abstract APS/123-QED Non-empirical prediction of impurity segregation in α-fe from first principles T. Tsuru, 1, C. Suzuki, 1 Y. Kaji, 1 and T. Tsukada 1 1 Nuclear Science and Engineering Directorate, Japan Atomic

More information

Theoretical approach to the Poisson s ratio behaviour during structural changes in metallic glasses. Abstract

Theoretical approach to the Poisson s ratio behaviour during structural changes in metallic glasses. Abstract Theoretical approach to the Poisson s ratio behaviour during structural changes in metallic glasses Eloi Pineda Dept. de Física i Enginyeria Nuclear, ESAB, Universitat Politècnica de Catalunya, Campus

More information

International Journal of Quantum Chemistry

International Journal of Quantum Chemistry International Journal of Quantum Chemistry First-principles calculation of second-order elastic constants and equations of state for Lithium Azide, LiN, and Lead Azide, Pb(N ) Journal: International Journal

More information

Monte-Carlo simulations of spinodal ordering and decomposition in compositionally modulated alloys

Monte-Carlo simulations of spinodal ordering and decomposition in compositionally modulated alloys Monte-Carlo simulations of spinodal ordering and decomposition in compositionally modulated alloys Michael Atzmon Department of Nuclear Engineering, The University of Michigan, Ann Arbor, Michigan 48109

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1: Electronic Kohn-Sham potential profile of a charged monolayer MoTe 2 calculated using PBE-DFT. Plotted is the averaged electronic Kohn- Sham potential

More information

Chemical reactions as network of rare events: Kinetic MonteCarlo

Chemical reactions as network of rare events: Kinetic MonteCarlo Chemical reactions as network of rare events: Kinetic MonteCarlo Extending the scale Length (m) 1 10 3 Potential Energy Surface: {Ri} 10 6 (3N+1) dimensional 10 9 E Thermodynamics: p, T, V, N continuum

More information

Site selectively excited luminescence and energy transfer of X 1 -Y 2 SiO 5 :Eu at nanometric scale

Site selectively excited luminescence and energy transfer of X 1 -Y 2 SiO 5 :Eu at nanometric scale JOURNAL OF APPLIED PHYSICS VOLUME 86, NUMBER 7 1 OCTOBER 1999 Site selectively excited luminescence and energy transfer of X 1 -Y 2 SiO 5 :Eu at nanometric scale M. Yin a) Groupe de Radiochimie, Institut

More information

ALMA: All-scale predictive design of heat management material structures

ALMA: All-scale predictive design of heat management material structures ALMA: All-scale predictive design of heat management material structures Version Date: 2015.11.13. Last updated 2015.12.02 Purpose of this document: Definition of a data organisation that is applicable

More information

High Temperature High Pressure Properties of Silica From Quantum Monte Carlo

High Temperature High Pressure Properties of Silica From Quantum Monte Carlo High Temperature High Pressure Properties of Silica From Quantum Monte Carlo K.P. Driver, R.E. Cohen, Z. Wu, B. Militzer, P. Lopez Rios, M. Towler, R. Needs, and J.W. Wilkins Funding: NSF, DOE; Computation:

More information

Binding energy of 2D materials using Quantum Monte Carlo

Binding energy of 2D materials using Quantum Monte Carlo Quantum Monte Carlo in the Apuan Alps IX International Workshop, 26th July to 2nd August 2014 The Apuan Alps Centre for Physics @ TTI, Vallico Sotto, Tuscany, Italy Binding energy of 2D materials using

More information

6. Computational Design of Energy-related Materials

6. Computational Design of Energy-related Materials 6. Computational Design of Energy-related Materials Contents 6.1 Atomistic Simulation Methods for Energy Materials 6.2 ab initio design of photovoltaic materials 6.3 Solid Ion Conductors for Fuel Cells

More information

Field Method of Simulation of Phase Transformations in Materials. Alex Umantsev Fayetteville State University, Fayetteville, NC

Field Method of Simulation of Phase Transformations in Materials. Alex Umantsev Fayetteville State University, Fayetteville, NC Field Method of Simulation of Phase Transformations in Materials Alex Umantsev Fayetteville State University, Fayetteville, NC What do we need to account for? Multi-phase states: thermodynamic systems

More information

Atomic Transport & Phase Transformations Lecture III-2

Atomic Transport & Phase Transformations Lecture III-2 Atomic Transport & Phase Transformations Lecture III-2 PD Dr. Nikolay Zotov zotov@imw.uni-stuttgart.de Atomic Transport & Phase Transformations Part III Lectures Solid State Reactions Short Description

More information

FEEDBACK CONTROL OF GROWTH RATE AND SURFACE ROUGHNESS IN THIN FILM GROWTH. Yiming Lou and Panagiotis D. Christofides

FEEDBACK CONTROL OF GROWTH RATE AND SURFACE ROUGHNESS IN THIN FILM GROWTH. Yiming Lou and Panagiotis D. Christofides FEEDBACK CONTROL OF GROWTH RATE AND SURFACE ROUGHNESS IN THIN FILM GROWTH Yiming Lou and Panagiotis D. Christofides Department of Chemical Engineering University of California, Los Angeles IEEE 2003 Conference

More information

Research Projects. Dr Martin Paul Vaughan. Research Background

Research Projects. Dr Martin Paul Vaughan. Research Background Research Projects Dr Martin Paul Vaughan Research Background Research Background Transport theory Scattering in highly mismatched alloys Density functional calculations First principles approach to alloy

More information

Surface effects in frustrated magnetic materials: phase transition and spin resistivity

Surface effects in frustrated magnetic materials: phase transition and spin resistivity Surface effects in frustrated magnetic materials: phase transition and spin resistivity H T Diep (lptm, ucp) in collaboration with Yann Magnin, V. T. Ngo, K. Akabli Plan: I. Introduction II. Surface spin-waves,

More information

Supporting Information

Supporting Information Supporting Information Controlled Growth of Ceria Nanoarrays on Anatase Titania Powder: A Bottom-up Physical Picture Hyun You Kim 1, Mark S. Hybertsen 2*, and Ping Liu 2* 1 Department of Materials Science

More information

Cherry-Pit Structures in Binary Immiscible Alloy Under Ion Irradiation

Cherry-Pit Structures in Binary Immiscible Alloy Under Ion Irradiation Cherry-Pit Structures in Binary Immiscible Alloy Under Ion Irradiation Shipeng Shu, Kenneth Tussey May 8, 2011 Abstract We study an special microstructure (matrix atom riched small clusters inside the

More information

Christian Ratsch, UCLA

Christian Ratsch, UCLA Strain Dependence of Microscopic Parameters and its Effects on Ordering during Epitaxial Growth Christian Ratsch, UCLA Institute for Pure and Applied Mathematics, and Department of Mathematics Collaborators:

More information

Lecture 2: Magnetic Anisotropy Energy (MAE)

Lecture 2: Magnetic Anisotropy Energy (MAE) Lecture : Magnetic Anisotropy Energy (MAE) 1. Magnetic anisotropy energy = f(t). Anisotropic magnetic moment f(t) [111] T=3 K Characteristic energies of metallic ferromagnets M (G) 5 3 [1] 1 binding energy

More information

All-Electron Full-Potential Calculations at O(ASA) Speed A Fata Morgana?

All-Electron Full-Potential Calculations at O(ASA) Speed A Fata Morgana? All-Electron Full-Potential Calculations at O(ASA) Speed A Fata Morgana? SFB 484, Teilprojekt D6 October 5, 2007 Outline 1 2 3 Outline 1 2 3 Outline 1 2 3 Outline 1 2 3 Back in the 1930 s... John C. Slater

More information

Reconstruction and intermixing in thin Ge layers on Si 001

Reconstruction and intermixing in thin Ge layers on Si 001 Reconstruction and intermixing in thin Ge layers on Si 001 L. Nurminen, 1 F. Tavazza, 2 D. P. Landau, 1,2 A. Kuronen, 1 and K. Kaski 1 1 Laboratory of Computational Engineering, Helsinki University of

More information

Structural Calculations phase stability, surfaces, interfaces etc

Structural Calculations phase stability, surfaces, interfaces etc Structural Calculations phase stability, surfaces, interfaces etc Keith Refson STFC Rutherford Appleton Laboratory September 19, 2007 Phase Equilibrium 2 Energy-Volume curves..................................................................

More information

1D lattice model for binary growth and surface relaxation

1D lattice model for binary growth and surface relaxation 1D lattice model for binary growth and surface relaxation To cite this article: Mario Einax and Wolfgang Dieterich 2008 New J. Phys. 10 103008 Recent citations - Colloquium: Cluster growth on surfaces:

More information

Energy barriers for diffusion on stepped Pt(1 1 1) surface

Energy barriers for diffusion on stepped Pt(1 1 1) surface Vacuum 54 (1999) 113 117 Energy barriers for diffusion on stepped Pt(1 1 1) surface F. Máca *, M. Kotrla, O.S. Trushin Institute of Physics, ASCR, Praha, Czech Republic Institute of Microelectronics, RASC,

More information

Computational Materials Physics

Computational Materials Physics Computational Materials Physics narrated by Hans L. Skriver Center for Atomic-scale Materials Physics CAMP-DTU Lyngby thanks to L. Vitos P. Söderlind S.I. Simak A. Ruban N. Rosengård J. Nørskov A. Niklasson

More information

Part 2: Basics of Cluster Expansions and Getting a Optimal Cluster Expansion. What is the coarse-graining Cluster Expansion concept?

Part 2: Basics of Cluster Expansions and Getting a Optimal Cluster Expansion. What is the coarse-graining Cluster Expansion concept? Part 2: Basics of Cluster Expansions and Getting a Optimal Cluster Expansion D.D. Johnson, Materials Science & Engineering Materials Computation Center, Summer School June 20, 2005 Present: Using DFT Structural

More information

Kinetics and Functionality of Cu-coordinated Pyridyl-porphyrin Supramolecular Self-assembly on a Au(111) Surface

Kinetics and Functionality of Cu-coordinated Pyridyl-porphyrin Supramolecular Self-assembly on a Au(111) Surface Kinetics and Functionality of Cu-coordinated Pyridyl-porphyrin Supramolecular Self-assembly on a Au(111) Surface LI, Yang, MPhil candidate, Physics, HKUST Supervisor, Prof. LIN, Nian 2012-08-08 Outline

More information