Diffusion in multicomponent solids. Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI

Size: px
Start display at page:

Download "Diffusion in multicomponent solids. Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI"

Transcription

1 Diffusion in multicomponent solids nton Van der Ven Department of Materials Science and Engineering University of Michigan nn rbor, MI

2 Coarse graining time Diffusion in a crystal Two levels of time coarse graining

3 Δ Γ = ν * exp kt Coarse graining time Diffusion in a crystal Two levels of time coarse graining Short-time coarse graining: transition state theory E - MD simulations - Harmonic approximation Vineyard, J. Phys. Chem. Solids 3, 121 (1957).

4 Coarse graining time Diffusion in a crystal Two levels of time coarse graining Short-time coarse graining: transition state theory Δ Γ = ν * exp kt E - MD simulations - Harmonic approximation second level of coarse graining that leads to Fick s law J = D C Green-Kubo Kinetic coefficients derived from fluctuations at equilibrium Vineyard, J. Phys. Chem. Solids 3, 121 (1957). Zwanzig, nnu. Rev. Phys. Chem. 16, 67 (1965).

5 Interstitial diffusion C diffusion in bcc Iron (steel) Li diffusion in transition metal oxide host O diffusion on Pt-(111) surface In all examples, diffusion occurs on a rigid lattice which is externally imposed by a host or substrate

6 Example of interstitial diffusion

7 Irreversible thermodynamics: interstitial diffusion of one component J = L µ D = L dµ dc J = D C

8 Notation M = number of lattice sites N = number of diffusing atoms v s = volume per lattice site x = N/M C=x/v s

9 Interstitial diffusion: one component Kubo-Green relations (linear response statistical mechanics) D = L Θ Thermodynamic factor Kinetic coefficient L = Θ = 1 (2d)tMv s kt µ C N i=1 ( ) Δ r R i t 2 R. Gomer, Rep. Prog. Phys. 53, 917 (1990)/. Van der Ven, G. Ceder, Handbook of Materials Modeling, chapt. 1.17, Ed. S. Yip, Springer (2005).

10 Trajectories Δ r R j t ( ) Δ r R i t ( ) D J = 1 2d ( )t 1 N N i=1 ( ) Δ r R i t 2

11 More familiar form D = D J ~ Θ Thermodynamic factor ~ Θ = µ kt ln x Self diffusion coefficient D J = 1 2d ( )t 1 N N i=1 ( ) Δ r R i t 2 R. Gomer, Rep. Prog. Phys. 53, 917 (1990)/

12 Common approximation D Thermodynamic factor = ~ D * Θ ~ Θ = µ kt ln x Tracer diffusion coefficient D* = ( ΔR i ( t) ) 2 ( 2d)t R. Gomer, Rep. Prog. Phys. 53, 917 (1990)/

13 ~ D = D J Θ Diffusion coefficient at 300 K Thermodynamic factor Θ. Van der Ven, G. Ceder, M. sta, P.D. Tepesch, Phys Rev. 64 (2001)

14 Interstitial diffusion (two components) C & N diffusion in bcc Iron (steel) Li & Na diffusion in transition metal oxide host O & S diffusion on Pt-(111) surface In all examples, diffusion occurs on a rigid lattice which is externally imposed by a host or substrate

15 Diffusion of two species on a lattice J = L µ L µ J = L µ L µ D = L Θ D D D D = L L L L µ C µ C µ C µ C J = D C D C J = D C D C

16 lternative factorization = x kt x kt x kt x kt L L L L D D D D µ µ µ µ ~ ~ ~ ~ ( ) ( ) ( )tm d t R t R L j i ij 2 ~ Δ Δ = ξ ξ ς ς r r Kubo-Green. Van der Ven, G. Ceder, Handbook of Materials Modeling, chapt. 1.17, Ed. S. Yip, Springer (2005)..R. llnatt,.. Lidiard, tomic Transport in Solids (Cambridge Univ. Press, 1993).

17 Kinetic coefficients (fcc lattice in dilute vacancy limit, ideal solution) ( ) ( ) ( )tm d t R t R L j i ij 2 ~ Δ Δ = ξ ξ ς ς r r

18 Diffusion in an alloy: substitutional diffusion Not interstitial diffusion Instead, diffusing atoms form the lattice Dilute concentration of vacancies

19 Thermodynamic driving forces for substitutional diffusion J = L ~ µ L ~ µ J = L ~ µ L ~ µ ~ µ ~ µ = µ µ V = µ µ V. Van der Ven, G. Ceder, Handbook of Materials Modeling, chapt. 1.17, Ed. S. Yip, Springer (2005).

20 Textbook treatment of substitional diffusion Not Rigorous J = L ~ µ L ~ µ J = L ~ µ L ~ µ

21 Textbook treatment of substitional diffusion µ V Traditional = 0 dµ V Not Rigorous = 0 Gibbs-Duhem x dµ x dµ = 0 J = L ~ µ L ~ µ J = L ~ µ L ~ µ ssume vacancy concentration in equilibrium everywhere + J J = D = D C C

22 Textbook treatment of substitional diffusion µ V J J Traditional = 0 = D = D dµ V C C Not Rigorous = 0 Gibbs-Duhem x dµ x dµ = 0 J = L ~ µ L ~ µ J = L ~ µ L ~ µ + ssume vacancy concentration in equilibrium everywhere J J = D = D Rigorous C C D D C C

23 Lattice frame and laboratory frame of reference lattice m V m ( J J ) v = V J = V + Fluxes in the laboratory frame ~ J = J + xjv ~ J = J + x J V

24 Lattice frame and laboratory frame of reference J + x J J V = W ~ ~ = D C V C lattice m V m ( J J ) v = V J = V + ~ W Drift = D D Fluxes in the laboratory frame ~ J = J + xjv ~ J = J + x J V Interdiffusion ~ D = x D + x D

25 Rigorous treatment J J = D = D C C D D C C

26 Rigorous treatment J J = D = D C C D D C C Diagonalize the D-matrix Yields a mode corresponding to (a) density relaxation (b) interdiffusion D D D D = E λ E λ K. W. Kehr, et al, Phys. Rev. 39, 4891 (1989)

27 Physical meaning of modes λ+ and λ-

28 Physical meaning of modes λ + and λ - Density fluctuations relax with a time constant of λ + K. W. Kehr, et al, Phys. Rev. 39, 4891 (1989)

29 Physical meaning of modes λ + and λ - Density fluctuations relax with a time constant of λ + Compositional inhomogeneities decay with a time constant of λ K. W. Kehr, et al, Phys. Rev. 39, 4891 (1989)

30 Comparisons of different treatments Random alloy Traditional and rigorous treatment are equivalent only when Γ =Γ Γ =10xΓ Γ =100xΓ

31 Example: Li x CoO 2

32 Intercalation Oxide as Cathode in Rechargeable Lithium attery LixCoO2

33 First-Principles (Density Functional Theory) Cluster Expansions Fit V α, V β, V γ, to first-principles energies ( ) F σ = V + V σ + V σ σ + V σ σ σ +... o α i β j k γ l m n i j, k l, m, n Monte Carlo Z = exp σ F ( σ ) k T

34

35 First principles energies (LD) of different lithium-vacancy configurations. Van der Ven, et al, Phys. Rev. 58 (6), p (1998).

36 Cluster expansion for Li x CoO 2 ( ),,, E σ = V + V σ + V σ σ + V σ σ σ +... o i i i j i j i j k i j k i i, j i, j, k. Van der Ven, et al, Phys. Rev. 58 (6), p (1998).

37 Calculated Li x CoO 2 phase diagram. Van der Ven, et al, Phys. Rev. 58 (6), p (1998).

38 Calculated phase diagram Experimental phase diagram Reimers, Dahn, J.Electrochem. Soc, (1992) Ohzuku, Ueda, J. Electrochem. Soc. (1994) matucci et al, J. Electrochem. Soc. (1996)

39 Predicted phases confirmed experimentally Confirmed experimentally with TEM Y. Shao-Horn, S. Levasseur, F. Weill, C. Delmas, J. Electrochem. Soc. 150 (2003), 366

40 Predicted phases confirmed experimentally Confirmed experimentally by Z. Chen, Z. Lu, J.R. Dahn J. Electrochem. Soc. 149, 1604 (2002) Confirmed experimentally with TEM Y. Shao-Horn, S. Levasseur, F. Weill, C. Delmas, J. Electrochem. Soc. 150 (2003), 366

41 Calculated phase diagram? Experimental phase diagram Reimers, Dahn, J.Electrochem. Soc, (1992) Ohzuku, Ueda, J. Electrochem. Soc. (1994) matucci et al, J. Electrochem. Soc. (1996) M. Menetrier et al J. Mater Chem. 9, 1135 (1999)

42 Effect of metal insulator transition Holes in the valence band localize in space C.. Marianetti et al, Nature Materials, 3, 627 (2004). LD & GG fails to accurately describe localized electronic states

43 Diffusion Fick s Law J = D C

44 Interstitial diffusion and configurational disorder Kubo-Green relations D = D J ~ Θ Thermodynamic factor ~ Θ = µ kt ln x Self diffusion coefficient D J = 1 2d ( )t 1 N N i=1 ( ) Δ r R i t 2

45 Individual hops: Transition state theory ΔE Γ = ν * exp Δ kt E

46 Kinetically resolved activation barrier ΔE kra = E activated state 1 ( 2 E 1 + E ) 2 ΔE barrier = ΔE kra + 1 ( 2 E final E initial ). Van der Ven, G. Ceder, M. sta, P.D. Tepesch, Phys Rev. 64 (2001)

47 Migration mechanism in Li x CoO 2 Lithium Cobalt Oxygen Single vacancy hop mechanism Divacancy hop Mechanism

48 Lithium Single vacancy hop Divacancy hop Cobalt Oxygen

49 Many types of hop possibilities in the lithium plane

50 Migration barriers depend configuration and concentration Single-vacancy mechanism Divacancy mechanism

51 Local Cluster expansion for divacancy migration barrier

52 Calculated diffusion coefficient (First Principles cluster expansion + kinetic Monte Carlo) D = Θ D J Diffusion coefficient at 300 K Thermodynamic factor Θ. Van der Ven, G. Ceder, M. sta, P.D. Tepesch, Phys Rev. 64 (2001)

53 vailable migration mechanisms for each lithium ion Channels into a divacancy Number of vacancies around lithium Channels into isolated vacancies

54 Diffusion occurs with a divacancy mechanism

55 Diffusion and phase transformations in l-li alloys Dark field TEM. Kalogeridis, J. Pesieka, E. Nembach, cta Mater 47 (1999) 1953 Dark field in situ TEM, peak aged l-li specimen under full load H. Rosner, W. Liu, E. Nembach, Phil Mag, 79 (1999) 2935

56 fcc l-li alloy inary cluster expansion σ i σ i = +1 = 1 Li at site i l at site i Fit to LD energies of 70 different l-li arrangements on fcc ( ),,, E σ = V + V σ + V σ σ + V σ σ σ +... o i i i j i j i j k i j k i i, j i, j, k. Van der Ven, G. Ceder, Phys. Rev. 71, (2005)

57 Calculated thermodynamic and kinetic properties of l-li alloy First principles cluster expansion + Monte Carlo. Van der Ven, G. Ceder, Phys. Rev. 71, (2005)

58 Expand environment dependence of vacancy formation energy Local cluster expansion* (perturbation to binary cluster expansion) Fit to 23 vacancy LD formation energies in different l-li arrangements (107 atom supercells). σ i σ i = +1 = 1 Li at site i l at site i. Van der Ven, G. Ceder, Phys. Rev. 71, (2005)

59 Equilibrium vacancy concentration (Monte Carlo applied to cluster expansion). Van der Ven, G. Ceder, Phys. Rev. 71, (2005)

60 Vacancy surrounds itself by l Short range order around a vacancy 750 Kelvin. Van der Ven, G. Ceder, Phys. Rev. 71, (2005)

61 Vacancies reside on lithium sublattice in L Kelvin Li l

62 Migration barriers for lithium and aluminum differ by ~150 mev l barriers Li barriers Calculated (LD) in 107 atom supercells v * l Hz v * Li Hz

63 Calculated interdiffusion coefficient Li l. Van der Ven, G. Ceder, Phys. Rev. Lett. 94, (2005).

64 Hop mechanisms

65 Frequency of hop angles between successive hops. Van der Ven, G. Ceder, Phys. Rev. Lett. 94, (2005).

66 Conclusion Green-Kubo formalism yields rigorous expressions for diffusion coefficients Discussed diffusion formalism for both interstitial and substitutional diffusion Intriguing hop mechanisms in multicomponent solids that can depend on ordering Thermodynamics plays a crucial role!

3.320 Lecture 23 (5/3/05)

3.320 Lecture 23 (5/3/05) 3.320 Lecture 23 (5/3/05) Faster, faster,faster Bigger, Bigger, Bigger Accelerated Molecular Dynamics Kinetic Monte Carlo Inhomogeneous Spatial Coarse Graining 5/3/05 3.320 Atomistic Modeling of Materials

More information

Kinetic lattice Monte Carlo simulations of diffusion processes in Si and SiGe alloys

Kinetic lattice Monte Carlo simulations of diffusion processes in Si and SiGe alloys Kinetic lattice Monte Carlo simulations of diffusion processes in Si and SiGe alloys, Scott Dunham Department of Electrical Engineering Multiscale Modeling Hierarchy Configuration energies and transition

More information

First-principles investigation of phase stability in Li x CoO 2

First-principles investigation of phase stability in Li x CoO 2 PHYSICAL REVIEW B VOLUME 58, NUMBER 6 1 AUGUST 1998-II First-principles investigation of phase stability in Li x CoO 2 A. Van der Ven, M. K. Aydinol, and G. Ceder Department of Materials Science and Engineering,

More information

Introduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5

Introduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5 Diffusion MSE 201 Callister Chapter 5 1 Goals: Diffusion - how do atoms move through solids? Fundamental concepts and language Diffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities Diffusion

More information

DIFFUSION IN SOLIDS. IE-114 Materials Science and General Chemistry Lecture-5

DIFFUSION IN SOLIDS. IE-114 Materials Science and General Chemistry Lecture-5 DIFFUSION IN SOLIDS IE-114 Materials Science and General Chemistry Lecture-5 Diffusion The mechanism by which matter is transported through matter. It is related to internal atomic movement. Atomic movement;

More information

of Long-Term Transport

of Long-Term Transport Atomistic Modeling and Simulation of Long-Term Transport Phenomena in Nanomaterials K.G. Wang, M. and M. Ortiz Virginia Polytechnic Institute and State University Universidad de Sevilla California Institute

More information

3.320: Lecture 19 (4/14/05) Free Energies and physical Coarse-graining. ,T) + < σ > dµ

3.320: Lecture 19 (4/14/05) Free Energies and physical Coarse-graining. ,T) + < σ > dµ 3.320: Lecture 19 (4/14/05) F(µ,T) = F(µ ref,t) + < σ > dµ µ µ ref Free Energies and physical Coarse-graining T S(T) = S(T ref ) + T T ref C V T dt Non-Boltzmann sampling and Umbrella sampling Simple

More information

Long-Term Atomistic Simulation of Hydrogen Diffusion in Metals

Long-Term Atomistic Simulation of Hydrogen Diffusion in Metals Long-Term Atomistic Simulation of Hydrogen Diffusion in Metals K.G. Wang 1, M. and M. Ortiz 2 Universidad de Sevilla 1 Virginia Polytechnic Institute and State University 2 California Institute of Technology

More information

A Thermodynamic Density-Functional Theory of Static and Dynamic Correlations in Complex Solids

A Thermodynamic Density-Functional Theory of Static and Dynamic Correlations in Complex Solids A Thermodynamic Density-Functional Theory of Static and Dynamic Correlations in Complex Solids NSF-DMR/ITR Workshop and Review University of Illinois, 17-19 June 2004 Duane D. Johnson Subhradip Gosh* (analytic

More information

Extrinsic Point Defects: Impurities

Extrinsic Point Defects: Impurities Extrinsic Point Defects: Impurities Substitutional and interstitial impurities Sol solutions, solubility limit Entropy of ing, eal solution model Enthalpy of ing, quasi-chemical model Ideal and regular

More information

TiC 2 : A New Two Dimensional Sheet beyond MXenes

TiC 2 : A New Two Dimensional Sheet beyond MXenes Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supplementary Information (SI) TiC 2 : A New Two Dimensional Sheet beyond MXenes Tianshan Zhao,

More information

Long-Term Atomistic Simulation of Heat and Mass Transport

Long-Term Atomistic Simulation of Heat and Mass Transport Long-Term Atomistic Simulation of Heat and Mass Transport Kevin G. Wang 1, Mauricio Ponga 2, Michael Ortiz 2 1 Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University

More information

Jahn-Teller mediated ordering in layered Li x MO 2 compounds

Jahn-Teller mediated ordering in layered Li x MO 2 compounds PHYSICAL REVIEW B, VOLUME 63, 144107 Jahn-Teller mediated ordering in layered Li x MO 2 compounds M. E. Arroyo y de Dompablo, C. Marianetti, A. Van der Ven, and G. Ceder Department of Material Science

More information

Protocols for studying intercalation electrodes materials: Part II: Potentiodynamic Cycling with Galvanostatic Acceleration (PCGA)

Protocols for studying intercalation electrodes materials: Part II: Potentiodynamic Cycling with Galvanostatic Acceleration (PCGA) Electrochemistry - Application note n 2 Protocols for studying intercalation electrodes materials: Part II: Potentiodynamic Cycling with Galvanostatic Acceleration (PCGA) Available instruments for the

More information

Kinetics of Anatase Electrodes: The Role of Ordering, Anisotropy, and Shape Memory Effects

Kinetics of Anatase Electrodes: The Role of Ordering, Anisotropy, and Shape Memory Effects pubs.acs.org/cm Kinetics of Anatase Electrodes: The Role of Ordering, Anisotropy, and Shape Memory Effects Anna A. Belak, Yizhou Wang, and Anton Van der Ven* Department of Materials Science and Engineering,

More information

Atomic Resolution of Lithium Ions in LiCoO 2

Atomic Resolution of Lithium Ions in LiCoO 2 LBNL-52373 Submitted to Nature Materials Atomic Resolution of Lithium Ions in LiCoO 2 Yang Shao-Horn 1,2, Laurence Croguennec 2, Claude Delmas 2, Chris Nelson 3 & Michael A. O Keefe 3 1 Department of Mechanical

More information

Electrochemical synthesis and properties of CoO 2, the x = 0 phase of the A x CoO 2 systems (A = Li, Na)

Electrochemical synthesis and properties of CoO 2, the x = 0 phase of the A x CoO 2 systems (A = Li, Na) Journal of Applied Physics 103, 07C902 (2008) Proceedings of 52nd Magnetism and Magnetic Materials Conference Electrochemical synthesis and properties of CoO 2, the x = 0 phase of the A x CoO 2 systems

More information

Long-Term Atomistic Simulation of Hydrogen Diffusion in Metals

Long-Term Atomistic Simulation of Hydrogen Diffusion in Metals Long-Term Atomistic Simulation of Hydrogen Diffusion in Metals Kevin Wang (1), Pilar Ariza (2), and Michael Ortiz (3) (1) Department of Aerospace and Ocean Engineering Virginia Polytechnic Institute and

More information

Kinetic Monte Carlo (KMC)

Kinetic Monte Carlo (KMC) Kinetic Monte Carlo (KMC) Molecular Dynamics (MD): high-frequency motion dictate the time-step (e.g., vibrations). Time step is short: pico-seconds. Direct Monte Carlo (MC): stochastic (non-deterministic)

More information

Concept of the chemical potential and the activity of elements

Concept of the chemical potential and the activity of elements Concept of the chemical potential and the activity of elements Gibb s free energy, G is function of temperature, T, pressure, P and amount of elements, n, n dg G G (T, P, n, n ) t particular temperature

More information

Surface Physics Surface Diffusion. Assistant: Dr. Enrico Gnecco NCCR Nanoscale Science

Surface Physics Surface Diffusion. Assistant: Dr. Enrico Gnecco NCCR Nanoscale Science Surface Physics 008 8. Surface Diffusion Assistant: Dr. Enrico Gnecco NCCR Nanoscale Science Random-Walk Motion Thermal motion of an adatom on an ideal crystal surface: - Thermal excitation the adatom

More information

Steady-state diffusion is diffusion in which the concentration of the diffusing atoms at

Steady-state diffusion is diffusion in which the concentration of the diffusing atoms at Chapter 7 What is steady state diffusion? Steady-state diffusion is diffusion in which the concentration of the diffusing atoms at any point, x, and hence the concentration gradient at x, in the solid,

More information

Major Concepts Lecture #11 Rigoberto Hernandez. TST & Transport 1

Major Concepts Lecture #11 Rigoberto Hernandez. TST & Transport 1 Major Concepts Onsager s Regression Hypothesis Relaxation of a perturbation Regression of fluctuations Fluctuation-Dissipation Theorem Proof of FDT & relation to Onsager s Regression Hypothesis Response

More information

Computational Structure Analysis of Multicomponent Oxides. Yoyo Hinuma

Computational Structure Analysis of Multicomponent Oxides. Yoyo Hinuma Computational Structure Analysis of Multicomponent Oxides by Yoyo Hinuma Submitted to the Department of Materials Science and Engineering in partial fulfillment of the requirements for the degree of Doctor

More information

Module 16. Diffusion in solids II. Lecture 16. Diffusion in solids II

Module 16. Diffusion in solids II. Lecture 16. Diffusion in solids II Module 16 Diffusion in solids II Lecture 16 Diffusion in solids II 1 NPTEL Phase II : IIT Kharagpur : Prof. R. N. Ghosh, Dept of Metallurgical and Materials Engineering Keywords: Micro mechanisms of diffusion,

More information

Monte-Carlo simulations of spinodal ordering and decomposition in compositionally modulated alloys

Monte-Carlo simulations of spinodal ordering and decomposition in compositionally modulated alloys Monte-Carlo simulations of spinodal ordering and decomposition in compositionally modulated alloys Michael Atzmon Department of Nuclear Engineering, The University of Michigan, Ann Arbor, Michigan 48109

More information

Kinetics. Rate of change in response to thermodynamic forces

Kinetics. Rate of change in response to thermodynamic forces Kinetics Rate of change in response to thermodynamic forces Deviation from local equilibrium continuous change T heat flow temperature changes µ atom flow composition changes Deviation from global equilibrium

More information

CHAPTER 4 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS

CHAPTER 4 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS 4-1 CHAPTER 4 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Vacancies and Self-Interstitials 4.1 In order to compute the fraction of atom sites that are vacant in copper at 1357 K, we must employ Equation

More information

Diffusion in Dilute Alloys

Diffusion in Dilute Alloys Chapter 3 Diffusion in Dilute Alloys Our discussion of the atomistic mechanisms for diffusion has been confined to the situations where the diffusing species is chemically identical to the host atom. We

More information

Drift-Diffusion of Highly Mobile Dopants in CdTe

Drift-Diffusion of Highly Mobile Dopants in CdTe The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application www..org, ISSN 1862-4138; 25-28 Drift-Diffusion of Highly Mobile Dopants in Te H. Wolf,*,1 F. Wagner, 1

More information

It is known that the chemical potential of lithium ion in the cathode material can be expressed as:

It is known that the chemical potential of lithium ion in the cathode material can be expressed as: Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supplementary material For Li/Li + /Li x M a X b cell with cathode material presenting

More information

The Atomic and Electronic Structure Changes Upon Delithiation of LiCoO 2 : From First Principles Calculations

The Atomic and Electronic Structure Changes Upon Delithiation of LiCoO 2 : From First Principles Calculations Int. J. Electrochem. Sci., 7 (2012) 9390-9400 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org The Atomic and Electronic Structure Changes Upon Delithiation of LiCoO 2 : From First

More information

6. Computational Design of Energy-related Materials

6. Computational Design of Energy-related Materials 6. Computational Design of Energy-related Materials Contents 6.1 Atomistic Simulation Methods for Energy Materials 6.2 ab initio design of photovoltaic materials 6.3 Solid Ion Conductors for Fuel Cells

More information

MSE 360 Exam 1 Spring Points Total

MSE 360 Exam 1 Spring Points Total MSE 360 Exam 1 Spring 011 105 Points otal Name(print) ID number No notes, books, or information stored in calculator memories may be used. he NCSU academic integrity policies apply to this exam. As such,

More information

Supporting information for. Direct imaging of kinetic pathways of atomic diffusion in. monolayer molybdenum disulfide

Supporting information for. Direct imaging of kinetic pathways of atomic diffusion in. monolayer molybdenum disulfide Supporting information for Direct imaging of kinetic pathways of atomic diffusion in monolayer molybdenum disulfide Jinhua Hong,, Yuhao Pan,, Zhixin Hu, Danhui Lv, Chuanhong Jin, *, Wei Ji, *, Jun Yuan,,*,

More information

Li ion migration in Li 3 PO 4 electrolytes: Effects of O vacancies and N substitutions. Winston-Salem, North Carolina 27106, USA

Li ion migration in Li 3 PO 4 electrolytes: Effects of O vacancies and N substitutions. Winston-Salem, North Carolina 27106, USA 75 Downloaded 22 Dec 28 to 52.7.52.46. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp ECS Transactions, 3 (26) 75-82 (28).49/.35379 The Electrochemical Society

More information

Modeling the sputter deposition of thin film photovoltaics using long time scale dynamics techniques

Modeling the sputter deposition of thin film photovoltaics using long time scale dynamics techniques Loughborough University Institutional Repository Modeling the sputter deposition of thin film photovoltaics using long time scale dynamics techniques This item was submitted to Loughborough University's

More information

Cherry-Pit Structures in Binary Immiscible Alloy Under Ion Irradiation

Cherry-Pit Structures in Binary Immiscible Alloy Under Ion Irradiation Cherry-Pit Structures in Binary Immiscible Alloy Under Ion Irradiation Shipeng Shu, Kenneth Tussey May 8, 2011 Abstract We study an special microstructure (matrix atom riched small clusters inside the

More information

Coarse-graining molecular dynamics in crystalline solids

Coarse-graining molecular dynamics in crystalline solids in crystalline solids Xiantao Li Department of Mathematics Penn State University. July 19, 2009. General framework Outline 1. Motivation and Problem setup 2. General methodology 3. The derivation of the

More information

Supporting Online Material (1)

Supporting Online Material (1) Supporting Online Material The density functional theory (DFT) calculations were carried out using the dacapo code (http://www.fysik.dtu.dk/campos), and the RPBE (1) generalized gradient correction (GGA)

More information

Part 2: Basics of Cluster Expansions and Getting a Optimal Cluster Expansion. What is the coarse-graining Cluster Expansion concept?

Part 2: Basics of Cluster Expansions and Getting a Optimal Cluster Expansion. What is the coarse-graining Cluster Expansion concept? Part 2: Basics of Cluster Expansions and Getting a Optimal Cluster Expansion D.D. Johnson, Materials Science & Engineering Materials Computation Center, Summer School June 20, 2005 Present: Using DFT Structural

More information

Lithium Diffusion in Graphitic Carbon: Supporting Information

Lithium Diffusion in Graphitic Carbon: Supporting Information thium Diffusion in Graphitic Carbon: Supporting Information Kristin Persson, 1,2,*,+ Vijay A. Sethuraman, 1,3,* Laurence J. Hardwick, 1,4,* Yoyo Hinuma, 2,5 Ying Shirley Meng, 2,5 Anton van der Ven, 6

More information

Field Method of Simulation of Phase Transformations in Materials. Alex Umantsev Fayetteville State University, Fayetteville, NC

Field Method of Simulation of Phase Transformations in Materials. Alex Umantsev Fayetteville State University, Fayetteville, NC Field Method of Simulation of Phase Transformations in Materials Alex Umantsev Fayetteville State University, Fayetteville, NC What do we need to account for? Multi-phase states: thermodynamic systems

More information

MECH 6661 lecture 9/1 Dr. M. Medraj Mech. Eng. Dept. - Concordia University

MECH 6661 lecture 9/1 Dr. M. Medraj Mech. Eng. Dept. - Concordia University Thermodynamic Models Multicomponent Systems Outline Thermodynamic Models Regular Solution Models Sublattice Model Associated Solutions Cluster Variation Model Quasichemical Model Cluster Expansion Model

More information

Title atoms in a graphite intercalation c. Citation PHYSICAL REVIEW B (2008), 78(21)

Title atoms in a graphite intercalation c. Citation PHYSICAL REVIEW B (2008), 78(21) Title First-principles approach to chemic atoms in a graphite intercalation c Author(s) Toyoura, Kazuaki; Koyama, Yukinori; Oba, Fumiyasu; Tanaka, Isao Citation PHYSICAL REVIEW B (28), 78(21) Issue Date

More information

Supplementary Figure 1 Nano-beam electron diffraction Nano-beam electron diffraction

Supplementary Figure 1 Nano-beam electron diffraction Nano-beam electron diffraction Supplementary Figure 1 Nano-beam electron diffraction Nano-beam electron diffraction (NBED) patterns of different Pd-W nanoparticles on OMCs (Pd-W/OMCs), all exhibiting a body-centered cubic (bcc) microstructure.

More information

The Phase Field Method

The Phase Field Method The Phase Field Method To simulate microstructural evolutions in materials Nele Moelans Group meeting 8 June 2004 Outline Introduction Phase Field equations Phase Field simulations Grain growth Diffusion

More information

Molecular Dynamics and Accelerated Molecular Dynamics

Molecular Dynamics and Accelerated Molecular Dynamics Molecular Dynamics and Accelerated Molecular Dynamics Arthur F. Voter Theoretical Division National Laboratory Lecture 3 Tutorial Lecture Series Institute for Pure and Applied Mathematics (IPAM) UCLA September

More information

A Combined Computational/Experimental Study on LiNi 1/3 Co 1/3 Mn 1/3 O 2

A Combined Computational/Experimental Study on LiNi 1/3 Co 1/3 Mn 1/3 O 2 3676 Chem. Mater. 2003, 15, 3676-3682 A Combined Computational/Experimental Study on LiNi 1/3 Co 1/3 Mn 1/3 O 2 B. J. Hwang,, Y. W. Tsai, D. Carlier, and G. Ceder*, Department of Chemical Engineering,

More information

III. Reaction Kinetics Lecture 15: Ion Adsorption and Intercalation

III. Reaction Kinetics Lecture 15: Ion Adsorption and Intercalation III. Reaction Kinetics Lecture 15: Ion Adsorption and Intercalation MIT Student 1. Surface adsorption/intercalation of neutral species Adsorption on a surface or intercalation in a bulk solid involves

More information

ATOMISTIC MODELING OF BORON ACTIVATION AND DIFFUSION IN STRAINED SIGE

ATOMISTIC MODELING OF BORON ACTIVATION AND DIFFUSION IN STRAINED SIGE ATOMISTIC MODELING OF BORON ACTIVATION AND DIFFUSION IN STRAINED SIGE Scott T. Dunham,, Jakyoung Song, and Chihak Ahn Dept. of Electrical Engineering, Dept. of Physics University of Washington, Box 35500,

More information

Lecture 1: Atomic Diffusion

Lecture 1: Atomic Diffusion Part IB Materials Science & Metallurgy H. K. D. H. Bhadeshia Course A, Metals and Alloys Lecture 1: Atomic Diffusion Mass transport in a gas or liquid generally involves the flow of fluid (e.g. convection

More information

Available online at Physics Procedia 15 (2011) Stability and Rupture of Alloyed Atomic Terraces on Epitaxial Interfaces

Available online at   Physics Procedia 15 (2011) Stability and Rupture of Alloyed Atomic Terraces on Epitaxial Interfaces Available online at www.sciencedirect.com Physics Procedia 15 (2011) 64 70 Stability and Rupture of Alloyed Atomic Terraces on Epitaxial Interfaces Michail Michailov Rostislaw Kaischew Institute of Physical

More information

Materials for Civil and Construction Engineers CHAPTER 2. Nature of Materials

Materials for Civil and Construction Engineers CHAPTER 2. Nature of Materials Materials for Civil and Construction Engineers CHAPTER 2 Nature of Materials Bonds 1. Primary Bond: forms when atoms interchange or share electrons in order to fill the outer (valence) shells like noble

More information

Kinetic Monte Carlo: from transition probabilities to transition rates

Kinetic Monte Carlo: from transition probabilities to transition rates Kinetic Monte Carlo: from transition probabilities to transition rates With MD we can only reproduce the dynamics of the system for 100 ns. Slow thermallyactivated processes, such as diffusion, cannot

More information

EMA5001 Lecture 2 Interstitial Diffusion & Fick s 1 st Law. Prof. Zhe Cheng Mechanical & Materials Engineering Florida International University

EMA5001 Lecture 2 Interstitial Diffusion & Fick s 1 st Law. Prof. Zhe Cheng Mechanical & Materials Engineering Florida International University EMA500 Lecture Interstitial Diffusion & Fick s st Law Prof. Zhe Cheng Mechanical & Materials Engineering Florida International University Substitutional Diffusion Different possibilities Exchange Mechanis

More information

An EAM potential for the dynamical simulation of Ni-Al alloys

An EAM potential for the dynamical simulation of Ni-Al alloys J. At. Mol. Sci. doi: 10.4208/jams.022310.031210a Vol. 1, No. 3, pp. 253-261 August 2010 An EAM potential for the dynamical simulation of Ni-Al alloys Jian-Hua Zhang, Shun-Qing Wu, Yu-Hua Wen, and Zi-Zhong

More information

First-principles study of the structure of stoichiometric and Mn-deficient MnO 2

First-principles study of the structure of stoichiometric and Mn-deficient MnO 2 Journal of Solid State Chemistry 173 (2003) 462 475 First-principles study of the structure of stoichiometric and Mn-deficient MnO 2 D. Balachandran, a D. Morgan, a, G. Ceder, a and A. van de Walle b a

More information

6.5 mm. ε = 1%, r = 9.4 mm. ε = 3%, r = 3.1 mm

6.5 mm. ε = 1%, r = 9.4 mm. ε = 3%, r = 3.1 mm Supplementary Information Supplementary Figures Gold wires Substrate Compression holder 6.5 mm Supplementary Figure 1 Picture of the compression holder. 6.5 mm ε = 0% ε = 1%, r = 9.4 mm ε = 2%, r = 4.7

More information

Chapter 4. The Effect of Elastic Softening and Cooperativity on the Fragility of

Chapter 4. The Effect of Elastic Softening and Cooperativity on the Fragility of Chapter 4 The Effect of Elastic Softening and Cooperativity on the Fragility of Glass-Forming Metallic Liquids Key words: Amorphous metals, Shear transformation zones, Ultrasonic measurement, Compression

More information

Why thermodynamics for materials?

Why thermodynamics for materials? Why thermodynamics for materials? Example p 2mkT T For = 300 K, = 1 atm ~ 10 8 site -1 s -1 p p Requires 10-12 atm to keep a clean surface clean; surface can also lose atoms Example Thermodynamic potentials

More information

Appendix 4. Appendix 4A Heat Capacity of Ideal Gases

Appendix 4. Appendix 4A Heat Capacity of Ideal Gases Appendix 4 W-143 Appendix 4A Heat Capacity of Ideal Gases We can determine the heat capacity from the energy content of materials as a function of temperature. The simplest material to model is an ideal

More information

Defects and diffusion in metal oxides: Challenges for first-principles modelling

Defects and diffusion in metal oxides: Challenges for first-principles modelling Defects and diffusion in metal oxides: Challenges for first-principles modelling Karsten Albe, FG Materialmodellierung, TU Darmstadt Johan Pohl, Peter Agoston, Paul Erhart, Manuel Diehm FUNDING: ICTP Workshop

More information

Molecular Dynamics Saddle Search Adaptive Kinetic Monte Carlo

Molecular Dynamics Saddle Search Adaptive Kinetic Monte Carlo Molecular Dynamics Saddle Search Adaptive Kinetic Monte Carlo Samuel T. Chill and Graeme Henkelman Department of Chemistry and the Institute for Computational Engineering and Sciences, The University of

More information

Stochastic equations for thermodynamics

Stochastic equations for thermodynamics J. Chem. Soc., Faraday Trans. 93 (1997) 1751-1753 [arxiv 1503.09171] Stochastic equations for thermodynamics Roumen Tsekov Department of Physical Chemistry, University of Sofia, 1164 Sofia, ulgaria The

More information

Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene and carbon tetrachloride

Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene and carbon tetrachloride - 1 - PLMMP 2016, Kyiv Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene and carbon tetrachloride Jadran Vrabec Tatjana Janzen, Gabriela Guevara-Carrión,

More information

MODELING EXCESS HEAT IN THE FLEISCHMANN-PONS EXPERIMENT

MODELING EXCESS HEAT IN THE FLEISCHMANN-PONS EXPERIMENT Theory (I) Session 2 O_1 MODELING EXCESS HEAT IN THE FLEISCHMANN-PONS EXPERIMENT Peter L. Hagelstein 1 and Irfan U. Chaudhary 2 1 Massachusetts Institute of Technology, Cambridge, MA, USA 2 University

More information

N = N A Pb A Pb. = ln N Q v kt. = kt ln v N

N = N A Pb A Pb. = ln N Q v kt. = kt ln v N 5. Calculate the energy for vacancy formation in silver, given that the equilibrium number of vacancies at 800 C (1073 K) is 3.6 10 3 m 3. The atomic weight and density (at 800 C) for silver are, respectively,

More information

Potentials, periodicity

Potentials, periodicity Potentials, periodicity Lecture 2 1/23/18 1 Survey responses 2 Topic requests DFT (10), Molecular dynamics (7), Monte Carlo (5) Machine Learning (4), High-throughput, Databases (4) NEB, phonons, Non-equilibrium

More information

Diffusion. Diffusion = the spontaneous intermingling of the particles of two or more substances as a result of random thermal motion

Diffusion. Diffusion = the spontaneous intermingling of the particles of two or more substances as a result of random thermal motion Diffusion Diffusion = the spontaneous intermingling of the particles of two or more substances as a result of random thermal motion Fick s First Law Γ ΔN AΔt Γ = flux ΔN = number of particles crossing

More information

Sodium Trimer Ordering on Na x CoO 2 Surface. C. Chou 1,4. Taiwan, R.O.C. R.O.C. FL 32611, U.S.A.

Sodium Trimer Ordering on Na x CoO 2 Surface. C. Chou 1,4. Taiwan, R.O.C. R.O.C. FL 32611, U.S.A. Sodium Trimer Ordering on Na x CoO 2 Surface Woei Wu Pai 1,*, S. H. Huang 1,2, Ying S. Meng 3, Y. C. Chao 1, C. H. Lin 1, H. L. Liu 2, F. C. Chou 1,4 1 Center for Condensed Matter Sciences, National Taiwan

More information

Binding energy of 2D materials using Quantum Monte Carlo

Binding energy of 2D materials using Quantum Monte Carlo Quantum Monte Carlo in the Apuan Alps IX International Workshop, 26th July to 2nd August 2014 The Apuan Alps Centre for Physics @ TTI, Vallico Sotto, Tuscany, Italy Binding energy of 2D materials using

More information

Effective dynamics for the (overdamped) Langevin equation

Effective dynamics for the (overdamped) Langevin equation Effective dynamics for the (overdamped) Langevin equation Frédéric Legoll ENPC and INRIA joint work with T. Lelièvre (ENPC and INRIA) Enumath conference, MS Numerical methods for molecular dynamics EnuMath

More information

Plan for concentrated course. Computer Calculations of Equilibria and Phase Diagrams. Schedule for seminar room. Lectures

Plan for concentrated course. Computer Calculations of Equilibria and Phase Diagrams. Schedule for seminar room. Lectures Computer Calculations of Equilibria and Phase Diagrams Bo Sundman Understanding thermodynamic models and using them to determine model parameters to fit theoretical and experimental data Plan for concentrated

More information

Igor A. Abrikosov Department of Physics, Chemistry, and Biology (IFM), Linköping University, Sweden

Igor A. Abrikosov Department of Physics, Chemistry, and Biology (IFM), Linköping University, Sweden Correlation between electronic structure, magnetism and physical properties of Fe-Cr alloys: ab initio modeling Igor A. Abrikosov Department of Physics, Chemistry, and Biology (IFM), Linköping University,

More information

Modified Maxwell-Garnett equation for the effective transport coefficients in inhomogeneous media

Modified Maxwell-Garnett equation for the effective transport coefficients in inhomogeneous media J. Phys. A: Math. Gen. 3 (998) 7227 7234. Printed in the UK PII: S0305-4470(98)93976-2 Modified Maxwell-Garnett equation for the effective transport coefficients in inhomogeneous media Juris Robert Kalnin

More information

A First-Principles Approach to Studying the Thermal Stability of Oxide Cathode Materials

A First-Principles Approach to Studying the Thermal Stability of Oxide Cathode Materials Chem. Mater. 2007, 19, 543-552 543 A First-Principles Approach to Studying the Thermal Stability of Oxide Cathode Materials L. Wang, T. Maxisch, and G. Ceder* Department of Materials Science and Engineering,

More information

High Temperature Superconductivity In Pd-[H(D)] X System

High Temperature Superconductivity In Pd-[H(D)] X System High Temperature Superconductivity In Pd-[H(D)] X System K.P. Sinha Department of Physics, Indian Institute of Science, Bangalore 560 012 D-105, Sterling Residence, Dollar colony, Bangalore 560 094 e.mail:

More information

Computational Study of ( ) and ( ) *

Computational Study of ( ) and ( ) * Computational Study of ( ) and ( ) * Jason Howard, advisor Natalie Holzwarth Department of Physics, Wake Forest University, Winston-Salem, NC USA Li Sn O S Li2SnO3 Li2SnS3 *Supported by NSF grants DMR-1105485

More information

ATOMISTIC MODELING OF DIFFUSION IN ALUMINUM

ATOMISTIC MODELING OF DIFFUSION IN ALUMINUM ATOMISTIC MODELING OF DIFFUSION IN ALUMINUM S. GRABOWSKI, K. KADAU and P. ENTEL Theoretische Physik, Gerhard-Mercator-Universität Duisburg, 47048 Duisburg, Germany (Received...) Abstract We present molecular-dynamics

More information

Diffusion. Diffusion. Diffusion in Solid Materials

Diffusion. Diffusion. Diffusion in Solid Materials Atoms movements in materials Diffusion Movement of atoms in solids, liquids and gases is very important Eamples: Hardening steel, chrome-plating, gas reactions, Si wafers.. etc. We will study: Atomic mechanisms

More information

Effective Temperatures in Driven Systems near Jamming

Effective Temperatures in Driven Systems near Jamming Effective Temperatures in Driven Systems near Jamming Andrea J. Liu Department of Physics & Astronomy University of Pennsylvania Tom Haxton Yair Shokef Tal Danino Ian Ono Corey S. O Hern Douglas Durian

More information

Section 7: Diffusion. Jaeger Chapter 4. EE143 Ali Javey

Section 7: Diffusion. Jaeger Chapter 4. EE143 Ali Javey Section 7: Diffusion Jaeger Chapter 4 Surface Diffusion: Dopant Sources (a) Gas Source: AsH 3, PH 3, B 2 H 6 (b) Solid Source BN Si BN Si (c) Spin-on-glass SiO 2 +dopant oxide (d) Liquid Source. Fick s

More information

MODELING DEFECT MEDIATED DOPANT DIFFUSION IN SILICON. by Brian T. Puchala

MODELING DEFECT MEDIATED DOPANT DIFFUSION IN SILICON. by Brian T. Puchala MODELING DEFECT MEDIATED DOPANT DIFFUSION IN SILICON by Brian T. Puchala A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Materials Science and

More information

STRONG CONFIGURATIONAL DEPENDENCE OF ELASTIC PROPERTIES OF A CU-ZR BINARY MODEL METALLIC GLASS

STRONG CONFIGURATIONAL DEPENDENCE OF ELASTIC PROPERTIES OF A CU-ZR BINARY MODEL METALLIC GLASS Chapter 3 STRONG CONFIGURATIONAL DEPENDENCE OF ELASTIC PROPERTIES OF A CU-ZR BINARY MODEL METALLIC GLASS We report the strong dependence of elastic properties on configurational changes in a Cu-Zr binary

More information

SCIENCE CHINA Physics, Mechanics & Astronomy

SCIENCE CHINA Physics, Mechanics & Astronomy SCIENCE CHINA Physics, Mechanics & Astronomy Article April 2012 Vol.55 No.4: 614 618 doi: 10.1007/s11433-012-4679-8 Stability and diffusion properties of self-interstitial atoms in tungsten: a first-principles

More information

First principles computer simulations of Li 10 GeP 2 S 12 and related lithium superionic conductors*

First principles computer simulations of Li 10 GeP 2 S 12 and related lithium superionic conductors* First principles computer simulations of Li 10 GeP 2 S 12 and related lithium superionic conductors* N. A. W. Holzwarth Wake Forest University, Winston-Salem, NC, USA, 27109 Motivation and background information

More information

Identifying the rate-limiting processes at the Li-air cathode

Identifying the rate-limiting processes at the Li-air cathode Identifying the rate-limiting processes at the Li-air cathode Tejs Vegge Risø DTU, National Laboratory for Sustainable Energy and Center for Atomic-scale Materials Design, Technical University of Denmark

More information

Kinetic Monte Carlo (KMC) Kinetic Monte Carlo (KMC)

Kinetic Monte Carlo (KMC) Kinetic Monte Carlo (KMC) Kinetic Monte Carlo (KMC) Molecular Dynamics (MD): high-frequency motion dictate the time-step (e.g., vibrations). Time step is short: pico-seconds. Direct Monte Carlo (MC): stochastic (non-deterministic)

More information

Basic Concepts of Electrochemistry

Basic Concepts of Electrochemistry ELECTROCHEMISTRY Electricity-driven Chemistry or Chemistry-driven Electricity Electricity: Chemistry (redox): charge flow (electrons, holes, ions) reduction = electron uptake oxidation = electron loss

More information

Analysis of the simulation

Analysis of the simulation Analysis of the simulation Marcus Elstner and Tomáš Kubař January 7, 2014 Thermodynamic properties time averages of thermodynamic quantites correspond to ensemble averages (ergodic theorem) some quantities

More information

Conduction Modeling in Mixed Alkali Borate Glasses

Conduction Modeling in Mixed Alkali Borate Glasses International Journal of Pure & Applied Physics ISSN 0973-1776 Vol.1 No.2 (2005), pp. 191-197 Research India Publications http://www.ripub lication.com/ijpap.htm Conduction Modeling in Mixed Alkali Borate

More information

Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions

Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions Susan B. Sinnott Department of Materials Science and Engineering Penn State University September 16, 2016

More information

Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models

Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1, Christian Ratsch 1,2, David Shao 1 and Dimitri Vvedensky 3 1 UCLA,

More information

arxiv: v2 [cond-mat.mtrl-sci] 18 Nov 2016

arxiv: v2 [cond-mat.mtrl-sci] 18 Nov 2016 arxiv:169.74v2 [cond-mat.mtrl-sci] 18 Nov 216 A comparison of Redlich-Kister polynomial and cubic spline representations of the chemical potential in phase field computations Gregory H. Teichert a, N.

More information

Atoms, electrons and Solids

Atoms, electrons and Solids Atoms, electrons and Solids Shell model of an atom negative electron orbiting a positive nucleus QM tells that to minimize total energy the electrons fill up shells. Each orbit in a shell has a specific

More information

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Physics of disordered materials Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Course plan Familiarity with the basic description of disordered structures

More information

Density Functional Theory: from theory to Applications

Density Functional Theory: from theory to Applications Density Functional Theory: from theory to Applications Uni Mainz May 27, 2012 Large barrier-activated processes time-dependent bias potential extended Lagrangian formalism Basic idea: during the MD dynamics

More information

Application of Linear, Nonlinear and Nanoscale Conductivity Spectroscopy for Characterising Ion Transport in Solid Electrolytes

Application of Linear, Nonlinear and Nanoscale Conductivity Spectroscopy for Characterising Ion Transport in Solid Electrolytes Application of Linear, Nonlinear and Nanoscale Conductivity Spectroscopy for Characterising Ion Transport in Solid Electrolytes Bernhard Roling Institute of Physical Chemistry and Collaborative Research

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information