Atomic Transport & Phase Transformations Lecture III-2

Size: px
Start display at page:

Download "Atomic Transport & Phase Transformations Lecture III-2"

Transcription

1 Atomic Transport & Phase Transformations Lecture III-2 PD Dr. Nikolay Zotov

2 Atomic Transport & Phase Transformations Part III Lectures Solid State Reactions Short Description 1 Introduction, Interfaces; Interface Thermodynamics 2 Nucleation 3 Growth 4 Transformation kinetics, Coarsening 5 Eutectic decomposition, Spinodal decomposition 6 Summary/Overview 2

3 Lecture III-2 Outline Fluctuations and Correlations Clusters Homogeneous nucleation Heterogeneous nucleation 3

4 Crystallisation l a + l How is formed the a-phase? 4

5 Fluctuations and Correlations Thermodynamic view Atomistic view r o Diffusion of particles D ~ kt/h Fluctutaions of density, variation of velocities Instantaneous density r = r(r,t) Dr = r(r,t) - <r> r = r(r o,t) 5

6 Fluctuations and Correlations C(t corr ) = <r(r o,t)r(r o,t+t corr )> t Time-correlation function 6

7 Fluctuations and Correlations C(t corr ) 0 C(t corr ) = 0 (Loss of memory ) 7

8 Fluctuations and Correlations G(r,t) = <r(r +r,t)r(r,0)> V Van-Hoff Correlation function G(r,t) = G s (r,t) + G d (r,t) G s Self-Correlation function G d Distict correlation function G(r,0) = <r(r +r,0)r(r,0)> V G(r) = d(r) + r o g(r) Space-Correlation function r o Average number density (at/å 3 ) G( r ) = r o ; g(r) 1 g(r) Pair correlation function For isotropic systems: g(r) = N(r)/4pr 2 Dr g(r) 4prr 2 dr = N 8

9 Fluctuations and Correlations Clusters Short-range order (SRO) in the melt Holland-Moritz (2002) 9

10 Clusters Dynamic Processes Diffusion ( Long-range diffusion) Caging (a) Bonding of atoms (b), (c) Atom attachement/detachment (d), (e) Formation of clusters (g), (h) Gerlach et al. (2006) 10

11 pentagonale Dipyramide Clusters 6 fcc 13 Icosahedron 13 Aguado & Jarrold (2010) 11

12 Nucleation Theories Classical nucleation theories Gibbs (Helmholz) energy of small clusters; Continuous description (length scale much larger than atomic sizes). Kinetic nucleation theories Collisions between clusters of different sizes; Rate equations based on attachment/detachment fluxes. Atomistic approaches Potentials between atoms (molecules); Computer simulations (Monte Carlo, Phase field); Density functional theory: 12

13 Nucleation (Solidification) g L = h L Ts L g S = h S Ts S Gibbs-Energy of the melt per unit volume Gibbs-Energie of the solid per unit volume Dg V = g S g L = Dh TDs Dg V > 0 T > T m Dg V < 0 T < T m Nucleation Formation of stable (condensed-matter) clusters 13

14 Nucleation Homogeneous nucleation L-S Heterogeneous nucleation L L-S S-S ß Humphreys and Hatherly (2004) 14

15 Homogeneous Nucleation (Solidification) DG = G S G L = V S Dg V + A S g; L Approximations : spherical solid particle; No strain S S A S = 4pR 2, V S = (4/3)pR 3 DG = (4/3)pR 3 Dg V + 4pR 2 g; T > T m Unstable clusters - Energy minimization by remelting of clusters T < T m Stable Unstable clusters 15

16 T < T m, Dg V < 0 Homogeneous Nucleation (Solidification) DG = - (4/3)pR 3 Dg V + 4pR 2 g; Condition for extremum: DG/ R = 0 Assumption: g independent of R DG/ R = -4pR 2 Dg V + 8pR g = 0; R* = 2g/ Dg V R** 2 DG/ R 2 = -8pR Dg V + 8pg; 2 DG/ R 2 R=R* = -8pg < 0; maximum DG* = 16 p g 3 / 3 Dg V 2 ; Nucleation barrier R < R* Unstable clusters (embryos) Growing embryos increase their Gibbs energy (more unstable) and remelt (dissolve) R > R* Growing clusters decrease their Gibbs energy and become more stable R > R** = 3g/ Dg V Stable clusters 16

17 Homogeneous Nucleation 17

18 Homogeneous Nucleation (Solidification) DG = - (4/3)pR 3 Dg V + 4pR 2 g; Size-dependent interfacial (surface) energy g(r); Model of Tolman and Buff (1949) g(r) = g (1 2d/R); d measure of diffusivness of the interface DG/ R = -4pR 2 Dg V + 8pR g(r) + 8pdg = 0; R 2 R R + d R = 0; R = 2g / Dg V g (mj/m 2 ) R R 1 *= R /2 [ 1 + (1 4d/ R ) ½ ] ~ R (1 d/ R ) R 2 * ~ d The critical radius decreases with increasing d. DG* ~ DG * - 16pd 2 g 2 / Dg V 18

19 R* = 2g/ Dg V Homogeneous Nucleation (Solidification) DG* = 16 p g 3 / 3 Dg V 2 DG V ~ L DT/T m ; DT Undercooling R* = 2g T m / L DT [L] = J/m 3 DG* = 16 p g 3 T m2 / 3 L 2 DT 2 ; DT R * and DG* 19

20 Homogeneous Nucleation (Solidification) R* = 2g T m / L DT DT =2g T m / R* L; T * /T m = (1-2g /LR*) Lin et al. (2010) MD Simulations Lin et al. (2010) 20

21 Homogeneous Nucleation Solid-Solid Transformation (Precipitation) V ß > V a Dilatation strain (uniform expansion/contraction), both a and ß isotropic deformable solids, having the same elastic constants. Volume starin DV/V ~ 3e; Linear strain: e ~ (R R)/R = dr /R (dr < dr) Elastic energy per unit volume: ~ (1/2)Ee 2 E Young s modulus Total elastic energy: ~ 4/3pR 3 (1/2)Ee 2 21

22 Homogeneous Nucleation Solid-Solid Transformations DG = - (4/3)pR 3 Dg V + (4/3)pR 3 (1/2)Ee 2 + 4pR 2 g; Effect of strain DG/ R = -4pR 2 ( Dg V - (1/2)Ee 2 ) + 8pR g = 0; R* = 2g/ ( Dg V - 1/2Ee 2 ); Nucleation of ß-phase possible only if Dg V > 1/2Ee 2 Strain increases the critical radius Dg V ~ L a/ß DT/T c L a/ß DT/T c > Ce 2 or DT > 1/2Ee 2 T c / L a/ß Higher undercooling necessary DG* = (16 p/3) g 3 / [ Dg V - 1/2Ee 2 ] 2 ; Strain increases the nucleation barrier DG* R** = 3g/ ( Dg V - 1/2Ee 2 ); 22

23 Homogeneous Nucleation Solid-Solid Transformation (Precipitation) a ß Strain energy Surface energy 23

24 Homogeneous Nucleation Solid-Solid Transformations Ag precipitates in Al-4 at% Ag alloy Ni 3 Nb precipitates in Ni-based superalloy Nicholson et al. (1958) E = ½ c ijkl e ij e kl General elastic energy per unit volume 24

25 Homogeneous Nucleation Solid-Solid Transformations Matrix (a) and precipitate (b) have different elastic constants, the precipitate has in general an ellipsoid shape with axes c and a. DG strain ~ V ß X e 2 X 3E ß /2(1-2n ß ) Shape, El. Constants a=c (sphere), incompressible a, soft ß a c 3E a /(1+n a ) a=c (sphere), soft a, incompressible ß 3E a /(1+n a )f(c/a) a c (ellipsoid), soft a, incompressible ß Precipites tend to take the shape, which minimizes the Gibbs energy. Nabaro (1940) 25

26 Homogeneous Nucleation Nucleation rate + - Sub-critical Embryo Critical Embryo Sub-critical Embryo Ṅ ~ (J + - J - )/l ~ N sub n exp(-dg*/rt) ~ Nn exp(-dg*/rt) Ṅ Nucleation rate [nuclei/s.m 3 ] N sub Number of sub-critical embryos N Number of species per unit volume n frequency of atachment/detachment J flux [species/s.m 2 ] l Free diffusion path of the species [m] 26

27 Homogeneous Nucleation Nucleation rate Ṅ = Nn exp(-dg*/k B T); Volmer & Weber (1925) DG* = 16 p g 3 T m2 / 3 L 2 DT 2 ; Ṅ = Nn exp (- A/(DT) 2 ); A = 16 p g SL3 T m2 /3L 2 k B T DT N ~ 0.2 T m (Turnbull s Rule) 27

28 Homogeneous Nucleation Nucleation rate Ṅ = Nn exp (- A/(DT) 2 ); n ~ n o exp (-DG mig /k B T) = n o exp [-DG mig /(T m DT)], DT = T m T Ṅ = N n o exp [-DG mig /(T m DT)] exp [- A/(DT) 2 ]; T Li et al. (2009) 28

29 Heterogeneous Nucleation (forein surfaces) Casting in moulds Levitation melting 29

30 Heterogeneous Nucleation (forein surfaces) Equilibrium of the surface tensions along the wall No diffusion between mould and solid The angle (ABC) = 2Q g ML = g SM + g SL cos(q) A 2Q B C DG het = -V S Dg V + A SL g SL + A SM g SM A SM g ML = = -V S Dg V + A SL g SL A SM g SL cos(q) V S = (p/3)[2 cos(q) + cos 3 (Q)] A SL = 2p(1-cos(Q)]R 2 ; A SM = p[rsin(q)] 2 ; 30

31 DG het = {-4/3 p R 3 Dg v + 4pR 2 g SL } S(Q) = = DG hom S(Q) Heterogeneous Nucleation (forein surfaces) S(Q) = (2 + cosq)(1 cosq) 2 /4 0,5 0,4 Q S(Q) S 0,3 0,2 0,1 0, Contact Angle 31

32 Heterogeneous Nucleation (forein surfaces) DG het = DG hom S(Q) DG het / R = S(Q) [ DG hom / R] = 0 R* = 2g/ DG V independent of Q DG* het = DG hom * S(Q) Q = arccos[ (g ML - g SM )/g SL ] Reduction of Nucleation barrier # g SL increases # g ML ~ g SM Potter (2009) 32

33 Heterogeneous Nucleation Interfacial Energy g SL ~ DH m /W sm 2/3 Turnbull s Rule g SL ~ (k B T m /W sm 2/3 ) exp (DH m /3k B T m ) W sm Atomic volume of the solid at T m. Metal T m (K) DH m (kj/mol) g(mj/m 2 ) Ni ,5 255 Digilov (2004) Cd 594 6,2 58 In 429 3,

34 Heterogeneous Nucleation (Solid-Solid Transformations, grain boundaries) Equilibrium of the surface tensions g aß sin(q) = g aß sin(q*) Y direction Y Q = Q* g aa = 2g aß cos(q) X direction * X DG = - V ß Dg V + V ß (1/2)Ee 2 + A ß g aß - A aa g aa ; Effect of strain V ß = 2(p/3)[2 cos(q) + cos 3 (Q)] A ß = 4p(1-cos(Q)]R 2 ; A aa = p[rsin(q)] 2 ; (removed area; p[rsin(q)] 2 ) DG* het = DG hom * 2S(Q) Q = arccos (g aa /2g aß ) Reduction of nucleation barrier by formation of incoherent g aß interfaces 34

35 Heterogeneous Nucleation (grain boundaries) Precipitation of AL 6 Mn in Al-1%Mn solid solution Beavan et al. (1982) 35

36 Heterogeneous Nucleation (Nucleation rate) Ṅ het ~ N het n exp(-dg* hom S(Q)/k B T) N het Number of species per unit volume, which contribute to the nucleation N het < N Potter et al. (2009) Heterogeneous nucleation starts at lower undercoolings 36

Atomic Transport & Phase Transformations Lecture III-1

Atomic Transport & Phase Transformations Lecture III-1 Atomic Transport & Phase Transformations Lecture III-1 PD Dr. Nikolay Zotov zotov@imw.uni-stuttgart.de Atomic Transport & Phase Transformations Part III Lectures Solid State Reactions Short Description

More information

Equilibria in Materials

Equilibria in Materials 009 fall Advanced Physical Metallurgy Phase Equilibria in Materials 10. 13. 009 Eun Soo Park Office: 33-316 Telephone: 880-71 Email: espark@snu.ac.kr Office hours: by an appointment 1 Contents for previous

More information

DIFFRACTION METHODS IN MATERIAL SCIENCE. PD Dr. Nikolay Zotov Lecture 10

DIFFRACTION METHODS IN MATERIAL SCIENCE. PD Dr. Nikolay Zotov   Lecture 10 DIFFRACTION METHODS IN MATERIAL SCIENCE PD Dr. Nikolay Zotov Email: zotov@imw.uni-stuttgart.de Lecture 10 OUTLINE OF THE COURSE 0. Introduction 1. Classification of Materials 2. Defects in Solids 3. Basics

More information

hydrate systems Gránásy Research Institute for Solid State Physics & Optics H-1525 Budapest, POB 49, Hungary László

hydrate systems Gránásy Research Institute for Solid State Physics & Optics H-1525 Budapest, POB 49, Hungary László Phase field theory of crystal nucleation: Application to the hard-sphere and CO 2 Bjørn Kvamme Department of Physics, University of Bergen Allégaten 55, N-5007 N Bergen, Norway László Gránásy Research

More information

Precipitation. Size! Shape! Size distribution! Agglomeration!

Precipitation. Size! Shape! Size distribution! Agglomeration! Precipitation Size! Shape! Size distribution! Agglomeration! Precipitation Four major questions: 1. Why do molecules/ions precipitate? 2. What determines the size? 3. What determines the size distribution?

More information

Trans-States-Repulsion Scenario of polymer crystallization

Trans-States-Repulsion Scenario of polymer crystallization Trans-States-Repulsion Scenario of polymer crystallization S. Stepanow University of Halle, Dept. Phys., D-06099 Halle, Germany 1. What is polymer crystallization? 1.1 Nucleation theories 2. The trans-states-repulsion

More information

NUCLEATION IN FINITE SYSTEMS: THEORY AND COMPUTER SIMULATION*t. M. RAO and B. J. BERNE. Chemistry Dept, Columbia University, New York, U.S.A.

NUCLEATION IN FINITE SYSTEMS: THEORY AND COMPUTER SIMULATION*t. M. RAO and B. J. BERNE. Chemistry Dept, Columbia University, New York, U.S.A. NUCLEATION IN FINITE SYSTEMS: THEORY AND COMPUTER SIMULATION*t M. RAO and B. J. BERNE Chemistry Dept, Columbia University, New York, U.S.A. Abstract. The free energy of formation of a droplet in a finite

More information

Gibb s free energy change with temperature in a single component system

Gibb s free energy change with temperature in a single component system Gibb s free energy change with temperature in a single component system An isolated system always tries to maximize the entropy. That means the system is stable when it has maximum possible entropy. Instead

More information

The Phase Field Method

The Phase Field Method The Phase Field Method To simulate microstructural evolutions in materials Nele Moelans Group meeting 8 June 2004 Outline Introduction Phase Field equations Phase Field simulations Grain growth Diffusion

More information

Phase-Field Simulation of the Effect of Elastic Inhomogeneity on Microstructure Evolution in Ni-Based Superalloys

Phase-Field Simulation of the Effect of Elastic Inhomogeneity on Microstructure Evolution in Ni-Based Superalloys Materials Transactions, Vol. 50, No. 4 (2009) pp. 744 to 748 #2009 The Japan Institute of Metals Phase-Field Simulation of the Effect of Elastic Inhomogeneity on Microstructure Evolution in Ni-Based Superalloys

More information

Step 1. Step 2. g l = g v. dg = 0 We have shown that over a plane surface of water. g v g l = ρ v R v T ln e/e sat. this can be rewritten

Step 1. Step 2. g l = g v. dg = 0 We have shown that over a plane surface of water. g v g l = ρ v R v T ln e/e sat. this can be rewritten The basic question is what makes the existence of a droplet thermodynamically preferable to the existence only of water vapor. We have already derived an expression for the saturation vapor pressure over

More information

T. Egami. Model System of Dense Random Packing (DRP)

T. Egami. Model System of Dense Random Packing (DRP) Introduction to Metallic Glasses: How they are different/similar to other glasses T. Egami Model System of Dense Random Packing (DRP) Hard Sphere vs. Soft Sphere Glass transition Universal behavior History:

More information

PART ONE TWO-PHASE FLOW

PART ONE TWO-PHASE FLOW PART ONE TWO-PHASE FLOW 1 Thermodynamic and Single-Phase Flow Fundamentals 1.1 States of Matter and Phase Diagrams f Pure Substances 1.1.1 Equilibrium States Recall from thermodynamics that f a system

More information

VIII. Phase Transformations. Lecture 38: Nucleation and Spinodal Decomposition

VIII. Phase Transformations. Lecture 38: Nucleation and Spinodal Decomposition VIII. Phase Transformations Lecture 38: Nucleation and Spinodal Decomposition MIT Student In this lecture we will study the onset of phase transformation for phases that differ only in their equilibrium

More information

MECH6661 lectures 6/1 Dr. M. Medraj Mech. Eng. Dept. - Concordia University. Fe3C (cementite)

MECH6661 lectures 6/1 Dr. M. Medraj Mech. Eng. Dept. - Concordia University. Fe3C (cementite) Outline Solid solution Gibbs free energy of binary solutions Ideal solution Chemical potential of an ideal solution Regular solutions Activity of a component Real solutions Equilibrium in heterogeneous

More information

REVIEW : INTRODUCTION TO THE MOLECULAR ORIGINS OF MECHANICAL PROPERTIES QUANTITATIVE TREATMENT OF INTERATOMIC BONDING : THE LENNARD-JONES POTENTIAL

REVIEW : INTRODUCTION TO THE MOLECULAR ORIGINS OF MECHANICAL PROPERTIES QUANTITATIVE TREATMENT OF INTERATOMIC BONDING : THE LENNARD-JONES POTENTIAL LECTURE #19 : 3.11 MECANICS OF MATERIALS F3 INSTRUCTOR : Professor Christine Ortiz OFFICE : 13-422 PONE : 452-384 WWW : http://web.mit.edu/cortiz/www REVIEW : INTRODUCTION TO TE MOLECULAR ORIGINS OF MECANICAL

More information

Dendritic solidification of binary alloys

Dendritic solidification of binary alloys University of Ljubljana Faculty of Mathematics and Physics Department of Physics Seminar I b - 3rd year, 2nd cycle Dendritic solidification of binary alloys Author: Tadej Dobravec Mentor: prof. dr. Božidar

More information

Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces.

Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces. Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces. Levente Novák & István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry http://kolloid.unideb.hu/~kolloid/

More information

Thermodynamics of Reactive Systems The Equilibrium Constant

Thermodynamics of Reactive Systems The Equilibrium Constant Lecture 27 Thermodynamics of Reactive Systems The Equilibrium Constant A. K. M. B. Rashid rofessor, Department of MME BUET, Dhaka Today s Topics The Equilibrium Constant Free Energy and Equilibrium Constant

More information

Interfaces and interfacial energy

Interfaces and interfacial energy Interfaces and interfacial energy 1/14 kinds: l/g }{{ l/l } mobile s/g s/l s/s Example. Estimate the percetage of water molecules on the surface of a fog droplet of diameter (i) 0.1 mm (naked eye visibility

More information

Driving Force for Solidification. Lecture 5, 3 June 2015

Driving Force for Solidification. Lecture 5, 3 June 2015 Thermodynamics and Kinetics of Nanomaterials Synthesis Okinawa Institute of Science and Technology Spring 15 Prof. Bruce Clemens Department of Materials Science and Engineering Stanford University Lecture

More information

Introduction Statistical Thermodynamics. Monday, January 6, 14

Introduction Statistical Thermodynamics. Monday, January 6, 14 Introduction Statistical Thermodynamics 1 Molecular Simulations Molecular dynamics: solve equations of motion Monte Carlo: importance sampling r 1 r 2 r n MD MC r 1 r 2 2 r n 2 3 3 4 4 Questions How can

More information

Spinodal decomposition

Spinodal decomposition Part V. Solid-solid transformations II Module 1 : Spinodal decomposition Part V. Solid-solid transformations II In this part, we discuss two transformations namely spinodal decomposition and ordering.

More information

Atomic Transport & Phase Transformations. Prof. Dr. G. Schmitz & PD Dr. Nikolay Zotov

Atomic Transport & Phase Transformations. Prof. Dr. G. Schmitz & PD Dr. Nikolay Zotov Atomic Transport & Phase Transformations Prof. Dr. G. Schmitz & PD Dr. Nikolay Zotov Atomic Transport & Phase Transformations Lectures Part I Alloy Thermodynamics PD Dr. N. Zotov 10.04 15.05.2017 (5 weeks)

More information

Kinetic Monte Carlo: from transition probabilities to transition rates

Kinetic Monte Carlo: from transition probabilities to transition rates Kinetic Monte Carlo: from transition probabilities to transition rates With MD we can only reproduce the dynamics of the system for 100 ns. Slow thermallyactivated processes, such as diffusion, cannot

More information

3.320 Lecture 23 (5/3/05)

3.320 Lecture 23 (5/3/05) 3.320 Lecture 23 (5/3/05) Faster, faster,faster Bigger, Bigger, Bigger Accelerated Molecular Dynamics Kinetic Monte Carlo Inhomogeneous Spatial Coarse Graining 5/3/05 3.320 Atomistic Modeling of Materials

More information

Advanced Placement. Chemistry. Integrated Rates

Advanced Placement. Chemistry. Integrated Rates Advanced Placement Chemistry Integrated Rates 204 47.90 9.22 78.49 (26) 50.94 92.9 80.95 (262) 52.00 93.94 83.85 (263) 54.938 (98) 86.2 (262) 55.85 0. 90.2 (265) 58.93 02.9 92.2 (266) H Li Na K Rb Cs Fr

More information

Nucleation, Growth, and Aggregation of Mineral Phases: Mechanisms and Kinetic Controls

Nucleation, Growth, and Aggregation of Mineral Phases: Mechanisms and Kinetic Controls Chapter 7 Nucleation, Growth, and Aggregation of Mineral Phases: Mechanisms and Kinetic Controls Liane G. Benning 1 and Glenn A. Waychunas 2 7.1 Introduction The formation of any phase, whether natural

More information

Köhler Curve. Covers Reading Material in Chapter 10.3 Atmospheric Sciences 5200 Physical Meteorology III: Cloud Physics

Köhler Curve. Covers Reading Material in Chapter 10.3 Atmospheric Sciences 5200 Physical Meteorology III: Cloud Physics Köhler Curve Covers Reading Material in Chapter 10.3 Atmospheric Sciences 5200 Physical Meteorology III: Cloud Physics Review of Kelvin Effect Gibbs Energy for formation of a drop G = G &'()*+, G ).'+

More information

Stress Evolution during Film Growth: CTC! Stress Evolution during Film Growth: CTC!

Stress Evolution during Film Growth: CTC! Stress Evolution during Film Growth: CTC! When Vapor Deforms Metal: Thermodynamics of Deposition Flux Dependent Intrinsic Film Stress M.J. Rost Kamerlingh Onnes Laboratory, Leiden University (NL) Rost@physics.leidenuniv.nl www.physics.leidenuniv.nl/rost

More information

CHEM-UA 652: Thermodynamics and Kinetics

CHEM-UA 652: Thermodynamics and Kinetics 1 CHEM-UA 652: hermodynamics and Kinetics Notes for Lecture 14 I. HE CLAEYRON EQUAION he Clapeyron attempts to answer the question of what the shape of a two-phase coexistence line is. In the - plane,

More information

The Influence of Magnetic Order to Crystal Nucleation

The Influence of Magnetic Order to Crystal Nucleation Sino-German Workshop on EPM, Shanghai University October 11 th -1 th, 004 The Influence of Magnetic Order to Crystal Nucleation Sven Reutzel 1,, Dirk Holland-Moritz, Matthias Kolbe, Dieter M. Herlach 1

More information

NUCLETION OF GAS HYDRATES

NUCLETION OF GAS HYDRATES NUCLETION OF GAS HYDRATES Dimo Kashchiev Institute of Physical Chemistry, Bulgarian Academy of Sciences, Sofia Detailed presentation of the results in: D.Kashchiev, A.Firoozabadi, J. Crystal Growth 241

More information

Heat, Work, and the First Law of Thermodynamics. Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition

Heat, Work, and the First Law of Thermodynamics. Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition Heat, Work, and the First Law of Thermodynamics Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 Different ways to increase the internal energy of system: 2 Joule s apparatus

More information

Exam Thermodynamics 2 9 November 2017

Exam Thermodynamics 2 9 November 2017 1 Exam Thermodynamics 2 9 November 2017 Please, hand in your answers to problems 1, 2, 3 and 4 on separate sheets. Put your name and student number on each sheet. The examination time is 08:30 until 11:30.

More information

Reaction at the Interfaces

Reaction at the Interfaces Reaction at the Interfaces Lecture 1 On the course Physics and Chemistry of Interfaces by HansJürgen Butt, Karlheinz Graf, and Michael Kappl Wiley VCH; 2nd edition (2006) http://homes.nano.aau.dk/lg/surface2009.htm

More information

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale Miguel Rubi References S.R. de Groot and P. Mazur, Non equilibrium Thermodynamics, Dover, New York, 1984 J.M. Vilar and

More information

Surface analysis algorithms in the mardyn program and the ls1 project

Surface analysis algorithms in the mardyn program and the ls1 project Surface analysis algorithms in the mardyn program and the ls1 project Stuttgart, 15 th December 1 M. T. Horsch Surface tension The virial route Bakker-Buff equation: γ R 2 out in dz z Normal pressure decays

More information

Experimental Soft Matter (M. Durand, G. Foffi)

Experimental Soft Matter (M. Durand, G. Foffi) Master 2 PCS/PTSC 2016-2017 10/01/2017 Experimental Soft Matter (M. Durand, G. Foffi) Nota Bene Exam duration : 3H ecture notes are not allowed. Electronic devices (including cell phones) are prohibited,

More information

Errata for SOLIDIFICATION (Second Edition, 2016)

Errata for SOLIDIFICATION (Second Edition, 2016) Errata for SOLIDIFICATION (Second Edition, 2016) J. A. Dantzig and M. Rappaz September 6, 2017 Nomenclature There are several minor typographical errors in this table. Please download the corrected version

More information

Kinetic Monte Carlo Simulation of Two-dimensional Semiconductor Quantum Dots Growth

Kinetic Monte Carlo Simulation of Two-dimensional Semiconductor Quantum Dots Growth Kinetic Monte Carlo Simulation of Two-dimensional Semiconductor Quantum Dots Growth by Ernie Pan Richard Zhu Melissa Sun Peter Chung Computer Modeling and Simulation Group The University of Akron Outline

More information

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS OUTLINE: Topic D. PHASE TRANSITIONS IN SOFT MATTER SYSTEMS Definition of a phase Classification of phase transitions Thermodynamics of mixing (gases, polymers, etc.) Mean-field approaches in the spirit

More information

Field Method of Simulation of Phase Transformations in Materials. Alex Umantsev Fayetteville State University, Fayetteville, NC

Field Method of Simulation of Phase Transformations in Materials. Alex Umantsev Fayetteville State University, Fayetteville, NC Field Method of Simulation of Phase Transformations in Materials Alex Umantsev Fayetteville State University, Fayetteville, NC What do we need to account for? Multi-phase states: thermodynamic systems

More information

MSE 3050: Thermodynamics and Kinetics of Materials

MSE 3050: Thermodynamics and Kinetics of Materials University of Virginia, Department of Materials Science and Engineering Spring 2019, Tuesday and Thursday, 9:30 10:45 am Mechanical Engineering Building 339 MSE 3050: Thermodynamics and Kinetics of Materials

More information

Lecture 1 Modeling and simulation for the growth of thin films

Lecture 1 Modeling and simulation for the growth of thin films Lecture 1 Modeling and simulation for the growth of thin films Russel Caflisch Mathematics Department Materials Science and Engineering Department UCLA & IPAM www.math.ucla.edu/~material 1 Outline Epitaxial

More information

Nucleation rate (m -3 s -1 ) Radius of water nano droplet (Å) 1e+00 1e-64 1e-128 1e-192 1e-256

Nucleation rate (m -3 s -1 ) Radius of water nano droplet (Å) 1e+00 1e-64 1e-128 1e-192 1e-256 Supplementary Figures Nucleation rate (m -3 s -1 ) 1e+00 1e-64 1e-128 1e-192 1e-256 Calculated R in bulk water Calculated R in droplet Modified CNT 20 30 40 50 60 70 Radius of water nano droplet (Å) Supplementary

More information

Thermodynamics of diffusion (extracurricular material - not tested)

Thermodynamics of diffusion (extracurricular material - not tested) Thermodynamics of diffusion (etracurricular material - not tested) riving force for diffusion iffusion in ideal and real solutions Thermodynamic factor iffusion against the concentration gradient Spinodal

More information

Phase-field crystal modeling and classical density functional theory of freezing

Phase-field crystal modeling and classical density functional theory of freezing Phase-field crystal modeling and classical density functional theory of freezing K. R. Elder, 1 Nikolas Provatas, 2 Joel Berry, 1,3 Peter Stefanovic, 2 and Martin Grant 3 1 Department of Physics, Oakland

More information

Jacco Snoeijer PHYSICS OF FLUIDS

Jacco Snoeijer PHYSICS OF FLUIDS Jacco Snoeijer PHYSICS OF FLUIDS dynamics dynamics freezing dynamics freezing microscopics of capillarity Menu 1. surface tension: thermodynamics & microscopics 2. wetting (statics): thermodynamics & microscopics

More information

Density Functional Modeling of Nanocrystalline Materials

Density Functional Modeling of Nanocrystalline Materials Density Functional Modeling of Nanocrystalline Materials A new approach for modeling atomic scale properties in materials Peter Stefanovic Supervisor: Nikolas Provatas 70 / Part 1-7 February 007 Density

More information

Learning Objectives and Fundamental Questions

Learning Objectives and Fundamental Questions Learning Objectives and Fundamental Questions What is thermodynamics and how are its concepts used in geochemistry? How can heat and mass flux be predicted or interpreted using thermodynamic models? How

More information

3.320: Lecture 19 (4/14/05) Free Energies and physical Coarse-graining. ,T) + < σ > dµ

3.320: Lecture 19 (4/14/05) Free Energies and physical Coarse-graining. ,T) + < σ > dµ 3.320: Lecture 19 (4/14/05) F(µ,T) = F(µ ref,t) + < σ > dµ µ µ ref Free Energies and physical Coarse-graining T S(T) = S(T ref ) + T T ref C V T dt Non-Boltzmann sampling and Umbrella sampling Simple

More information

Errata for SOLIDIFICATION (First Edition, 2009)

Errata for SOLIDIFICATION (First Edition, 2009) Errata for SOLIDIFICATION (First Edition, 29) J. A. Dantzig and M. Rappaz March 2, 217 Chapter 1: Overview Page 2, first line: the definition of r should have a square root. i.e., r = (ξ 2 + y 2 + z 2

More information

Structural and Mechanical Properties of Nanostructures

Structural and Mechanical Properties of Nanostructures Master s in nanoscience Nanostructural properties Mechanical properties Structural and Mechanical Properties of Nanostructures Prof. Angel Rubio Dr. Letizia Chiodo Dpto. Fisica de Materiales, Facultad

More information

EART162: PLANETARY INTERIORS

EART162: PLANETARY INTERIORS EART162: PLANETARY INTERIORS Francis Nimmo Last Week Global gravity variations arise due to MoI difference (J 2 ) We can also determine C, the moment of inertia, either by observation (precession) or by

More information

CLUSTERING AND WATER ACTIVITY IN CONCENTRATED SUCROSE SOLUTIONS

CLUSTERING AND WATER ACTIVITY IN CONCENTRATED SUCROSE SOLUTIONS EURO FOOD S WATER CLUSTERING AND WATER ACTIVITY IN CONCENTRATED SUCROSE SOLUTIONS Jean GENOTELLE 1, Mohamed MATHLOUTHI 2,BarbaraROGE 2, Maciej STARZAK 3 1 Former Director of GTS Sèvres, France 1 Université

More information

Clouds associated with cold and warm fronts. Whiteman (2000)

Clouds associated with cold and warm fronts. Whiteman (2000) Clouds associated with cold and warm fronts Whiteman (2000) Dalton s law of partial pressures! The total pressure exerted by a mixture of gases equals the sum of the partial pressure of the gases! Partial

More information

Heterogenous Nucleation in Hard Spheres Systems

Heterogenous Nucleation in Hard Spheres Systems University of Luxembourg, Softmatter Theory Group May, 2012 Table of contents 1 2 3 Motivation Event Driven Molecular Dynamics Time Driven MD simulation vs. Event Driven MD simulation V(r) = { if r < σ

More information

Recitation: 12 12/04/03

Recitation: 12 12/04/03 Recitation: 12 12/4/3 Regular Solution Solution: In an ideal solution, the only contribution to the Gibbs free energy of ing is the configurational entropy due to a random ture: ΔG id G id = x + x µ µ

More information

q lm1 q lm2 q lm3 (1) m 1,m 2,m 3,m 1 +m 2 +m 3 =0 m 1 m 2 m 3 l l l

q lm1 q lm2 q lm3 (1) m 1,m 2,m 3,m 1 +m 2 +m 3 =0 m 1 m 2 m 3 l l l SUPPLEMENTARY INFORMATION Bond-orientational order parameters. We use a particle-level bond-orientational order parameter defined as follows. where the coefficients W l l l l q lm1 q lm2 q lm3 (1) m 1,m

More information

QENS in the Energy Domain: Backscattering and Time-of

QENS in the Energy Domain: Backscattering and Time-of QENS in the Energy Domain: Backscattering and Time-of of-flight Alexei Sokolov Department of Polymer Science, The University of Akron Outline Soft Matter and Neutron Spectroscopy Using elastic scattering

More information

(Crystal) Nucleation: The language

(Crystal) Nucleation: The language Why crystallization requires supercooling (Crystal) Nucleation: The language 2r 1. Transferring N particles from liquid to crystal yields energy. Crystal nucleus Δµ: thermodynamic driving force N is proportional

More information

A MOLECULAR DYNAMICS SIMULATION OF A BUBBLE NUCLEATION ON SOLID SURFACE

A MOLECULAR DYNAMICS SIMULATION OF A BUBBLE NUCLEATION ON SOLID SURFACE A MOLECULAR DYNAMICS SIMULATION OF A BUBBLE NUCLEATION ON SOLID SURFACE Shigeo Maruyama and Tatsuto Kimura Department of Mechanical Engineering The University of Tokyo 7-- Hongo, Bunkyo-ku, Tokyo -866,

More information

Lecture #6: 3D Rate-independent Plasticity (cont.) Pressure-dependent plasticity

Lecture #6: 3D Rate-independent Plasticity (cont.) Pressure-dependent plasticity Lecture #6: 3D Rate-independent Plasticity (cont.) Pressure-dependent plasticity by Borja Erice and Dirk Mohr ETH Zurich, Department of Mechanical and Process Engineering, Chair of Computational Modeling

More information

MSE 360 Exam 1 Spring Points Total

MSE 360 Exam 1 Spring Points Total MSE 360 Exam 1 Spring 011 105 Points otal Name(print) ID number No notes, books, or information stored in calculator memories may be used. he NCSU academic integrity policies apply to this exam. As such,

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics 7/10/003 Chapter 14 Chemical Kinetics 14-1 Rates of Chemical Reactions 14- Reaction Rates and Concentrations 14-3 The Dependence of Concentrations on Time 14-4 Reaction Mechanisms 14-5 Reaction Mechanism

More information

Principles of Chemical Kinetics.

Principles of Chemical Kinetics. Principles of Chemical Kinetics http://eps.mcgill.ca/~courses/c220/ Principles of Chemical Kinetics Thermodynamics (or the free energy of the system) tells us if the reaction is energetically feasible

More information

From the ideal gas to an ideal glass: a thermodynamic route to random close packing.

From the ideal gas to an ideal glass: a thermodynamic route to random close packing. Leslie V. Woodcock From the ideal gas to an ideal glass: a thermodynamic route to random close packing. Department of Chemical and Biomolecular Engineering National University of Singapore, Singapore 117576

More information

Modelling the phase and crystallisation behaviour of fat mixtures

Modelling the phase and crystallisation behaviour of fat mixtures Modelling the phase and crystallisation behaviour of fat mixtures Jan Los & Elias Vlieg IMM Solid State Chemistry, Radboud University Nijmegen, The Netherlands Introduction Equilibrium Kinetics The full

More information

Chapter 2: Equilibrium Thermodynamics and Kinetics

Chapter 2: Equilibrium Thermodynamics and Kinetics Chapter 2: Equilibrium Thermodynamics and Kinetics Equilibrium Thermodynamics: predicts the concentrations (or more precisely, activities) of various species and phases if a reaction reaches equilibrium.

More information

Mechanics PhD Preliminary Spring 2017

Mechanics PhD Preliminary Spring 2017 Mechanics PhD Preliminary Spring 2017 1. (10 points) Consider a body Ω that is assembled by gluing together two separate bodies along a flat interface. The normal vector to the interface is given by n

More information

Modeling of Micro-Fluidics by a Dissipative Particle Dynamics Method. Justyna Czerwinska

Modeling of Micro-Fluidics by a Dissipative Particle Dynamics Method. Justyna Czerwinska Modeling of Micro-Fluidics by a Dissipative Particle Dynamics Method Justyna Czerwinska Scales and Physical Models years Time hours Engineering Design Limit Process Design minutes Continious Mechanics

More information

ACCESS Beiratssitzung November Dr. G. Laschet and L. Haas ACCESS e.v. Aachen, Germany. FENET Workshop Copenhagen

ACCESS Beiratssitzung November Dr. G. Laschet and L. Haas ACCESS e.v. Aachen, Germany. FENET Workshop Copenhagen Coupling FE Contact and Heat Transfer Analysis in Casting Simulations ACCESS Beiratssitzung November 2001 Dr. G. Laschet and L. Haas ACCESS e.v. Aachen, Germany FENET Workshop Copenhagen 27.02.2002 About

More information

Reference material Reference books: Y.C. Fung, "Foundations of Solid Mechanics", Prentice Hall R. Hill, "The mathematical theory of plasticity",

Reference material Reference books: Y.C. Fung, Foundations of Solid Mechanics, Prentice Hall R. Hill, The mathematical theory of plasticity, Reference material Reference books: Y.C. Fung, "Foundations of Solid Mechanics", Prentice Hall R. Hill, "The mathematical theory of plasticity", Oxford University Press, Oxford. J. Lubliner, "Plasticity

More information

Atomic Transport & Phase Transformations. PD Dr. Nikolay Zotov

Atomic Transport & Phase Transformations. PD Dr. Nikolay Zotov Atomic Transport & Phase Transformations PD Dr. Nikolay Zotov Atomic Transport & Phase Transformations Part II Lecture Diffusion Short Description 1 Introduction; Non-equilibrium thermodynamics 2 Diffusion

More information

Sensible Heat and Enthalpy Calculations

Sensible Heat and Enthalpy Calculations * Sensible Heat and Enthalpy Calculations Sensible Heat - The amount of heat that must be added when a substance undergoes a change in temperature from 298 K to an elevated temperature without a change

More information

Potentials, periodicity

Potentials, periodicity Potentials, periodicity Lecture 2 1/23/18 1 Survey responses 2 Topic requests DFT (10), Molecular dynamics (7), Monte Carlo (5) Machine Learning (4), High-throughput, Databases (4) NEB, phonons, Non-equilibrium

More information

PRACTICE QUESTION PAPER WITH SOLUTION CLASS XI PHYSICS

PRACTICE QUESTION PAPER WITH SOLUTION CLASS XI PHYSICS PRACTICE QUESTION PAPER WITH SOLUTION CLASS XI PHYSICS. A given quantity has both magnitude and direction. Is it necessarily a vector? Justify your answer.. What is the rotational analogue of the force?.

More information

Foundations of Chemical Kinetics. Lecture 12: Transition-state theory: The thermodynamic formalism

Foundations of Chemical Kinetics. Lecture 12: Transition-state theory: The thermodynamic formalism Foundations of Chemical Kinetics Lecture 12: Transition-state theory: The thermodynamic formalism Marc R. Roussel Department of Chemistry and Biochemistry Breaking it down We can break down an elementary

More information

Physical Chemistry Physical chemistry is the branch of chemistry that establishes and develops the principles of Chemistry in terms of the underlying concepts of Physics Physical Chemistry Main book: Atkins

More information

Theory of Interstellar Phases

Theory of Interstellar Phases Theory of Interstellar Phases 1. Relevant Observations 2. Linear Stability Theory 3. FGH Model 4. Update and Summary References Tielens, Secs. 8.1-5 Field ApJ 142 531 1965 (basic stability theory) Field,

More information

INFLUENCE OF AN APPLIED STRAIN FIELD ON MICROSTRUCTURAL EVOLUTION DURING THE α 2 O- PHASE TRANSFORMATION IN Ti Al Nb SYSTEM

INFLUENCE OF AN APPLIED STRAIN FIELD ON MICROSTRUCTURAL EVOLUTION DURING THE α 2 O- PHASE TRANSFORMATION IN Ti Al Nb SYSTEM Acta mater. 49 (2001) 13 20 www.elsevier.com/locate/actamat INFLUENCE OF AN APPLIED STRAIN FIELD ON MICROSTRUCTURAL EVOLUTION DURING THE α 2 O- PHASE TRANSFORMATION IN Ti Al Nb SYSTEM Y. H. WEN 1, 2 *,

More information

Oxide Structures & Networks

Oxide Structures & Networks Oxide Structures & Networks Unit Cell: Primitive Tetragonal (a = b c) 2TiO 2 per unit cell Motif: 2Ti at (0, 0, 0); ( 1 / 2, 1 / 2, 1 / 2 ) & 4O at ±(0.3, 0.3, 0); ±(0.8, 0.2, 1 / 2 ) Ti: 6 (octahedral

More information

Homogeneous crystal nucleation in silicate glasses: A 40 years perspective

Homogeneous crystal nucleation in silicate glasses: A 40 years perspective Journal of Non-Crystalline Solids 352 (26) 268 274 Review Homogeneous crystal nucleation in silicate glasses: A 4 years perspective Vladimir M. Fokin a, *, Edgar D. Zanotto b, Nikolay S. Yuritsyn c, Jürn

More information

Thermodynamic aspects of

Thermodynamic aspects of Thermodynamic aspects of nanomaterials Advanced nanomaterials H.HofmannHofmann EPFL-LTP 2011/2012 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Thermodynamic properties p of nanosized materials 100000 120 Total

More information

INTERFACE THERMODYNAMICS WITH APPLICATIONS TO ATOMISTIC SIMULATIONS

INTERFACE THERMODYNAMICS WITH APPLICATIONS TO ATOMISTIC SIMULATIONS INTERFACE THERMODYNAMICS WITH APPLICATIONS TO ATOMISTIC SIMULATIONS by Timofey Frolov A Dissertation Submitted to the Graduate Faculty of George Mason University in Partial Fulfillment of The Requirements

More information

plane in a cubic unit cell. Clearly label the axes. (b) Draw two directions in the ( 112)

plane in a cubic unit cell. Clearly label the axes. (b) Draw two directions in the ( 112) Midterm Examination - Thursday, February 5, 8:00 9:5 AM Place all answers in a 8.5" x " Bluebook Allowed:, double-sided 8.5" x " page of notes must return with exam. Required: Picture ID when returning

More information

Physics of Materials: Classification of Solids On The basis of Geometry and Bonding (Intermolecular forces)

Physics of Materials: Classification of Solids On The basis of Geometry and Bonding (Intermolecular forces) Physics of Materials: Classification of Solids On The basis of Geometry and Bonding (Intermolecular forces) Dr. Anurag Srivastava Atal Bihari Vajpayee Indian Institute of Information Technology and Manegement,

More information

GFD 2006 Lecture 2: Diffusion-controlled solidification

GFD 2006 Lecture 2: Diffusion-controlled solidification GFD 2006 Lecture 2: Diffusion-controlled solidification Grae Worster; notes by Victor Tsai and Dan Goldberg March 15, 2007 1 Finishing off Lecture 1 As shown in Lecture 1, an approximation for the diffusion

More information

of Nebraska - Lincoln

of Nebraska - Lincoln University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Xiao Cheng Zeng Publications Published Research - Department of Chemistry 10-1-2006 Homogeneous nucleation at high supersaturation

More information

MS212 Thermodynamics of Materials ( 소재열역학의이해 ) Lecture Note: Chapter 7

MS212 Thermodynamics of Materials ( 소재열역학의이해 ) Lecture Note: Chapter 7 2017 Spring Semester MS212 Thermodynamics of Materials ( 소재열역학의이해 ) Lecture Note: Chapter 7 Byungha Shin ( 신병하 ) Dept. of MSE, KAIST Largely based on lecture notes of Prof. Hyuck-Mo Lee and Prof. WooChul

More information

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics Entropy and free energy Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Explain and apply the terms spontaneous process, reversible process, irreversible process, and isothermal process.

More information

17th European Conference on Fracture 2-5 September,2008, Brno, Czech Republic. Thermal Fracture of a FGM/Homogeneous Bimaterial with Defects

17th European Conference on Fracture 2-5 September,2008, Brno, Czech Republic. Thermal Fracture of a FGM/Homogeneous Bimaterial with Defects -5 September,8, Brno, Czech Republic Thermal Fracture of a FGM/Homogeneous Bimaterial with Defects Vera Petrova, a, Siegfried Schmauder,b Voronezh State University, University Sq., Voronezh 3946, Russia

More information

The Gibbs Phase Rule F = 2 + C - P

The Gibbs Phase Rule F = 2 + C - P The Gibbs Phase Rule The phase rule allows one to determine the number of degrees of freedom (F) or variance of a chemical system. This is useful for interpreting phase diagrams. F = 2 + C - P Where F

More information

Part VII. Miscellaneous topics Module 3. Coarsening

Part VII. Miscellaneous topics Module 3. Coarsening Part VII. Miscellaneous topics Module 3. Coarsening 3 Coarsening 3.1 Motivation Consider a precipitation hardenable alloy. As a function of aging time, after peak aging the strength reduces. It is found

More information

NOMENCLATURE AND DIMENSIONLESS GROUPS

NOMENCLATURE AND DIMENSIONLESS GROUPS NOMENCLATURE AND DIMENSIONLESS GROUPS PRINCIPAL NOMENCLATURE A book that covers as many topics as this one does is bound to encounter some problems with nomenclature. We have tried to use standard notation

More information

Surface and Interfacial Tensions. Lecture 1

Surface and Interfacial Tensions. Lecture 1 Surface and Interfacial Tensions Lecture 1 Surface tension is a pull Surfaces and Interfaces 1 Thermodynamics for Interfacial Systems Work must be done to increase surface area just as work must be done

More information

Les Houches School of Foam: Introduction to Coarsening

Les Houches School of Foam: Introduction to Coarsening Les Houches School of Foam: Introduction to Coarsening Andrew Belmonte The W. G. Pritchard Laboratories Department of Mathematics, Penn State University 1 What is Coarsening? (for a foam) Initial foam

More information

Diffusion in multicomponent solids. Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI

Diffusion in multicomponent solids. Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI Diffusion in multicomponent solids nton Van der Ven Department of Materials Science and Engineering University of Michigan nn rbor, MI Coarse graining time Diffusion in a crystal Two levels of time coarse

More information

Transition Theory Abbreviated Derivation [ A - B - C] # E o. Reaction Coordinate. [ ] # æ Æ

Transition Theory Abbreviated Derivation [ A - B - C] # E o. Reaction Coordinate. [ ] # æ Æ Transition Theory Abbreviated Derivation A + BC æ Æ AB + C [ A - B - C] # E A BC D E o AB, C Reaction Coordinate A + BC æ æ Æ æ A - B - C [ ] # æ Æ æ A - B + C The rate of reaction is the frequency of

More information