DIFFRACTION METHODS IN MATERIAL SCIENCE. PD Dr. Nikolay Zotov Lecture 10

Size: px
Start display at page:

Download "DIFFRACTION METHODS IN MATERIAL SCIENCE. PD Dr. Nikolay Zotov Lecture 10"

Transcription

1 DIFFRACTION METHODS IN MATERIAL SCIENCE PD Dr. Nikolay Zotov Lecture 10

2 OUTLINE OF THE COURSE 0. Introduction 1. Classification of Materials 2. Defects in Solids 3. Basics of X-ray and neutron scattering 4. Diffraction studies of Polycrystalline Materials 5. Microstructural Analysis by Diffraction 6. Diffraction studies of Thin Films 7. Diffraction studies of Nanomaterials 8. Diffraction studies of Amorphous and Composite Materials 2

3 OUTLINE OF TODAY S LECTURE Classification of Amorphous Materials Diffraction Studies of Amorpous Materials Pair Correlation Function g(r) Structure Factor S(Q) Relation between Structure factor and g(r) Determination of Structure Factor Examples of S(Q) and g(r) Modelling Methods (RMC) Degree of Crystallinity 3

4 STRUCTURAL CLASSIFICATION OF SOLIDS Amorphous Quasicrystals Crystalline (Lecture 2) Cl Be Cl x n = x n-1 + x n-2 0 x n a x n = an = x n-1 + a No Long-range Order (LRO) LRO LRO No Translational Symmetry (TS) No TS TS Chemical Short-range Order (SRO) SRO SRO (Magnetic) Isotropic Anisotropic Anisotropic No cleavage T g (Glass Transition Temperature) Cleavage Melting Temperature T m 4

5 Classification of Amorphous Materials Composition Silicate Glasses (SiO 2 ; NaSiO 4, Na 2 Si 2 O 5, ) Bonding Ionic-Covalent Bonding Phosphate glasses (NaPO 3,... ) " Borate glasses (BO 3 ; Na 2 O.B 2 O 3,... ) " Chalcogenide Glasses (Se, Te, As-Se, Ge-Te; ) Covalent Bonding Amorphous Carbon; amorphous Si (a-c; a-si; ) " Amorphous Polymers Metal Glasses Metal bonding 5

6 Number Density (Lecture 2) r(r,t) Atomic number density (at/å 3 ); r(r,t) = S d(r r j (t)) Time average: r(r) = <r(r,t)> Local density For isotropic (homogeneous) systems r o = N/V Macroscopic density 6

7 Density Density Correlation Function C(r) = < r(r i ) r(r i + r)> V For a system of N atoms: C(r) = (V/N)S i r(r i )r(r i +r); r(r i ) = d(r r i ) C(r) = (V/N)S i S j d(r - r ij ); r ij = r j - r i 7

8 Pair Correlation Function g(r) = C(r)/r o Probability to find an atom at a radius-vector r from another atom at r = 0. For a isotropic system in which the atoms (particles) are randomly oriented, (no translational symmetry and long-range order) C(r) will depend only on the distance between the atoms, but not on the orientation of the radius vector r g(r) = <g(r)> Angles Pair Correlation Function (PDF) N(r) - Number of atoms between r and r+dr from the centre, regardless of their orientation g(r) = N(r)/r o 4pr 2 dr lim[g(r)] = 1 r 8

9 (Monoatomic) Pair Correlation Functions (Examples) (Lecture 2) Liquid Ar Thermal Motion/Disorder Peak Broadening g(r) rapidly convergens to 1 A. Leach (2001) 9

10 fcc Au (Monoatomic) Pair Correlation Functions (Examples) 10

11 Pair Correlation Function Multicomponen Systems System containing 2 components (a, ß) Al-Zr Metallic Glass (a = Al, ß = Zr) # Partial pair correlation function g aß (r) g aß (r) = (N/r o N a N ß ) S i a S j ß δ(r r ij ) # Total pair correlation function g(r) = (1/N 2 ) S i S j N i N j g aß (r) 11

12 Pair Correlation Function Multicomponen Systems Ge-Ge GeO 2 Glass Ge-O O-O Marrocchelli et al. (2010) 12

13 Related Functions Reduced PDF G(r) = 4prr o [g(r) 1] g(r) = 1 + G(r)/4prr o Radial Distribution Functions RDF(r) = 4pr 2 r o g(r) = 4pr 2 r o + rg(r) T(r) = 4prr o g(r) = 4prr o + G(r) Zhilegi 13

14 Coordination Numbers Fcc Au N = RDF(r)dr 14

15 Relations between g(r) and Thermodynamic Properties Statistical Mechanics U = - ln(z)/ ß; ß = 1/k B T; Z Partitioning function p = k B T ln(z)/ V T ; g(r) = (1/r o2 ) [N(N-1)/Z]... dr 3...dr N exp[-ßu(r 1, r 2,... r N )] System described by (purely) pair-atomic interactions u(r) potential energy between pair of atoms <U> = 2pNr o g(r) u(r) r 2 dr; (0, ) p = k B Tr o [1 (2p/3) r o k B T g(r) (du/dr) r 3 dr ] 15

16 Scattered Intensity for Random Angular Orientations of Atoms (Lecture 8) I(Q) = <I(Q)> Orientaions = Σ Σ f i f j * <exp[2piq.(r i - r j )]> Orient I(Q) depends only on the difference between atomic positions Structure Factor S(Q) = I(Q)/<f 2 (Q)> = 1 + (I(Q) - <f 2 (Q)>)/ <f 2 (Q)> due to the spherical symmetry (averaging over orientations) S depends only on the magnitude Q of Q (Q = 4p/l sin(q)) 16

17 Structure Factor and Debye Equation I(Q) = Σ f i2 + Σ Σ f i f j * sin(qr ij )/Qr ij i j Weighted sum of Sinc functions with weights f i f j * /<f 2 > 17

18 Relation between S(Q) and g(r) G(r) = 2/p Q [S(Q) 1]sin(Qr)dQ, (Q min, Q max ) 18

19 Determination of Structure Factor # Measure the Background scattering without sample (I BKG ) # Measure the scattering from the sample (I M ) I M = I Scat LPA + I BKG + I sub # Correct for Background, Lorentz-Polarization (LP) and Absorption (A) I Scat = (I M I BKG - I Sub )/LPA # Normalize to electronic units I Nor = ßI Scat by comparing with <f 2 > (High-angle method) 19

20 RDF Calculation Example: Am-Al 3 Zr Thin Film; Mo Radiation, Q-Q Diffractometer Sample+Substrate Substrate Air-Scattering Counts Q (degrees) Polarization factor I(Q) f 2 POL(s) I(Q) s Q (A -1 ) 20

21 RDF Calculation Example: Am-Al 3 Zr Thin Film; Mo Radiation, Q-Q Diffractometer S(Q) g(r) Q (A-1) R (A) G(R) Zotov et al., J. Non-Cryst. Solids 427 (2015) 104 R (A) 21

22 EXAMPLES OF S(Q) and g(r) Silicate Glasses: Na 2 Si 4 O 9 Neutron Diffraction, Studswik, Sweden SiO 4 Zotov (1998) 22

23 EXAMPLES OF S(Q) and g(r) Phosphate Glasses: (MnO) x (NaPO 3 ) 1-x Neutron Diffraction, LLB, France O P O Short-range order Medium-range Order Zotov et al. (2004) 23

24 EXAMPLES OF S(Q) and g(r) Chalcogenide Glasses: (Ag 2 Se) x (AsSe) 1-x, x = 0.27, 0.39, 0.53 X-ray Diffraction Ag-Se Ag-As As-Se F(Q) = S(Q)-1 <N> = 3.5 <N> = 2.5 Zotov et al. (1997) F(Q) = S(Q)-1 24

25 EXAMPLES OF S(Q) and g(r) Metallic Melts Holland-Moritz (2002) 25

26 Interpretation and Modelling of Scattering from Amorphous Materials Single Crystal reflexions Crystalline Powder reflexions Glass/Melt 10 0 reflexions Molecular Dynamics Reverse Monte Carlo Simulations Use of Complementary Structure-Sensitive Methods (Raman & IR Spectroscopy) We need modelling! 26

27 RMC Simulations: Practical Aspects Generation of Starting Configuartion (with periodic boundary conditions) Metropolis Monte Carlo Algorithm # Calculate g(r) # Calculate c 2 = S (g exp (r) g calc (r)) 2 # Move randomly selected atom in random direction at a distance less than a predefined maximal distance Dr max ; # Calculate c 2 n; # If c 2 n < c 2 o the move is accepted, if c 2 n > c 2 o it is accepted with probability exp(-dc 2 ); GOF Alternatively, GOF = c 2 = S i [F(q i ) exp F(q i ) cal ] 2 F(q) = S(q) 1 = (4pr 0 /q) r[g(r) 1]sin(qr)dr x x x x x10 4 Accepted Moves 27

28 2D crystal, Bragg peaks disordered 2D crystal, Bragg peaks + diffuse scattering Glass McGreevy (2001) 28

29 STARTING CONFIGURATIONS Random models Computer-machanics models Molecular Dynamics models Crystalline Structures All good [runs] must come to an end, but all bad [runs] could continue for ever old Arab wisdom Convergence Time 29

30 RMC EXAMPLES 3000-atoms model Random Starting Models G(r) Cu 0.20 As 0.25 Te 0.55 Glass Chalcogenide glasses; Metallic Glasses; Metallic Melts with non-directional bonds Neutron G(r) RMC Fit Zotov et al. (2000) r (Å) Pair Distance(Å) Compound Cu - Cu 2.63 CuTe 2.70 Cu 1.4 Te 2.64 Cu 2 As Cu - As 2.55 Cu 2 As Cu - Te 2.68 CuTe 2.66 Cu 1.4 Te As - As 2.44 c-as As - Te 2.78 As 2 Te 3 Te - Te 2.83 Te 30

31 RMC EXAMPLES Computer-Mechanics Models Network glasses/melts; (silicate, phosphate, borate) Molecular liquids, which have directional bonds (SRO) 0.5 Na 2 O.4SIO 2 Glass F(q) Neutron F(q) RMC Fit Zotov & Keppler (1998) q (Å -1 ) 31

32 Effect of Starting Configuration X-ray + Neutrons; 3000 atoms Te 2 Br 0.75 I 0.25 Glass Model M1 M2 M3 GOF(XRD) GOF(ND) Time (hours) M1 Random M2 Crystalline Te 2 Br M3 Another RMC F x (q) M5 M4 M3 M2 M Q (Å -1 ) Zotov et al., (2005) 32

33 Constraints in RMC Simulations Limited diffraction quotient G(r)/F(q) One-dimensional projections of the 3D Structure; weighted sums of several partial pair correlation functions Experimental Density Coordination Constraints Bond-Angle Constraints (three-body constraints) Different Scattering Data Sets (Neutrons + X-rays; Anomalous Scattering*) G(r) = S i S j g ij (r)f i f j */<f 2 > (double sum over all types of atoms g ij partail pair correlation functions) 33

34 Anomalous X-ray Scattering Ge - Se f(q,e) = f o (Q) + f'(e) + if"(e) Structure Factor S(Q,E) = I(Q,E)/<f (Q,E)> 2 = 1 + [I(Q,E) - <f 2 (Q,E)>]/ <f (Q,E)> 2 Armand et al., JNCS 167 (1994) 37 34

35 Anomalous X-ray Scattering Differential Structure Factors And Differential Radial Distribution Functions I(Q,E 1 ) - I(Q,E 2 ) = {[<f(e 1 ) 2 > - <f(e 1 )> 2 ] - [<f(e 2 ) 2 > - <f(e 2 )> 2 ]} + DSF Se + [<f 2 (Q,E 1 )> - <f 2 (Q,E 2 )>] DSF A (Q) DSF Ge Armand et al., JNCS 167 (1994) 37 35

36 Composite Materials (Polymers) Degree of Crystallinity Degree of Crystallinity (W c ) # Density measurements W c = (r r A ) / (r C r A ) # X-ray diffraction # Calorimetry # IR Spectroscopy Mo and Zhang (1995) W co = 100(I A I)/(I A I C ); Ohlberg (1962) 36

37 Composite Materials (Polymers) Degree of Crystallinity Scattered Intensity for amorphous materials distributed in the whole reciprocal space: R(Q) ~ I C (Q)Q 2 dq / (I C (Q) + I A (Q)]Q 2 dq; Ruland (1961) R(Q) = 1/W cr + kq (does not require standards, but carefull fitting and separation of crystalline peaks from the amorphous background ) 37

38 Composite Materials (Polymers) Degree of Crystallinity Crystalline Quartz + SiO 2 Glass o Ohlberg + Ruland Zotov et al. (1994) 38

Structural characterization. Part 1

Structural characterization. Part 1 Structural characterization Part 1 Experimental methods X-ray diffraction Electron diffraction Neutron diffraction Light diffraction EXAFS-Extended X- ray absorption fine structure XANES-X-ray absorption

More information

Atomic Transport & Phase Transformations Lecture III-2

Atomic Transport & Phase Transformations Lecture III-2 Atomic Transport & Phase Transformations Lecture III-2 PD Dr. Nikolay Zotov zotov@imw.uni-stuttgart.de Atomic Transport & Phase Transformations Part III Lectures Solid State Reactions Short Description

More information

Physics of Materials: Classification of Solids On The basis of Geometry and Bonding (Intermolecular forces)

Physics of Materials: Classification of Solids On The basis of Geometry and Bonding (Intermolecular forces) Physics of Materials: Classification of Solids On The basis of Geometry and Bonding (Intermolecular forces) Dr. Anurag Srivastava Atal Bihari Vajpayee Indian Institute of Information Technology and Manegement,

More information

LECTURE 1: Disordered solids: Structure properties

LECTURE 1: Disordered solids: Structure properties LECTURE 1: Disordered solids: Structure properties What is an disordered solid: examples amorphous solids or glasses inorganic compounds (e.g. SiO 2 /silicates, B 2 O 3 /borates, GeO 2 /germanates, P 2

More information

P. W. Anderson [Science 1995, 267, 1615]

P. W. Anderson [Science 1995, 267, 1615] The deepest and most interesting unsolved problem in solid state theory is probably the theory of the nature of glass and the glass transition. This could be the next breakthrough in the coming decade.

More information

Classification of Solids, Fermi Level and Conductivity in Metals Dr. Anurag Srivastava

Classification of Solids, Fermi Level and Conductivity in Metals Dr. Anurag Srivastava Classification of Solids, Fermi Level and Conductivity in Metals Dr. Anurag Srivastava Web address: http://tiiciiitm.com/profanurag Email: profanurag@gmail.com Visit me: Room-110, Block-E, IIITM Campus

More information

Structural characterization. Part 2

Structural characterization. Part 2 Structural characterization Part Determining partial pair distribution functions X-ray absorption spectroscopy (XAS). Atoms of different elements have absorption edges at different energies. Structure

More information

Neutron and X-ray Scattering Studies

Neutron and X-ray Scattering Studies Neutron and X-ray Scattering Studies Alexis G. Clare NYSCC Alfred NY Clare@alfred.edu clare@alfred.edu Scattering Studies4 1 Outline Review interpreting correlation functions Some more examples Inelastic

More information

Methoden moderner Röntgenphysik II: Streuung und Abbildung

Methoden moderner Röntgenphysik II: Streuung und Abbildung . Methoden moderner Röntgenphysik II: Streuung und Abbildung Lecture 5 Vorlesung zum Haupt/Masterstudiengang Physik SS 2014 G. Grübel, M. Martins, E. Weckert Today: 1 st exercises!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

Structure and Dynamics : An Atomic View of Materials

Structure and Dynamics : An Atomic View of Materials Structure and Dynamics : An Atomic View of Materials MARTIN T. DOVE Department ofearth Sciences University of Cambridge OXFORD UNIVERSITY PRESS Contents 1 Introduction 1 1.1 Observations 1 1.1.1 Microscopic

More information

PART 1 Introduction to Theory of Solids

PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:1 Trim:165 240MM TS: Integra, India PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:2

More information

Introduction to X-ray and neutron scattering

Introduction to X-ray and neutron scattering UNESCO/IUPAC Postgraduate Course in Polymer Science Lecture: Introduction to X-ray and neutron scattering Zhigunov Alexander Institute of Macromolecular Chemistry ASCR, Heyrovsky sq., Prague -16 06 http://www.imc.cas.cz/unesco/index.html

More information

Structural characterization of amorphous materials using x-ray scattering

Structural characterization of amorphous materials using x-ray scattering Structural characterization of amorphous materials using x-ray scattering Todd C. Hufnagel Department of Materials Science and Engineering Johns Hopkins University, Baltimore, Maryland hufnagel@jhu.edu

More information

Methoden moderner Röntgenphysik II: Streuung und Abbildung

Methoden moderner Röntgenphysik II: Streuung und Abbildung . Methoden moderner Röntgenphysik II: Streuung und Abbildung Lecture 7 Vorlesung zum Haupt/Masterstudiengang Physik SS 2014 G. Grübel, M. Martins, E. Weckert Location: Hörs AP, Physik, Jungiusstrasse Tuesdays

More information

Modelling the PDF of Crystalline Materials with RMCProfile

Modelling the PDF of Crystalline Materials with RMCProfile Modelling the PDF of Crystalline Materials with RMCProfile Dr Helen Yvonne Playford STFC ISIS Facility, Rutherford Appleton Laboratory, Didcot, UK China Spallation Neutron Source Institute of High Energy

More information

Local order in Ge10Sb30S60 glass

Local order in Ge10Sb30S60 glass Local order in Ge10Sb30S60 glass Fujio KAKINUMA* (Received October 31, 2005) The atomic structures of Ge10Sb30S60 ternary glass have been investigated by using the neutron diffraction method. The structure

More information

Tb 2 Hf 2 O 7 R 2 B 2 7 R B R 3+ T N

Tb 2 Hf 2 O 7 R 2 B 2 7 R B R 3+ T N Tb Hf O 7 7 χ ac(t ) χ(t ) M(H) C p(t ) µ χ ac(t ) µ 7 7 7 R B 7 R B R 3+ 111 7 7 7 7 111 θ p = 19 7 7 111 7 15 7 7 7 7 7 7 7 7 T N.55 3+ 7 µ µ B 7 7 7 3+ 4f 8 S = 3 L = 3 J = 6 J + 1 = 13 7 F 6 3+ 7 7

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condensed Matter Physics Crystalline Solids - Introduction M.P. Vaughan Overview Overview of course Crystal solids Crystal structure Crystal symmetry The reciprocal lattice Band theory

More information

through a few examples Diffuse scattering Isabelle Mirebeau Laboratoire Léon Brillouin CE-Saclay Gif-sur Yvette, FRANCE

through a few examples Diffuse scattering Isabelle Mirebeau Laboratoire Léon Brillouin CE-Saclay Gif-sur Yvette, FRANCE through a few examples Diffuse scattering Isabelle Mirebeau Laboratoire Léon Brillouin CE-Saclay 91191 Gif-sur Yvette, FRANCE Outline General features Nuclear diffuse scattering: local chemical order and/or

More information

Structural characterization. Part 2

Structural characterization. Part 2 Structural characterization Part Scattering angle Crystalline materials Bragg s law: Scattering vector Q ~ d -1, where d is interplanar distance Q has dimension [m -1 ], hence large Q (large scattering

More information

Correlation Functions and Fourier Transforms

Correlation Functions and Fourier Transforms Correlation Functions and Fourier Transforms Introduction The importance of these functions in condensed matter physics Correlation functions (aside convolution) Fourier transforms The diffraction pattern

More information

Small Angle X-ray Scattering (SAXS)

Small Angle X-ray Scattering (SAXS) Small Angle X-ray Scattering (SAXS) We have considered that Bragg's Law, d = λ/(2 sinθ), supports a minimum size of measurement of λ/2 in a diffraction experiment (limiting sphere of inverse space) but

More information

Setting The motor that rotates the sample about an axis normal to the diffraction plane is called (or ).

Setting The motor that rotates the sample about an axis normal to the diffraction plane is called (or ). X-Ray Diffraction X-ray diffraction geometry A simple X-ray diffraction (XRD) experiment might be set up as shown below. We need a parallel X-ray source, which is usually an X-ray tube in a fixed position

More information

Solutions and Ions. Pure Substances

Solutions and Ions. Pure Substances Class #4 Solutions and Ions CHEM 107 L.S. Brown Texas A&M University Pure Substances Pure substance: described completely by a single chemical formula Fixed composition 1 Mixtures Combination of 2 or more

More information

Review of Last Class 1

Review of Last Class 1 Review of Last Class 1 X-Ray diffraction of crystals: the Bragg formulation Condition of diffraction peak: 2dd sin θθ = nnλλ Review of Last Class 2 X-Ray diffraction of crystals: the Von Laue formulation

More information

SOLID STATE 9. Determination of Crystal Structures

SOLID STATE 9. Determination of Crystal Structures SOLID STATE 9 Determination of Crystal Structures In the diffraction experiment, we measure intensities as a function of d hkl. Intensities are the sum of the x-rays scattered by all the atoms in a crystal.

More information

Neutron and X-ray diffraction

Neutron and X-ray diffraction Neutron and X-ray diffraction Laurent Cormier Institut de Minéralogie, Physique des Matériaux et Cosmochimie Université Pierre et Marie Curie CNRS Paris, France cormier@impmc.upmc.fr Cargese School First

More information

Chapter 3: Elements and Compounds. 3.1 Elements

Chapter 3: Elements and Compounds. 3.1 Elements Chapter 3: Elements and Compounds 3.1 Elements An element is a fundamental substance that cannot be broken down by chemical or physical methods to simpler substances. The 118 known elements are nature

More information

Combined SANS and SAXS in studies of nanoparticles with core-shell structure

Combined SANS and SAXS in studies of nanoparticles with core-shell structure Indian Journal of Pure & Applied Physics Vol. 44, October 006, pp. 74-78 Combined SANS and SAXS in studies of nanoparticles with core-shell structure P S Goyal & V K Aswal* UGC-DAE CSR, Mumbai Centre (*Solid

More information

Structural and Mechanical Properties of Nanostructures

Structural and Mechanical Properties of Nanostructures Master s in nanoscience Nanostructural properties Mechanical properties Structural and Mechanical Properties of Nanostructures Prof. Angel Rubio Dr. Letizia Chiodo Dpto. Fisica de Materiales, Facultad

More information

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. 2.21 Ionic Bonding 100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. Forming ions Metal atoms lose electrons to form +ve ions. Non-metal

More information

Advanced Vitreous State - Physical Properties of Glass

Advanced Vitreous State - Physical Properties of Glass Advanced Vitreous State - Physical Properties of Glass Lecture 26: Charge Conduction Properties of Glass: Ionic Conduction in Glass - Part 2 Activation Energies in Glass Steve W. Martin Department of Materials

More information

Atomic Structure & Interatomic Bonding

Atomic Structure & Interatomic Bonding Atomic Structure & Interatomic Bonding Chapter Outline Review of Atomic Structure Atomic Bonding Atomic Structure Atoms are the smallest structural units of all solids, liquids & gases. Atom: The smallest

More information

materials and their properties

materials and their properties materials and their properties macroscopic properties phase state strength / stiffness electrical conductivity chemical properties color / transparence spectroscopical properties surface properties density

More information

Advanced Vitreous State - Physical Properties of Glass

Advanced Vitreous State - Physical Properties of Glass Advanced Vitreous State - Physical Properties of Glass Lecture 25: Charge Conduction Properties of Glass: Steve W. Martin Ionic Conduction in Glass - Part 1 Relationship to Glass Structure and Composition

More information

Metal Structure. Chromium, Iron, Molybdenum, Tungsten Face-centered cubic (FCC)

Metal Structure. Chromium, Iron, Molybdenum, Tungsten Face-centered cubic (FCC) Metal Structure Atoms held together by metallic bonding Crystalline structures in the solid state, almost without exception BCC, FCC, or HCP unit cells Bodycentered cubic (BCC) Chromium, Iron, Molybdenum,

More information

Earth Materials I Crystal Structures

Earth Materials I Crystal Structures Earth Materials I Crystal Structures Isotopes same atomic number, different numbers of neutrons, different atomic mass. Ta ble 1-1. Su mmar y of quantu m num bers Name Symbol Values Principal n 1, 2,

More information

lectures accompanying the book: Solid State Physics: An Introduction, by Philip ofmann (2nd edition 2015, ISBN-10: 3527412824, ISBN-13: 978-3527412822, Wiley-VC Berlin. www.philiphofmann.net 1 Bonds between

More information

Supplementary Information for Observation of dynamic atom-atom correlation in liquid helium in real space

Supplementary Information for Observation of dynamic atom-atom correlation in liquid helium in real space 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 Supplementary Information for Observation of dynamic atom-atom correlation in liquid helium in real space Supplementary Note : Total PDF The total (snap-shot) PDF is obtained

More information

Scattering Lecture. February 24, 2014

Scattering Lecture. February 24, 2014 Scattering Lecture February 24, 2014 Structure Determination by Scattering Waves of radiation scattered by different objects interfere to give rise to an observable pattern! The wavelength needs to close

More information

Defects. Defects. Kap. 3 States of aggregation. Perfect Crystal

Defects. Defects. Kap. 3 States of aggregation. Perfect Crystal Kap. 3 States of aggregation Defects Perfect Crystal A A perfect crystal with every atom in the correct position does not exist. Only a hypothetical situation at 0 K Crystals are like people: it is the

More information

Scattering and Diffraction

Scattering and Diffraction Scattering and Diffraction Adventures in k-space, part 1 Lenson Pellouchoud SLAC / SSL XSD summer school 7/16/018 lenson@slac.stanford.edu Outline Elastic Scattering eview / overview and terminology Form

More information

4.1 Atomic structure and the periodic table. GCSE Chemistry

4.1 Atomic structure and the periodic table. GCSE Chemistry 4.1 Atomic structure and the periodic table GCSE Chemistry All substances are made of atoms this is cannot be chemically broken down it is the smallest part of an element. Elements are made of only one

More information

X-ray, Neutron and e-beam scattering

X-ray, Neutron and e-beam scattering X-ray, Neutron and e-beam scattering Introduction Why scattering? Diffraction basics Neutrons and x-rays Techniques Direct and reciprocal space Single crystals Powders CaFe 2 As 2 an example What is the

More information

Absence of decay in the amplitude of pair distribution functions at large distances

Absence of decay in the amplitude of pair distribution functions at large distances January 8, 4 Absence of decay in the amplitude of pair distribution functions at large distances V. A. Levashov, M. F. Thorpe, and S. J. L. Billinge Department of Physics and Astronomy, Michigan State

More information

Structural properties of low-density liquid alkali metals

Structural properties of low-density liquid alkali metals PRAMANA c Indian Academy of Sciences Vol. 65, No. 6 journal of December 2005 physics pp. 1085 1096 Structural properties of low-density liquid alkali metals A AKANDE 1, G A ADEBAYO 1,2 and O AKINLADE 2

More information

CHEM 10113, Quiz 5 October 26, 2011

CHEM 10113, Quiz 5 October 26, 2011 CHEM 10113, Quiz 5 October 26, 2011 Name (please print) All equations must be balanced and show phases for full credit. Significant figures count, show charges as appropriate, and please box your answers!

More information

Atomic-scale structure of disordered pharmaceutical materials by high-energy XRD and atomic PDF analysis

Atomic-scale structure of disordered pharmaceutical materials by high-energy XRD and atomic PDF analysis Atomic-scale structure of disordered pharmaceutical materials by high-energy XRD and atomic PDF analysis Valeri Petkov Department of Physics, Central Michigan University, Mt. Pleasant, MI 48859 petkov@phy.cmich.edu

More information

Analysis of Disordered Materials Using Total Scattering and the Atomic Pair Distribution Function

Analysis of Disordered Materials Using Total Scattering and the Atomic Pair Distribution Function Analysis of Disordered Materials Using Total Scattering and the Atomic Pair Distribution Function Thomas Proffen tproffen@lanl.gov LA-UR 05-1010 LA-UR 06-6075 Operated by the Los Alamos National Security,

More information

X-ray diffraction geometry

X-ray diffraction geometry X-ray diffraction geometry Setting controls sample orientation in the diffraction plane. most important for single-crystal diffraction For any poly- (or nano-) crystalline specimen, we usually set: 1 X-ray

More information

Fundamentals of X-ray diffraction

Fundamentals of X-ray diffraction Fundamentals of X-ray diffraction Elena Willinger Lecture series: Modern Methods in Heterogeneous Catalysis Research Outline History of X-ray Sources of X-ray radiation Physics of X-ray scattering Fundamentals

More information

Structural properties of low density liquid alkali metals

Structural properties of low density liquid alkali metals PRAMANA c Indian Academy of Sciences Vol. xx, No. x journal of xxxxxx 2005 physics pp. 1 12 Structural properties of low density liquid alkali metals A AKANDE 1, G A ADEBAYO 1,2 and O AKINLADE 2 1 The

More information

The Solid State. Phase diagrams Crystals and symmetry Unit cells and packing Types of solid

The Solid State. Phase diagrams Crystals and symmetry Unit cells and packing Types of solid The Solid State Phase diagrams Crystals and symmetry Unit cells and packing Types of solid Learning objectives Apply phase diagrams to prediction of phase behaviour Describe distinguishing features of

More information

CHAPTER 1 Atoms and bonding. Ionic bonding Covalent bonding Metallic bonding van der Waals bonding

CHAPTER 1 Atoms and bonding. Ionic bonding Covalent bonding Metallic bonding van der Waals bonding CHAPTER 1 Atoms and bonding The periodic table Ionic bonding Covalent bonding Metallic bonding van der Waals bonding Atoms and bonding In order to understand the physics of semiconductor (s/c) devices,

More information

Quantum Condensed Matter Physics Lecture 5

Quantum Condensed Matter Physics Lecture 5 Quantum Condensed Matter Physics Lecture 5 detector sample X-ray source monochromator David Ritchie http://www.sp.phy.cam.ac.uk/drp2/home QCMP Lent/Easter 2019 5.1 Quantum Condensed Matter Physics 1. Classical

More information

Basics of XRD part III

Basics of XRD part III Basics of XRD part III Dr. Peter G. Weidler Institute of Functional Interfaces IFG 1 10/31/17 KIT The Research University of the Helmholtz Association Name of Institute, Faculty, Department www.kit.edu

More information

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13 Atomic Physics Chapter 6 X ray 11/20/13 24/12/2018 Jinniu Hu 1!1 6.1 The discovery of X ray X-rays were discovered in 1895 by the German physicist Wilhelm Roentgen. He found that a beam of high-speed electrons

More information

Introduction to Solid State Physics or the study of physical properties of matter in a solid phase

Introduction to Solid State Physics or the study of physical properties of matter in a solid phase Introduction to Solid State Physics or the study of physical properties of matter in a solid phase Prof. Germar Hoffmann 1. Crystal Structures 2. Reciprocal Lattice 3. Crystal Binding and Elastic Constants

More information

- Light has properties of WAVES such as DIFFRACTION (it bends around small obstructions).

- Light has properties of WAVES such as DIFFRACTION (it bends around small obstructions). 170 LIGHT wavelength Diffraction frequency = wavelengths / time = - Light has properties of WAVES such as DIFFRACTION (it bends around small obstructions). - Einstein noted that viewing light as a particle

More information

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Physics of disordered materials Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Course plan Familiarity with the basic description of disordered structures

More information

CHM 101 PRACTICE TEST 1 Page 1 of 4

CHM 101 PRACTICE TEST 1 Page 1 of 4 CHM 101 PRACTICE TEST 1 Page 1 of 4 Please show calculations (stuffed equations) on all mathematical problems!! On the actual test, "naked answers, with no work shown, will receive no credit even if correct.

More information

nano-scales order in non-crystalline oxides: strain minimizing chemical bonding self-organizations in SiO2

nano-scales order in non-crystalline oxides: strain minimizing chemical bonding self-organizations in SiO2 nano-scales order in non-crystalline oxides: strain minimizing chemical bonding self-organizations in Si2 1 Gerry Lucovsky and 2 Jim Phillips 1 North Carolina State University, Department of Physics, Raleigh,

More information

A NEW CONCEPT ABOUT THE STATIC STRUCTURE AND ALKALI NON-BRIDGING OXYGEN DEPENDENCE OF THE MIXED ALKALI EFFECT IN BISMUTHATE GLASSES

A NEW CONCEPT ABOUT THE STATIC STRUCTURE AND ALKALI NON-BRIDGING OXYGEN DEPENDENCE OF THE MIXED ALKALI EFFECT IN BISMUTHATE GLASSES Bulg. J. Phys. 30 (2003) 141 151 A NEW CONCEPT ABOUT THE STATIC STRUCTURE AND ALKALI NON-BRIDGING OXYGEN DEPENDENCE OF THE MIXED ALKALI EFFECT IN BISMUTHATE GLASSES SH. EL-DESOUKI, E.E. SHAISHA, A.A. BAHGAT

More information

MECH 6661 lecture 9/1 Dr. M. Medraj Mech. Eng. Dept. - Concordia University

MECH 6661 lecture 9/1 Dr. M. Medraj Mech. Eng. Dept. - Concordia University Thermodynamic Models Multicomponent Systems Outline Thermodynamic Models Regular Solution Models Sublattice Model Associated Solutions Cluster Variation Model Quasichemical Model Cluster Expansion Model

More information

DIFFRACTION METHODS IN MATERIAL SCIENCE. PD Dr. Nikolay Zotov Lecture 4_2

DIFFRACTION METHODS IN MATERIAL SCIENCE. PD Dr. Nikolay Zotov   Lecture 4_2 DIFFRACTION METHODS IN MATERIAL SCIENCE PD Dr. Nikolay Zotov Email: zotov@imw.uni-stuttgart.de Lecture 4_2 OUTLINE OF THE COURSE 0. Introduction 1. Classification of Materials 2. Defects in Solids 3. Basics

More information

Neutron and x-ray spectroscopy

Neutron and x-ray spectroscopy Neutron and x-ray spectroscopy B. Keimer Max-Planck-Institute for Solid State Research outline 1. self-contained introduction neutron scattering and spectroscopy x-ray scattering and spectroscopy 2. application

More information

Chemistry 31A Autumn 2004 Professors Chidsey & Zare Exam 2 Name:

Chemistry 31A Autumn 2004 Professors Chidsey & Zare Exam 2 Name: Chemistry 31A Autumn 2004 Professors Chidsey & Zare Exam 2 Name: SUNetID: @stanford.edu Honor Code Observed: (Signature) Circle your section 9:00am 10:00am 2:15pm 3:15pm 7:00pm 8:00pm S02 OC103 S04 OC103

More information

An introduction to vibrational properties of glass models

An introduction to vibrational properties of glass models An introduction to vibrational properties of glass models Simona ISPAS simona.ispas@univ-montp2.fr Laboratoire Charles Coulomb, Dépt. Colloïdes, Verres et Nanomatériaux, UMR 522 Université Montpellier

More information

-"l" also contributes ENERGY. Higher values for "l" mean the electron has higher energy.

-l also contributes ENERGY. Higher values for l mean the electron has higher energy. 175 - Giving the four parameters will uniquely identify an electron around an atom. No two electrons in the same atom can share all four. These parameters are called QUANTUM NUMBERS. PRINCIPAL QUANTUM

More information

Atomic Transport & Phase Transformations Lecture III-1

Atomic Transport & Phase Transformations Lecture III-1 Atomic Transport & Phase Transformations Lecture III-1 PD Dr. Nikolay Zotov zotov@imw.uni-stuttgart.de Atomic Transport & Phase Transformations Part III Lectures Solid State Reactions Short Description

More information

The Electronic Theory of Chemistry

The Electronic Theory of Chemistry JF Chemistry CH1101 The Electronic Theory of Chemistry Dr. Baker bakerrj@tcd.ie Module Aims: To provide an introduction to the fundamental concepts of theoretical and practical chemistry, including concepts

More information

- Why are phase labels required? Because phase changes either absorb or release energy. ... what does this mean?

- Why are phase labels required? Because phase changes either absorb or release energy. ... what does this mean? 157 SINCE the enthalpy change does NOT depend on path, this means that we can use standard values for enthalpy to predict the heat change in reactions that we have not tested in a calorimeter. THERMOCHEMICAL

More information

Stoichiometric defects, viz. no ateration in composition. Interstitial ( between lattice points) Vacancies (empty possitions) Wrong type atoms

Stoichiometric defects, viz. no ateration in composition. Interstitial ( between lattice points) Vacancies (empty possitions) Wrong type atoms Perfect Crystal A A perfect crystal with every atom in the correct position does not eist. Only a hypothetical situation at 0 Crystals are like people: it is the defects in them which tend to make them

More information

Review for Chapter 4: Structures and Properties of Substances

Review for Chapter 4: Structures and Properties of Substances Review for Chapter 4: Structures and Properties of Substances You are responsible for the following material: 1. Terms: You should be able to write definitions for the following terms. A complete definition

More information

Introductory Nanotechnology ~ Basic Condensed Matter Physics ~

Introductory Nanotechnology ~ Basic Condensed Matter Physics ~ Introductory Nanotechnology ~ Basic Condensed Matter Physics ~ Atsufumi Hirohata Department of Electronics Go into Nano-Scale Lateral Size [m] 10-3 10-6 Micron-scale Sub-Micron-scale Nano-scale Human hair

More information

General Chemistry for ISE students: Final examination WS 2010 (minimum point number: 50 maximum grade at 100 points maximum point number: 115)

General Chemistry for ISE students: Final examination WS 2010 (minimum point number: 50 maximum grade at 100 points maximum point number: 115) General Chemistry for ISE students: Final examination WS 2010 (minimum point number: 50 maximum grade at 100 points maximum point number: 115) 1 Which statements on the properties of an electron are correct,

More information

A modelling study on liquid arsenic tritelluride: reverse Monte Carlo modelling

A modelling study on liquid arsenic tritelluride: reverse Monte Carlo modelling JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, Vol. 11, No. 1, December 9, p. 74-78 A modelling study on liquid arsenic tritelluride: reverse Monte Carlo modelling S. DALGIC *, M. COLAKOGULLARI Department

More information

General theory of diffraction

General theory of diffraction General theory of diffraction X-rays scatter off the charge density (r), neutrons scatter off the spin density. Coherent scattering (diffraction) creates the Fourier transform of (r) from real to reciprocal

More information

Molecular Aggregation

Molecular Aggregation Molecular Aggregation Structure Analysis and Molecular Simulation of Crystals and Liquids ANGELO GAVEZZOTTI University of Milano OXFORD UNIVERSITY PRESS Contents PART I FUNDAMENTALS 1 The molecule: structure,

More information

Bonding and the Determination of Melting Points and Boiling Points

Bonding and the Determination of Melting Points and Boiling Points Bonding and the Determination of Melting Points and Boiling Points Melting Point/Freezing Point: The temperature at which a liquid becomes a solid and a solid becomes a liquid. 0 C is the freezing point

More information

-"l" also contributes ENERGY. Higher values for "l" mean the electron has higher energy.

-l also contributes ENERGY. Higher values for l mean the electron has higher energy. 170 - Giving the four parameters will uniquely identify an electron around an atom. No two electrons in the same atom can share all four. These parameters are called QUANTUM NUMBERS. PRINCIPAL QUANTUM

More information

Everything starts with atomic structure and bonding

Everything starts with atomic structure and bonding Everything starts with atomic structure and bonding not all energy values can be possessed by electrons; e- have discrete energy values we call energy levels or states. The energy values are quantized

More information

Solid State Physics 460- Lecture 5 Diffraction and the Reciprocal Lattice Continued (Kittel Ch. 2)

Solid State Physics 460- Lecture 5 Diffraction and the Reciprocal Lattice Continued (Kittel Ch. 2) Solid State Physics 460- Lecture 5 Diffraction and the Reciprocal Lattice Continued (Kittel Ch. 2) Ewald Construction 2θ k out k in G Physics 460 F 2006 Lect 5 1 Recall from previous lectures Definition

More information

Experimental Determination of Crystal Structure

Experimental Determination of Crystal Structure Experimental Determination of Crystal Structure Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. PHYS 624: Introduction to Solid State Physics http://www.physics.udel.edu/~bnikolic/teaching/phys624/phys624.html

More information

Electron Microscopy I

Electron Microscopy I Characterization of Catalysts and Surfaces Characterization Techniques in Heterogeneous Catalysis Electron Microscopy I Introduction Properties of electrons Electron-matter interactions and their applications

More information

CHEM 1311A. E. Kent Barefield. Course web page.

CHEM 1311A. E. Kent Barefield. Course web page. CHEM 1311A E. Kent Barefield Course web page http://web.chemistry.gatech.edu/~barefield/1311/chem1311a.html Two requests: cell phones to silent/off no lap tops in operation during class Bring your transmitter

More information

X-rays. X-ray Radiography - absorption is a function of Z and density. X-ray crystallography. X-ray spectrometry

X-rays. X-ray Radiography - absorption is a function of Z and density. X-ray crystallography. X-ray spectrometry X-rays Wilhelm K. Roentgen (1845-1923) NP in Physics 1901 X-ray Radiography - absorption is a function of Z and density X-ray crystallography X-ray spectrometry X-rays Cu K α E = 8.05 kev λ = 1.541 Å Interaction

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

M10/4/CHEMI/SPM/ENG/TZ2/XX+ CHEMISTRY. Wednesday 12 May 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

M10/4/CHEMI/SPM/ENG/TZ2/XX+ CHEMISTRY. Wednesday 12 May 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES M10/4/CHEMI/SPM/ENG/TZ/XX+ 106116 CHEMISTRY standard level Paper 1 Wednesday 1 May 010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so. Answer

More information

Crystal Structure Determination II

Crystal Structure Determination II Crystal Structure Determination II Dr. Falak Sher Pakistan Institute of Engineering and Applied Sciences 09/10/2010 Diffraction Intensities The integrated intensity, I (hkl) (peak area) of each powder

More information

X-ray Diffraction. Diffraction. X-ray Generation. X-ray Generation. X-ray Generation. X-ray Spectrum from Tube

X-ray Diffraction. Diffraction. X-ray Generation. X-ray Generation. X-ray Generation. X-ray Spectrum from Tube X-ray Diffraction Mineral identification Mode analysis Structure Studies X-ray Generation X-ray tube (sealed) Pure metal target (Cu) Electrons remover inner-shell electrons from target. Other electrons

More information

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101. Physical Chemistry II Lab CHEM 4644 spring 2017 final exam KEY 5 questions, 3 points each, 15 points total possible h = 6.626 10-34 J s c = 3.00 10 8 m/s 1 GHz = 10 9 s -1. B= h 8π 2 I ν= 1 2 π k μ 6 P

More information

ME 254 MATERIALS ENGINEERING 1 st Semester 1430/ st Med-Term Exam (1.5 hrs)

ME 254 MATERIALS ENGINEERING 1 st Semester 1430/ st Med-Term Exam (1.5 hrs) ME 254 MATERIALS ENGINEERING 1 st Semester 1430/1431 1 st Med-Term Exam (1.5 hrs) قسم الهندسة الميكانيكية Question 1 a) Classify the materials based on their properties and performance, give some examples.

More information

The electronic structure of materials 1

The electronic structure of materials 1 Quantum mechanics 2 - Lecture 9 December 18, 2013 1 An overview 2 Literature Contents 1 An overview 2 Literature Electronic ground state Ground state cohesive energy equilibrium crystal structure phase

More information

On the use of Kumakhov Polycapillaries to improve laboratory

On the use of Kumakhov Polycapillaries to improve laboratory ICXOM Frascati (INFN - LNF) 25-30 September 2005 On the use of Kumakhov Polycapillaries to improve laboratory Energy Dispersive X-ray X Diffractometry and Reflectometry B. Paci 1, V. Rossi Albertini 1,

More information

Bonding in Solids. What is the chemical bonding? Bond types: Ionic (NaCl vs. TiC?) Covalent Van der Waals Metallic

Bonding in Solids. What is the chemical bonding? Bond types: Ionic (NaCl vs. TiC?) Covalent Van der Waals Metallic Bonding in Solids What is the chemical bonding? Bond types: Ionic (NaCl vs. TiC?) Covalent Van der Waals Metallic 1 Ions and Ionic Radii LiCl 2 Ions (a) Ions are essentially spherical. (b) Ions may be

More information

PHYSICAL SCIENCES GRADE : 10

PHYSICAL SCIENCES GRADE : 10 PHYSICAL SCIENCES GRADE : 0 TIME : hour TOTAL : 75 INSTRUCTIONS AND INFORMATION. Write your full name on your answer book in the appropriate place. 2. The question paper consists of SEVEN questions. Answer

More information

Structure Analysis by Small-Angle X-Ray and Neutron Scattering

Structure Analysis by Small-Angle X-Ray and Neutron Scattering Structure Analysis by Small-Angle X-Ray and Neutron Scattering L. A. Feigin and D. I. Svergun Institute of Crystallography Academy of Sciences of the USSR Moscow, USSR Edited by George W. Taylor Princeton

More information

Atoms, Molecules and Minerals

Atoms, Molecules and Minerals Atoms, Molecules and Minerals Atoms Matter The smallest unit of an element that retain its properties Molecules - a small orderly group of atoms that possess specific properties - H 2 O Small nucleus surrounded

More information

APEX CARE INSTITUTE FOR PG - TRB, SLET AND NET IN PHYSICS

APEX CARE INSTITUTE FOR PG - TRB, SLET AND NET IN PHYSICS Page 1 1. Within the nucleus, the charge distribution A) Is constant, but falls to zero sharply at the nuclear radius B) Increases linearly from the centre, but falls off exponentially at the surface C)

More information