Deep Reinforcement Learning. Scratching the surface

Size: px
Start display at page:

Download "Deep Reinforcement Learning. Scratching the surface"

Transcription

1 Deep Reinforcement Learning Scratching the surface

2 Deep Reinforcement Learning

3 Scenario of Reinforcement Learning Observation State Agent Action Change the environment Don t do that Reward Environment

4 Scenario of Reinforcement Learning Observation State Agent Agent learns to take actions to maximize expected reward. Action Change the environment Thank you. Reward Environment

5 Learning to paly Go Observation Action Reward Next Move Environment

6 Learning to paly Go Observation Agent learns to take actions to maximize expected reward. Action Reward reward = 0 in most cases If win, reward = 1 If loss, reward = -1 Environment

7 Learning to paly Go - Supervised v.s. Reinforcement Supervised: Learning from teacher Next move: 5-5 Next move: 3-3 Reinforcement Learning Learning from experience First move many moves Win! (Two agents play with each other.) Alpha Go is supervised learning + reinforcement learning.

8 Learning a chat-bot Sequence-to-sequence learning

9 Learning a chat-bot - Supervised v.s. Reinforcement Supervised Reinforcement Hello Bye bye Say Hi Say Good bye.. Hello Bad Agent Agent

10 Learning a chat-bot - Reinforcement Learning Let two agents talk to each other (sometimes generate good dialogue, sometimes bad) How old are you? How old are you? See you. See you. I am 16. I though you were 12. See you. What make you think so?

11 Learning a chat-bot - Reinforcement Learning By this approach, we can generate a lot of dialogues. Use some pre-defined rules to evaluate the goodness of a dialogue Machine learns from the evaluation Dialogue 1 Dialogue 2 Dialogue 3 Dialogue 4 Dialogue 5 Dialogue 6 Dialogue 7 Dialogue 8 Deep Reinforcement Learning for Dialogue Generation

12 More applications Interactive retrieval US President [Wu & Lee, INTERSPEECH 16] user More precisely, please. Trump Is it related to Election? Yes. Here are what you are looking for. I see!

13 More applications Flying Helicopter Driving Google Cuts Its Giant Electricity Bill With DeepMind- Powered AI Text generation Hongyu Guo, Generating Text with Deep Reinforcement Learning, NIPS, 2015 Marc'Aurelio Ranzato, Sumit Chopra, Michael Auli, Wojciech Zaremba, Sequence Level Training with Recurrent Neural Networks, ICLR, 2016

14 Example: Playing Video Game Widely studies: Gym: Universe: Machine learns to play video games as human players What machine observes is pixels Machine learns to take proper action itself

15 Example: Playing Video Game Space invader Score (reward) Termination: all the aliens are killed, or your spaceship is destroyed. Kill the aliens shield fire

16 Example: Playing Video Game Space invader Play yourself: l How about machine: zx4hryqgtcvk9ltw

17 Example: Playing Video Game Start with observation s 1 Observation s 2 Observation s 3 Obtain reward r 1 = 0 Action a 1 : right Obtain reward r 2 = 5 Action a 2 : fire (kill an alien) Usually there is some randomness in the environment

18 Example: Playing Video Game Start with observation s 1 Observation s 2 Observation s 3 After many turns Game Over (spaceship destroyed) Obtain reward r T This is an episode. Learn to maximize the expected cumulative reward per episode Action a T

19 Difficulties of Reinforcement Learning Reward delay In space invader, only fire obtains reward Although the moving before fire is important In Go playing, it may be better to sacrifice immediate reward to gain more long-term reward Agent s actions affect the subsequent data it receives E.g. Exploration

20 Outline Alpha Go: policy-based + value-based + model-based Policy-based Value-based Learning an Actor Actor + Critic Learning a Critic Asynchronous Advantage Actor-Critic (A3C) Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, Koray Kavukcuoglu, Asynchronous Methods for Deep Reinforcement Learning, ICML, 2016

21 To learn deep reinforcement learning Textbook: Reinforcement Learning: An Introduction Lectures of David Silver ml (10 lectures, 1:30 each) t_learning/ (Deep Reinforcement Learning ) Lectures of John Schulman

22 Policy-based Approach Learning an Actor

23 Machine Learning Looking for a Function Observation Function input Actor/Policy Action = π( Observation ) Action Function output Used to pick the best function Reward Environment

24 Three Steps for Deep Learning Step 1: define a set of function Neural Network as Actor Step 2: goodness of function Step 3: pick the best function Deep Learning is so simple

25 Neural network as Actor Input of neural network: the observation of machine represented as a vector or a matrix Output neural network : each action corresponds to a neuron in output layer pixels NN as actor left right fire Probability of taking the action What is the benefit of using network instead of lookup table? generalization

26 Three Steps for Deep Learning Step 1: define a set of function Neural Network as Actor Step 2: goodness of function Step 3: pick the best function Deep Learning is so simple

27 Goodness of Actor Total Loss: N L = n=1 l n Review: Supervised learning Training Example Find the network parameters θ that minimize total loss L 1 x 1 x 2 x 256 Given a set of parameters θ Softmax y 1 y 2 y 10 As close as possible Loss l 1 0 target 0

28 Goodness of Actor Given an actor π θ s with network parameter θ Use the actor π θ s to play the video game Start with observation s 1 Machine decides to take a 1 Machine obtains reward r 1 Machine sees observation s 2 Machine decides to take a 2 Machine obtains reward r 2 Machine sees observation s 3 Machine decides to take a T Machine obtains reward r T END Total reward: R θ = σt t=1 Even with the same actor, R θ is different each time We define തR θ as the expected value of R θ തR θ evaluates the goodness of an actor π θ s r t Randomness in the actor and the game

29 Goodness of Actor An episode is considered as a trajectory τ τ = s 1, a 1, r 1, s 2, a 2, r 2,, s T, a T, r T R τ = σt t=1 r t If you use an actor to play the game, each τ has a probability to be sampled The probability depends on actor parameter θ: P τ θ തR θ = R τ P τ θ τ Sum over all possible trajectory N 1 N n=1 R τ n Use π θ to play the game N times, obtain τ 1, τ 2,, τ N Sampling τ from P τ θ N times

30 Three Steps for Deep Learning Step 1: define a set of function Neural Network as Actor Step 2: goodness of function Step 3: pick the best function Deep Learning is so simple

31 Gradient Ascent Problem statement θ = arg max θ Gradient ascent Start with θ 0 θ 1 θ 0 + η തR θ 0 θ 2 θ 1 + η തR θ 1 തR θ തR θ = R τ P τ θ τ θ = w 1, w 2,, b 1, തR θ Τ w 1 തR θ = തR θ Τ w 2 തR θ Τ b 1

32 Gradient Ascent തR θ = R τ P τ θ തR θ =? τ തR θ = R τ P τ θ τ = R τ P τ θ R τ do not have to be differentiable It can even be a black box. τ P τ θ P τ θ = R τ P τ θ logp τ θ τ dlog f x dx = 1 f x df x dx N 1 N n=1 R τ n logp τ n θ Use π θ to play the game N times, Obtain τ 1, τ 2,, τ N

33 Gradient Ascent logp τ θ =? τ = s 1, a 1, r 1, s 2, a 2, r 2,, s T, a T, r T P τ θ = p s 1 p a 1 s 1, θ p r 1, s 2 s 1, a 1 p a 2 s 2, θ p r 2, s 3 s 2, a 2 T = p s 1 t=1 p a t s t, θ p r t, s t+1 s t, a t not related to your actor Control by your actor π θ p a t = "fire" s t, θ = 0.7 left 0.1 Actor s right t π θ 0.2 fire 0.7

34 Gradient Ascent logp τ θ =? τ = s 1, a 1, r 1, s 2, a 2, r 2,, s T, a T, r T P τ θ = p s 1 logp τ θ T = logp s 1 + t=1 T T t=1 logp τ θ = t=1 p a t s t, θ p r t, s t+1 s t, a t logp a t s t, θ + logp r t, s t+1 s t, a t logp a t s t, θ Ignore the terms not related to θ

35 Gradient Ascent θ new θ old + η തR θ old N തR θ 1 N n=1 N = 1 N n=1 R τ n logp τ n θ T n N = 1 N n=1 R τ n logp a n t s n t, θ t=1 T logp τ θ = logp a t s t, θ t=1 R τ n T n logp a n t s n t, θ If in τ n machine takes a t n when seeing s t n in R τ n is positive Tuning θ to increase p a t n s t n t=1 What if we replace R τ n with r n t R τ n is negative Tuning θ to decrease p a t n s t n It is very important to consider the cumulative reward R τ n the whole trajectory τ n n instead of immediate reward r t of

36 Gradient Ascent θ new θ old + η തR θ old N N തR θ 1 N R τ n logp τ n θ = 1 N R τ n n=1 n=1 N = 1 N n=1 T n R τ n logp a n t s n t, θ t=1 T logp τ θ = logp a t s t, θ t=1 T n logp a n t s n t, θ t=1 p a n t s n t, θ p a n t s n t, θ Why divided by p a n t s n t, θ? e.g. in the sampling data s has been seen in τ 13, τ 15, τ 17, τ 33 In τ 13, take action a R τ 13 = 2 In τ 15, take action b R τ 15 = 1 In τ 17, take action b R τ 17 = 1 In τ 33, take action b R τ 33 = 1

37 Add a Baseline It is possible that R τ n is always positive. θ new θ old + η തR θ old 1 NN തR θ 1 N n=1 TT nn RR τ n τ n logp b logp a n t s n t, aθ n t s n t, θ t=1 Ideal case Sampling It is probability a b c a b c Not sampled The probability of the actions not sampled will decrease. a b c a b c

38 Value-based Approach Learning a Critic

39 Critic A critic does not determine the action. Given an actor, it evaluates the how good the actor is An actor can be found from a critic. e.g. Q-learning (not today)

40 Three kinds of Critics A critic is a function depending on the actor π it is evaluated The function is represented by a neural network State value function V π s When using actor π, the cumulated reward expects to be obtained after seeing observation (state) s s V π V π s scalar V π s is large V π s is smaller

41 Three kinds of Critics State-action value function Q π s, a When using actor π, the cumulated reward expects to be obtained after seeing observation s and taking a s a Q π Q π s, a scalar s a Q π Q π s, a = left Q π s, a = right Q π s, a = fire for discrete action only

42 How to estimate V π s Monte-Carlo based approach The critic watches π playing the game After seeing s a, Until the end of the episode, the cumulated reward is G a s a V π V π s a G a After seeing s b, Until the end of the episode, the cumulated reward is G b s b V π V π s b G b

43 How to estimate V π s Temporal-difference approach s a, a, r, s b s a V π V π s a V π s a + r = V π s b - V π s b V π s a r s b V π V π s b Some applications have very long episodes, so that delaying all learning until an episode's end is too slow.

44 How to estimate V π s [Sutton, v2, Example 6.4] The critic has the following 8 episodes s a, r = 0, s b, r = 0, END s b, r = 1, END s b, r = 1, END s b, r = 1, END s b, r = 1, END s b, r = 1, END s b, r = 1, END s b, r = 0, END V π s b = 3/4 V π s a =? Monte-Carlo: Temporal-difference: 0? 3/4? V π s a = 0 (The actions are ignored here.) V π s a + r = V π s b 3/4 0 3/4

45 Deep Reinforcement Learning Actor-Critic

46 Actor-Critic θ new θ old + η തR θ old N T n തR θ 1 N n=1 R τ n logp a t n s t n, θ Advantage Function: t=1 Evaluated by critic r n t V π θ s n t V π θ n s t+1 Baseline is added The reward r t n we truly obtain when taking action a t n Positive advantage function Negative advantage function Expected reward r t n we obtain if we use actor π θ Increasing the prob. of action a t n decreasing the prob. of action a t n

47 Actor-Critic Tips The parameters of actor π s can be shared Network s Network and critic V π s left right fire Network V π s Use output entropy as regularization for π s Larger entropy is preferred exploration

48 Asynchronous Source of image: 1. Copy global parameters 2. Sampling some data 3. Compute gradients 4. Update global models θ θ 1 θ θ 1 θ 1 θ 2 +η θ (other workers also update models)

49 Demo of A3C DeepMind

50 Demo of A3C DeepMind

51 Conclusion of This Semester

52 Learning Map Regression Linear Model Semi-supervised Learning Unsupervised Learning Transfer Learning Reinforcement Learning Deep SVM, decision Learning tree, K-NN Non-linear Model Classification Supervised Learning Structured Learning

53 Acknowledgment 感謝 Larry Guo 同學發現投影片上的符號錯誤

Introduction of Reinforcement Learning

Introduction of Reinforcement Learning Introduction of Reinforcement Learning Deep Reinforcement Learning Reference Textbook: Reinforcement Learning: An Introduction http://incompleteideas.net/sutton/book/the-book.html Lectures of David Silver

More information

Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) Proximal Policy Optimization (PPO) default reinforcement learning algorithm at OpenAI Policy Gradient On-policy Off-policy Add constraint DeepMind https://youtu.be/gn4nrcc9twq OpenAI https://blog.openai.com/o

More information

Deep learning attracts lots of attention.

Deep learning attracts lots of attention. Deep Learning Deep learning attracts lots of attention. I believe you have seen lots of exciting results before. Deep learning trends at Google. Source: SIGMOD/Jeff Dean Ups and downs of Deep Learning

More information

Regression. Hung-yi Lee 李宏毅

Regression. Hung-yi Lee 李宏毅 Regression Hung-yi Lee 李宏毅 Regression: Output a scalar Stock Market Forecast f Self-driving Car = Dow Jones Industrial Average at tomorrow f = 方向盤角度 Recommendation f = 使用者 A 商品 B 購買可能性 Example Application

More information

Deep Learning. Hung-yi Lee 李宏毅

Deep Learning. Hung-yi Lee 李宏毅 Deep Learning Hung-yi Lee 李宏毅 Deep learning attracts lots of attention. I believe you have seen lots of exciting results before. Deep learning trends at Google. Source: SIGMOD 206/Jeff Dean 958: Perceptron

More information

Policy Gradient Methods. February 13, 2017

Policy Gradient Methods. February 13, 2017 Policy Gradient Methods February 13, 2017 Policy Optimization Problems maximize E π [expression] π Fixed-horizon episodic: T 1 Average-cost: lim T 1 T r t T 1 r t Infinite-horizon discounted: γt r t Variable-length

More information

REINFORCE Framework for Stochastic Policy Optimization and its use in Deep Learning

REINFORCE Framework for Stochastic Policy Optimization and its use in Deep Learning REINFORCE Framework for Stochastic Policy Optimization and its use in Deep Learning Ronen Tamari The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (#67679) February 28, 2016 Ronen Tamari

More information

Deep Reinforcement Learning SISL. Jeremy Morton (jmorton2) November 7, Stanford Intelligent Systems Laboratory

Deep Reinforcement Learning SISL. Jeremy Morton (jmorton2) November 7, Stanford Intelligent Systems Laboratory Deep Reinforcement Learning Jeremy Morton (jmorton2) November 7, 2016 SISL Stanford Intelligent Systems Laboratory Overview 2 1 Motivation 2 Neural Networks 3 Deep Reinforcement Learning 4 Deep Learning

More information

Approximation Methods in Reinforcement Learning

Approximation Methods in Reinforcement Learning 2018 CS420, Machine Learning, Lecture 12 Approximation Methods in Reinforcement Learning Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/cs420/index.html Reinforcement

More information

INF 5860 Machine learning for image classification. Lecture 14: Reinforcement learning May 9, 2018

INF 5860 Machine learning for image classification. Lecture 14: Reinforcement learning May 9, 2018 Machine learning for image classification Lecture 14: Reinforcement learning May 9, 2018 Page 3 Outline Motivation Introduction to reinforcement learning (RL) Value function based methods (Q-learning)

More information

CS230: Lecture 9 Deep Reinforcement Learning

CS230: Lecture 9 Deep Reinforcement Learning CS230: Lecture 9 Deep Reinforcement Learning Kian Katanforoosh Menti code: 21 90 15 Today s outline I. Motivation II. Recycling is good: an introduction to RL III. Deep Q-Learning IV. Application of Deep

More information

1 Introduction 2. 4 Q-Learning The Q-value The Temporal Difference The whole Q-Learning process... 5

1 Introduction 2. 4 Q-Learning The Q-value The Temporal Difference The whole Q-Learning process... 5 Table of contents 1 Introduction 2 2 Markov Decision Processes 2 3 Future Cumulative Reward 3 4 Q-Learning 4 4.1 The Q-value.............................................. 4 4.2 The Temporal Difference.......................................

More information

Semi-supervised Learning

Semi-supervised Learning Semi-supervised Learning Introduction Supervised learning: x r, y r R r=1 E.g.x r : image, y r : class labels Semi-supervised learning: x r, y r r=1 R, x u R+U u=r A set of unlabeled data, usually U >>

More information

Deep reinforcement learning. Dialogue Systems Group, Cambridge University Engineering Department

Deep reinforcement learning. Dialogue Systems Group, Cambridge University Engineering Department Deep reinforcement learning Milica Gašić Dialogue Systems Group, Cambridge University Engineering Department 1 / 25 In this lecture... Introduction to deep reinforcement learning Value-based Deep RL Deep

More information

Deep Reinforcement Learning: Policy Gradients and Q-Learning

Deep Reinforcement Learning: Policy Gradients and Q-Learning Deep Reinforcement Learning: Policy Gradients and Q-Learning John Schulman Bay Area Deep Learning School September 24, 2016 Introduction and Overview Aim of This Talk What is deep RL, and should I use

More information

Reinforcement Learning for NLP

Reinforcement Learning for NLP Reinforcement Learning for NLP Advanced Machine Learning for NLP Jordan Boyd-Graber REINFORCEMENT OVERVIEW, POLICY GRADIENT Adapted from slides by David Silver, Pieter Abbeel, and John Schulman Advanced

More information

Convolutional Neural Network. Hung-yi Lee

Convolutional Neural Network. Hung-yi Lee al Neural Network Hung-yi Lee Why CNN for Image? [Zeiler, M. D., ECCV 2014] x 1 x 2 Represented as pixels x N The most basic classifiers Use 1 st layer as module to build classifiers Use 2 nd layer as

More information

Reinforcement Learning and NLP

Reinforcement Learning and NLP 1 Reinforcement Learning and NLP Kapil Thadani kapil@cs.columbia.edu RESEARCH Outline 2 Model-free RL Markov decision processes (MDPs) Derivative-free optimization Policy gradients Variance reduction Value

More information

Combining PPO and Evolutionary Strategies for Better Policy Search

Combining PPO and Evolutionary Strategies for Better Policy Search Combining PPO and Evolutionary Strategies for Better Policy Search Jennifer She 1 Abstract A good policy search algorithm needs to strike a balance between being able to explore candidate policies and

More information

(Deep) Reinforcement Learning

(Deep) Reinforcement Learning Martin Matyášek Artificial Intelligence Center Czech Technical University in Prague October 27, 2016 Martin Matyášek VPD, 2016 1 / 17 Reinforcement Learning in a picture R. S. Sutton and A. G. Barto 2015

More information

Multiagent (Deep) Reinforcement Learning

Multiagent (Deep) Reinforcement Learning Multiagent (Deep) Reinforcement Learning MARTIN PILÁT (MARTIN.PILAT@MFF.CUNI.CZ) Reinforcement learning The agent needs to learn to perform tasks in environment No prior knowledge about the effects of

More information

Variance Reduction for Policy Gradient Methods. March 13, 2017

Variance Reduction for Policy Gradient Methods. March 13, 2017 Variance Reduction for Policy Gradient Methods March 13, 2017 Reward Shaping Reward Shaping Reward Shaping Reward shaping: r(s, a, s ) = r(s, a, s ) + γφ(s ) Φ(s) for arbitrary potential Φ Theorem: r admits

More information

Introduction to Reinforcement Learning. CMPT 882 Mar. 18

Introduction to Reinforcement Learning. CMPT 882 Mar. 18 Introduction to Reinforcement Learning CMPT 882 Mar. 18 Outline for the week Basic ideas in RL Value functions and value iteration Policy evaluation and policy improvement Model-free RL Monte-Carlo and

More information

Q-Learning in Continuous State Action Spaces

Q-Learning in Continuous State Action Spaces Q-Learning in Continuous State Action Spaces Alex Irpan alexirpan@berkeley.edu December 5, 2015 Contents 1 Introduction 1 2 Background 1 3 Q-Learning 2 4 Q-Learning In Continuous Spaces 4 5 Experimental

More information

Today s s Lecture. Applicability of Neural Networks. Back-propagation. Review of Neural Networks. Lecture 20: Learning -4. Markov-Decision Processes

Today s s Lecture. Applicability of Neural Networks. Back-propagation. Review of Neural Networks. Lecture 20: Learning -4. Markov-Decision Processes Today s s Lecture Lecture 20: Learning -4 Review of Neural Networks Markov-Decision Processes Victor Lesser CMPSCI 683 Fall 2004 Reinforcement learning 2 Back-propagation Applicability of Neural Networks

More information

Branes with Brains. Reinforcement learning in the landscape of intersecting brane worlds. String_Data 2017, Boston 11/30/2017

Branes with Brains. Reinforcement learning in the landscape of intersecting brane worlds. String_Data 2017, Boston 11/30/2017 Branes with Brains Reinforcement learning in the landscape of intersecting brane worlds FABIAN RUEHLE (UNIVERSITY OF OXFORD) String_Data 2017, Boston 11/30/2017 Based on [work in progress] with Brent Nelson

More information

Classification: Probabilistic Generative Model

Classification: Probabilistic Generative Model Classification: Probabilistic Generative Model Classification x Function Class n Credit Scoring Input: income, savings, profession, age, past financial history Output: accept or refuse Medical Diagnosis

More information

David Silver, Google DeepMind

David Silver, Google DeepMind Tutorial: Deep Reinforcement Learning David Silver, Google DeepMind Outline Introduction to Deep Learning Introduction to Reinforcement Learning Value-Based Deep RL Policy-Based Deep RL Model-Based Deep

More information

Actor-Critic. Hung-yi Lee

Actor-Critic. Hung-yi Lee Actor-Critic Hung-yi Lee Asynchronous Advntge Actor-Critic (A3C) Volodymyr Mnih, Adrià Puigdomènech Bdi, Mehdi Mirz, Alex Grves, Timothy P. Lillicrp, Tim Hrley, Dvid Silver, Kory Kvukcuoglu, Asynchronous

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Cyber Rodent Project Some slides from: David Silver, Radford Neal CSC411: Machine Learning and Data Mining, Winter 2017 Michael Guerzhoy 1 Reinforcement Learning Supervised learning:

More information

Lecture 9: Policy Gradient II 1

Lecture 9: Policy Gradient II 1 Lecture 9: Policy Gradient II 1 Emma Brunskill CS234 Reinforcement Learning. Winter 2019 Additional reading: Sutton and Barto 2018 Chp. 13 1 With many slides from or derived from David Silver and John

More information

Trust Region Policy Optimization

Trust Region Policy Optimization Trust Region Policy Optimization Yixin Lin Duke University yixin.lin@duke.edu March 28, 2017 Yixin Lin (Duke) TRPO March 28, 2017 1 / 21 Overview 1 Preliminaries Markov Decision Processes Policy iteration

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Policy Search: Actor-Critic and Gradient Policy search Mario Martin CS-UPC May 28, 2018 Mario Martin (CS-UPC) Reinforcement Learning May 28, 2018 / 63 Goal of this lecture So far

More information

CS599 Lecture 1 Introduction To RL

CS599 Lecture 1 Introduction To RL CS599 Lecture 1 Introduction To RL Reinforcement Learning Introduction Learning from rewards Policies Value Functions Rewards Models of the Environment Exploitation vs. Exploration Dynamic Programming

More information

More Tips for Training Neural Network. Hung-yi Lee

More Tips for Training Neural Network. Hung-yi Lee More Tips for Training Neural Network Hung-yi ee Outline Activation Function Cost Function Data Preprocessing Training Generalization Review: Training Neural Network Neural network: f ; θ : input (vector)

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Ron Parr CompSci 7 Department of Computer Science Duke University With thanks to Kris Hauser for some content RL Highlights Everybody likes to learn from experience Use ML techniques

More information

Deep Reinforcement Learning via Policy Optimization

Deep Reinforcement Learning via Policy Optimization Deep Reinforcement Learning via Policy Optimization John Schulman July 3, 2017 Introduction Deep Reinforcement Learning: What to Learn? Policies (select next action) Deep Reinforcement Learning: What to

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Function approximation Mario Martin CS-UPC May 18, 2018 Mario Martin (CS-UPC) Reinforcement Learning May 18, 2018 / 65 Recap Algorithms: MonteCarlo methods for Policy Evaluation

More information

Reinforcement Learning via Policy Optimization

Reinforcement Learning via Policy Optimization Reinforcement Learning via Policy Optimization Hanxiao Liu November 22, 2017 1 / 27 Reinforcement Learning Policy a π(s) 2 / 27 Example - Mario 3 / 27 Example - ChatBot 4 / 27 Applications - Video Games

More information

REINFORCEMENT LEARNING

REINFORCEMENT LEARNING REINFORCEMENT LEARNING Larry Page: Where s Google going next? DeepMind's DQN playing Breakout Contents Introduction to Reinforcement Learning Deep Q-Learning INTRODUCTION TO REINFORCEMENT LEARNING Contents

More information

CS885 Reinforcement Learning Lecture 7a: May 23, 2018

CS885 Reinforcement Learning Lecture 7a: May 23, 2018 CS885 Reinforcement Learning Lecture 7a: May 23, 2018 Policy Gradient Methods [SutBar] Sec. 13.1-13.3, 13.7 [SigBuf] Sec. 5.1-5.2, [RusNor] Sec. 21.5 CS885 Spring 2018 Pascal Poupart 1 Outline Stochastic

More information

Deep Reinforcement Learning. STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 19, 2017

Deep Reinforcement Learning. STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 19, 2017 Deep Reinforcement Learning STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 19, 2017 Outline Introduction to Reinforcement Learning AlphaGo (Deep RL for Computer Go)

More information

Approximate Q-Learning. Dan Weld / University of Washington

Approximate Q-Learning. Dan Weld / University of Washington Approximate Q-Learning Dan Weld / University of Washington [Many slides taken from Dan Klein and Pieter Abbeel / CS188 Intro to AI at UC Berkeley materials available at http://ai.berkeley.edu.] Q Learning

More information

15-780: ReinforcementLearning

15-780: ReinforcementLearning 15-780: ReinforcementLearning J. Zico Kolter March 2, 2016 1 Outline Challenge of RL Model-based methods Model-free methods Exploration and exploitation 2 Outline Challenge of RL Model-based methods Model-free

More information

Lecture 9: Policy Gradient II (Post lecture) 2

Lecture 9: Policy Gradient II (Post lecture) 2 Lecture 9: Policy Gradient II (Post lecture) 2 Emma Brunskill CS234 Reinforcement Learning. Winter 2018 Additional reading: Sutton and Barto 2018 Chp. 13 2 With many slides from or derived from David Silver

More information

CSC321 Lecture 22: Q-Learning

CSC321 Lecture 22: Q-Learning CSC321 Lecture 22: Q-Learning Roger Grosse Roger Grosse CSC321 Lecture 22: Q-Learning 1 / 21 Overview Second of 3 lectures on reinforcement learning Last time: policy gradient (e.g. REINFORCE) Optimize

More information

Lecture 10 - Planning under Uncertainty (III)

Lecture 10 - Planning under Uncertainty (III) Lecture 10 - Planning under Uncertainty (III) Jesse Hoey School of Computer Science University of Waterloo March 27, 2018 Readings: Poole & Mackworth (2nd ed.)chapter 12.1,12.3-12.9 1/ 34 Reinforcement

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Policy gradients Daniel Hennes 26.06.2017 University Stuttgart - IPVS - Machine Learning & Robotics 1 Policy based reinforcement learning So far we approximated the action value

More information

Reinforcement Learning as Classification Leveraging Modern Classifiers

Reinforcement Learning as Classification Leveraging Modern Classifiers Reinforcement Learning as Classification Leveraging Modern Classifiers Michail G. Lagoudakis and Ronald Parr Department of Computer Science Duke University Durham, NC 27708 Machine Learning Reductions

More information

CS 188: Artificial Intelligence. Outline

CS 188: Artificial Intelligence. Outline CS 188: Artificial Intelligence Lecture 21: Perceptrons Pieter Abbeel UC Berkeley Many slides adapted from Dan Klein. Outline Generative vs. Discriminative Binary Linear Classifiers Perceptron Multi-class

More information

Lecture 25: Learning 4. Victor R. Lesser. CMPSCI 683 Fall 2010

Lecture 25: Learning 4. Victor R. Lesser. CMPSCI 683 Fall 2010 Lecture 25: Learning 4 Victor R. Lesser CMPSCI 683 Fall 2010 Final Exam Information Final EXAM on Th 12/16 at 4:00pm in Lederle Grad Res Ctr Rm A301 2 Hours but obviously you can leave early! Open Book

More information

Unsupervised Learning: Linear Dimension Reduction

Unsupervised Learning: Linear Dimension Reduction Unsupervised Learning: Linear Dimension Reduction Unsupervised Learning Clustering & Dimension Reduction ( 化繁為簡 ) Generation ( 無中生有 ) only having function input function only having function output function

More information

Deep Reinforcement Learning

Deep Reinforcement Learning Martin Matyášek Artificial Intelligence Center Czech Technical University in Prague October 27, 2016 Martin Matyášek VPD, 2016 1 / 50 Reinforcement Learning in a picture R. S. Sutton and A. G. Barto 2015

More information

Introduction to Reinforcement Learning

Introduction to Reinforcement Learning CSCI-699: Advanced Topics in Deep Learning 01/16/2019 Nitin Kamra Spring 2019 Introduction to Reinforcement Learning 1 What is Reinforcement Learning? So far we have seen unsupervised and supervised learning.

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Function approximation Daniel Hennes 19.06.2017 University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Eligibility traces n-step TD returns Forward and backward view Function

More information

CS 570: Machine Learning Seminar. Fall 2016

CS 570: Machine Learning Seminar. Fall 2016 CS 570: Machine Learning Seminar Fall 2016 Class Information Class web page: http://web.cecs.pdx.edu/~mm/mlseminar2016-2017/fall2016/ Class mailing list: cs570@cs.pdx.edu My office hours: T,Th, 2-3pm or

More information

CS181 Practical4 Reinforcement Learning

CS181 Practical4 Reinforcement Learning CS181 Practical4 Reinforcement Learning Ben Cook and Scott Shaffer April 2016 1 Technical Approach 1.1 Basic Assumptions The general approach to solving the Swingy Monkey game is to directly approximate

More information

Temporal Difference Learning & Policy Iteration

Temporal Difference Learning & Policy Iteration Temporal Difference Learning & Policy Iteration Advanced Topics in Reinforcement Learning Seminar WS 15/16 ±0 ±0 +1 by Tobias Joppen 03.11.2015 Fachbereich Informatik Knowledge Engineering Group Prof.

More information

Gradient Estimation Using Stochastic Computation Graphs

Gradient Estimation Using Stochastic Computation Graphs Gradient Estimation Using Stochastic Computation Graphs Yoonho Lee Department of Computer Science and Engineering Pohang University of Science and Technology May 9, 2017 Outline Stochastic Gradient Estimation

More information

Machine Learning I Reinforcement Learning

Machine Learning I Reinforcement Learning Machine Learning I Reinforcement Learning Thomas Rückstieß Technische Universität München December 17/18, 2009 Literature Book: Reinforcement Learning: An Introduction Sutton & Barto (free online version:

More information

Reinforcement Learning. Yishay Mansour Tel-Aviv University

Reinforcement Learning. Yishay Mansour Tel-Aviv University Reinforcement Learning Yishay Mansour Tel-Aviv University 1 Reinforcement Learning: Course Information Classes: Wednesday Lecture 10-13 Yishay Mansour Recitations:14-15/15-16 Eliya Nachmani Adam Polyak

More information

Lecture 1: March 7, 2018

Lecture 1: March 7, 2018 Reinforcement Learning Spring Semester, 2017/8 Lecture 1: March 7, 2018 Lecturer: Yishay Mansour Scribe: ym DISCLAIMER: Based on Learning and Planning in Dynamical Systems by Shie Mannor c, all rights

More information

Experiments on the Consciousness Prior

Experiments on the Consciousness Prior Yoshua Bengio and William Fedus UNIVERSITÉ DE MONTRÉAL, MILA Abstract Experiments are proposed to explore a novel prior for representation learning, which can be combined with other priors in order to

More information

Learning Dexterity Matthias Plappert SEPTEMBER 6, 2018

Learning Dexterity Matthias Plappert SEPTEMBER 6, 2018 Learning Dexterity Matthias Plappert SEPTEMBER 6, 2018 OpenAI OpenAI is a non-profit AI research company, discovering and enacting the path to safe artificial general intelligence. OpenAI OpenAI is a non-profit

More information

Based on the original slides of Hung-yi Lee

Based on the original slides of Hung-yi Lee Based on the original slides of Hung-yi Lee Google Trends Deep learning obtains many exciting results. Can contribute to new Smart Services in the Context of the Internet of Things (IoT). IoT Services

More information

6 Reinforcement Learning

6 Reinforcement Learning 6 Reinforcement Learning As discussed above, a basic form of supervised learning is function approximation, relating input vectors to output vectors, or, more generally, finding density functions p(y,

More information

From perceptrons to word embeddings. Simon Šuster University of Groningen

From perceptrons to word embeddings. Simon Šuster University of Groningen From perceptrons to word embeddings Simon Šuster University of Groningen Outline A basic computational unit Weighting some input to produce an output: classification Perceptron Classify tweets Written

More information

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation CS234: RL Emma Brunskill Winter 2018 Material builds on structure from David SIlver s Lecture 4: Model-Free

More information

15-889e Policy Search: Gradient Methods Emma Brunskill. All slides from David Silver (with EB adding minor modificafons), unless otherwise noted

15-889e Policy Search: Gradient Methods Emma Brunskill. All slides from David Silver (with EB adding minor modificafons), unless otherwise noted 15-889e Policy Search: Gradient Methods Emma Brunskill All slides from David Silver (with EB adding minor modificafons), unless otherwise noted Outline 1 Introduction 2 Finite Difference Policy Gradient

More information

Discrete Latent Variable Models

Discrete Latent Variable Models Discrete Latent Variable Models Stefano Ermon, Aditya Grover Stanford University Lecture 14 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 14 1 / 29 Summary Major themes in the course

More information

CS 598 Statistical Reinforcement Learning. Nan Jiang

CS 598 Statistical Reinforcement Learning. Nan Jiang CS 598 Statistical Reinforcement Learning Nan Jiang Overview What s this course about? A grad-level seminar course on theory of RL 3 What s this course about? A grad-level seminar course on theory of RL

More information

Q-learning. Tambet Matiisen

Q-learning. Tambet Matiisen Q-learning Tambet Matiisen (based on chapter 11.3 of online book Artificial Intelligence, foundations of computational agents by David Poole and Alan Mackworth) Stochastic gradient descent Experience

More information

Basics of reinforcement learning

Basics of reinforcement learning Basics of reinforcement learning Lucian Buşoniu TMLSS, 20 July 2018 Main idea of reinforcement learning (RL) Learn a sequential decision policy to optimize the cumulative performance of an unknown system

More information

Dialogue management: Parametric approaches to policy optimisation. Dialogue Systems Group, Cambridge University Engineering Department

Dialogue management: Parametric approaches to policy optimisation. Dialogue Systems Group, Cambridge University Engineering Department Dialogue management: Parametric approaches to policy optimisation Milica Gašić Dialogue Systems Group, Cambridge University Engineering Department 1 / 30 Dialogue optimisation as a reinforcement learning

More information

Marks. bonus points. } Assignment 1: Should be out this weekend. } Mid-term: Before the last lecture. } Mid-term deferred exam:

Marks. bonus points. } Assignment 1: Should be out this weekend. } Mid-term: Before the last lecture. } Mid-term deferred exam: Marks } Assignment 1: Should be out this weekend } All are marked, I m trying to tally them and perhaps add bonus points } Mid-term: Before the last lecture } Mid-term deferred exam: } This Saturday, 9am-10.30am,

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Nicholas Ruozzi University of Texas at Dallas Slides adapted from David Sontag and Vibhav Gogate Course Info. Instructor: Nicholas Ruozzi Office: ECSS 3.409 Office hours: Tues.

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Temporal Difference Learning Temporal difference learning, TD prediction, Q-learning, elibigility traces. (many slides from Marc Toussaint) Vien Ngo Marc Toussaint University of

More information

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Q-Learning Christopher Watkins and Peter Dayan Noga Zaslavsky The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Noga Zaslavsky Q-Learning (Watkins & Dayan, 1992)

More information

Prof. Dr. Ann Nowé. Artificial Intelligence Lab ai.vub.ac.be

Prof. Dr. Ann Nowé. Artificial Intelligence Lab ai.vub.ac.be REINFORCEMENT LEARNING AN INTRODUCTION Prof. Dr. Ann Nowé Artificial Intelligence Lab ai.vub.ac.be REINFORCEMENT LEARNING WHAT IS IT? What is it? Learning from interaction Learning about, from, and while

More information

arxiv: v1 [cs.lg] 28 Dec 2016

arxiv: v1 [cs.lg] 28 Dec 2016 THE PREDICTRON: END-TO-END LEARNING AND PLANNING David Silver*, Hado van Hasselt*, Matteo Hessel*, Tom Schaul*, Arthur Guez*, Tim Harley, Gabriel Dulac-Arnold, David Reichert, Neil Rabinowitz, Andre Barreto,

More information

MIRA, SVM, k-nn. Lirong Xia

MIRA, SVM, k-nn. Lirong Xia MIRA, SVM, k-nn Lirong Xia Linear Classifiers (perceptrons) Inputs are feature values Each feature has a weight Sum is the activation activation w If the activation is: Positive: output +1 Negative, output

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Dipendra Misra Cornell University dkm@cs.cornell.edu https://dipendramisra.wordpress.com/ Task Grasp the green cup. Output: Sequence of controller actions Setup from Lenz et. al.

More information

Reinforcement learning an introduction

Reinforcement learning an introduction Reinforcement learning an introduction Prof. Dr. Ann Nowé Computational Modeling Group AIlab ai.vub.ac.be November 2013 Reinforcement Learning What is it? Learning from interaction Learning about, from,

More information

arxiv: v1 [cs.ne] 4 Dec 2015

arxiv: v1 [cs.ne] 4 Dec 2015 Q-Networks for Binary Vector Actions arxiv:1512.01332v1 [cs.ne] 4 Dec 2015 Naoto Yoshida Tohoku University Aramaki Aza Aoba 6-6-01 Sendai 980-8579, Miyagi, Japan naotoyoshida@pfsl.mech.tohoku.ac.jp Abstract

More information

Human-level control through deep reinforcement. Liia Butler

Human-level control through deep reinforcement. Liia Butler Humanlevel control through deep reinforcement Liia Butler But first... A quote "The question of whether machines can think... is about as relevant as the question of whether submarines can swim" Edsger

More information

This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer.

This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer. This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer. 1. Suppose you have a policy and its action-value function, q, then you

More information

Reinforcement Learning. Introduction

Reinforcement Learning. Introduction Reinforcement Learning Introduction Reinforcement Learning Agent interacts and learns from a stochastic environment Science of sequential decision making Many faces of reinforcement learning Optimal control

More information

ARTIFICIAL INTELLIGENCE. Reinforcement learning

ARTIFICIAL INTELLIGENCE. Reinforcement learning INFOB2KI 2018-2019 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Reinforcement learning Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

Language Modeling. Hung-yi Lee 李宏毅

Language Modeling. Hung-yi Lee 李宏毅 Language Modeling Hung-yi Lee 李宏毅 Language modeling Language model: Estimated the probability of word sequence Word sequence: w 1, w 2, w 3,., w n P(w 1, w 2, w 3,., w n ) Application: speech recognition

More information

ARTIFICIAL INTELLIGENCE. Artificial Neural Networks

ARTIFICIAL INTELLIGENCE. Artificial Neural Networks INFOB2KI 2017-2018 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Artificial Neural Networks Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

Deep Q-Learning with Recurrent Neural Networks

Deep Q-Learning with Recurrent Neural Networks Deep Q-Learning with Recurrent Neural Networks Clare Chen cchen9@stanford.edu Vincent Ying vincenthying@stanford.edu Dillon Laird dalaird@cs.stanford.edu Abstract Deep reinforcement learning models have

More information

CS 188: Artificial Intelligence Fall 2011

CS 188: Artificial Intelligence Fall 2011 CS 188: Artificial Intelligence Fall 2011 Lecture 22: Perceptrons and More! 11/15/2011 Dan Klein UC Berkeley Errors, and What to Do Examples of errors Dear GlobalSCAPE Customer, GlobalSCAPE has partnered

More information

THE PREDICTRON: END-TO-END LEARNING AND PLANNING

THE PREDICTRON: END-TO-END LEARNING AND PLANNING THE PREDICTRON: END-TO-END LEARNING AND PLANNING David Silver*, Hado van Hasselt*, Matteo Hessel*, Tom Schaul*, Arthur Guez*, Tim Harley, Gabriel Dulac-Arnold, David Reichert, Neil Rabinowitz, Andre Barreto,

More information

Errors, and What to Do. CS 188: Artificial Intelligence Fall What to Do About Errors. Later On. Some (Simplified) Biology

Errors, and What to Do. CS 188: Artificial Intelligence Fall What to Do About Errors. Later On. Some (Simplified) Biology CS 188: Artificial Intelligence Fall 2011 Lecture 22: Perceptrons and More! 11/15/2011 Dan Klein UC Berkeley Errors, and What to Do Examples of errors Dear GlobalSCAPE Customer, GlobalSCAPE has partnered

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Reinforcement learning Daniel Hennes 4.12.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Reinforcement learning Model based and

More information

Bits of Machine Learning Part 2: Unsupervised Learning

Bits of Machine Learning Part 2: Unsupervised Learning Bits of Machine Learning Part 2: Unsupervised Learning Alexandre Proutiere and Vahan Petrosyan KTH (The Royal Institute of Technology) Outline of the Course 1. Supervised Learning Regression and Classification

More information

Deep Learning & Neural Networks Lecture 4

Deep Learning & Neural Networks Lecture 4 Deep Learning & Neural Networks Lecture 4 Kevin Duh Graduate School of Information Science Nara Institute of Science and Technology Jan 23, 2014 2/20 3/20 Advanced Topics in Optimization Today we ll briefly

More information

Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan

Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 18: Reinforcement Learning Sanjeev Arora Elad Hazan Some slides borrowed from Peter Bodik and David Silver Course progress Learning

More information

Reinforcement. Function Approximation. Learning with KATJA HOFMANN. Researcher, MSR Cambridge

Reinforcement. Function Approximation. Learning with KATJA HOFMANN. Researcher, MSR Cambridge Reinforcement Learning with Function Approximation KATJA HOFMANN Researcher, MSR Cambridge Representation and Generalization in RL Focus on training stability Learning generalizable value functions Navigating

More information

Online Videos FERPA. Sign waiver or sit on the sides or in the back. Off camera question time before and after lecture. Questions?

Online Videos FERPA. Sign waiver or sit on the sides or in the back. Off camera question time before and after lecture. Questions? Online Videos FERPA Sign waiver or sit on the sides or in the back Off camera question time before and after lecture Questions? Lecture 1, Slide 1 CS224d Deep NLP Lecture 4: Word Window Classification

More information