Actor-Critic. Hung-yi Lee

Size: px
Start display at page:

Download "Actor-Critic. Hung-yi Lee"

Transcription

1 Actor-Critic Hung-yi Lee

2 Asynchronous Advntge Actor-Critic (A3C) Volodymyr Mnih, Adrià Puigdomènech Bdi, Mehdi Mirz, Alex Grves, Timothy P. Lillicrp, Tim Hrley, Dvid Silver, Kory Kvukcuoglu, Asynchronous Methods for Deep Reinforcement Lerning, ICML, 2016

3 Review Policy Grdient N തR θ 1 N n=1 T n t=1 With sufficient smples, pproximte the expecttion of G. s Cn we estimte the expected vlue of G? bseline T n γ t t r n t t b logp θ n n t s t =t G n t : obtined vi interction Very unstble G = 100 G = 3 G = 1 G = 2 G = 10

4 Review Q-Lerning Stte vlue function V π s When using ctor π, the cumulted rewrd expects to be obtined fter visiting stte s Stte-ction vlue function Q π s, When using ctor π, the cumulted rewrd expects to be obtined fter tking t stte s for discrete ction only s V π V π s Q π s, = left s Q π Q π s, = right sclr Q π s, = fire Estimted by TD or MC

5 Actor-Critic Q π θ s t n, t n V π θ s t n V π θ s t n N തR θ 1 N n=1 T n t=1 bseline T n γ t t r n t b logp θ n n t s t t =t G t n : obtined vi interction E G t n = Q π θ s t n, t n

6 Advntge Actor-Critic Q π s t n, t n V π s t n Estimte two networks? We cn only estimte one. r t n + V π s t+1 n V π s t n Only estimte stte vlue A little bit vrince Q π s t n, t n Q π s t n, t n = E r n t + V π n s t+1 = r n t + V π n s t+1

7 Advntge Actor-Critic π intercts with the environment π = π TD or MC Updte ctor from π π bsed on V π s Lerning V π s N തR θ 1 N n=1 T n r n t + V π n s t+1 V π s n t logp θ n n t s t t=1

8 Advntge Actor-Critic Tips The prmeters of ctor π s cn be shred Network s Network nd critic V π s left right fire Network V π s Use output entropy s regulriztion for π s Lrger entropy is preferred explortion

9 Asynchronous Advntge Actor-Critic (A3C) The ide is from 李思叡

10 Asynchronous Source of imge: 1. Copy globl prmeters 2. Smpling some dt 3. Compute grdients 4. Updte globl models θ θ 1 θ θ 1 θ 1 θ 2 +η θ (other workers lso updte models)

11 Pthwise Derivtive Policy Grdient Dvid Silver, Guy Lever, Nicols Heess, Thoms Degris, Dn Wierstr, Mrtin Riedmiller, Deterministic Policy Grdient Algorithms, ICML, 2014 Timothy P. Lillicrp, Jonthn J. Hunt, Alexnder Pritzel, Nicols Heess, Tom Erez, Yuvl Tss, Dvid Silver, Dn Wierstr, CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING, ICLR, 2016

12 Another Wy to use Critic Originl Actor-critic Q π s, Pthwise derivtive policy grdient From Q function we know tht tking t stte s is better thn Q π s, 1 2 decrese increse We know the prmeters of Q function

13 Actor Critic Pthwise derivtive policy grdient Originl Actor-critic Action is continuous vector = rg mx Q s, s Actor π Actor s the solver of this optimiztion problem

14 Pthwise Derivtive Policy Grdient π s = rg mx Qπ s, is the output of n ctor Grdient scent: θ π θ π + η θ πq π s, Updte π π s Fixed Q π Q π s, s Actor π = This is lrge network

15 Explortion π = π π intercts with the environment TD or MC Reply Buffer Find new ctor π better thn π Lerning Q π s, θ π θ π + η θ πq π s, s Updte π π Actor π = s Q π Q π s,

16 Q-Lerning Algorithm Initilize Q-function Q, trget Q-function Q = Q, ctor π, trget ctor π = π In ech episode For ech time step t Given stte s t, tke ction t bsed on Q (explortion) Obtin rewrd r t, nd rech new stte s t+1 Store (s t, t, r t, s t+1 ) into buffer Smple (s i, i, r i, s i+1 ) from buffer (usully btch) Trget y = r i + mx Q s i+1, Updte the prmeters of Q to mke Q s i, i close to y (regression) Updte the prmeters of π to mximize Q s i,π s i Every C steps reset Q = Q Every C steps reset π = π

17 Q-Lerning Algorithm Pthwise Derivtive Policy Grdient Initilize Q-function Q, trget Q-function Q = Q, ctor π, trget ctor π = π In ech episode For ech time step t 1 Given stte s t, tke ction t bsed on Q π (explortion) Obtin rewrd r t, nd rech new stte s t+1 Store (s t, t, r t, s t+1 ) into buffer Smple (s i, i, r i, s i+1 ) from buffer (usully btch) 2 Trget y = r i + mx Q s i+1, Q s i+1, π s i+1 Updte the prmeters of Q to mke Q s i, i close to y (regression) 3 Updte the prmeters of π to mximize Q s i,π s i Every C steps reset Q = Q 4 Every C steps reset π = π

18 Connection with GAN Dvid Pfu, Oriol Vinyls, Connecting Genertive Adversril Networks nd Actor-Critic Methods, rxiv preprint, 2016

Reinforcement learning II

Reinforcement learning II CS 1675 Introduction to Mchine Lerning Lecture 26 Reinforcement lerning II Milos Huskrecht milos@cs.pitt.edu 5329 Sennott Squre Reinforcement lerning Bsics: Input x Lerner Output Reinforcement r Critic

More information

Deep Reinforcement Learning. Scratching the surface

Deep Reinforcement Learning. Scratching the surface Deep Reinforcement Learning Scratching the surface Deep Reinforcement Learning Scenario of Reinforcement Learning Observation State Agent Action Change the environment Don t do that Reward Environment

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Lerning Tom Mitchell, Mchine Lerning, chpter 13 Outline Introduction Comprison with inductive lerning Mrkov Decision Processes: the model Optiml policy: The tsk Q Lerning: Q function Algorithm

More information

2D1431 Machine Learning Lab 3: Reinforcement Learning

2D1431 Machine Learning Lab 3: Reinforcement Learning 2D1431 Mchine Lerning Lb 3: Reinforcement Lerning Frnk Hoffmnn modified by Örjn Ekeberg December 7, 2004 1 Introduction In this lb you will lern bout dynmic progrmming nd reinforcement lerning. It is ssumed

More information

Administrivia CSE 190: Reinforcement Learning: An Introduction

Administrivia CSE 190: Reinforcement Learning: An Introduction Administrivi CSE 190: Reinforcement Lerning: An Introduction Any emil sent to me bout the course should hve CSE 190 in the subject line! Chpter 4: Dynmic Progrmming Acknowledgment: A good number of these

More information

arxiv: v3 [stat.ml] 20 Jul 2018

arxiv: v3 [stat.ml] 20 Jul 2018 GAN Q-lerning Thng Don Desutels Fculty of Mngement McGill University thng.don@mil.mcgill.c Bogdn Mzoure Deprtment of Mthemtics & Sttistics McGill University bogdn.mzoure@mil.mcgill.c rxiv:1805.04874v3

More information

19 Optimal behavior: Game theory

19 Optimal behavior: Game theory Intro. to Artificil Intelligence: Dle Schuurmns, Relu Ptrscu 1 19 Optiml behvior: Gme theory Adversril stte dynmics hve to ccount for worst cse Compute policy π : S A tht mximizes minimum rewrd Let S (,

More information

Reinforcement learning

Reinforcement learning Reinforcement lerning Regulr MDP Given: Trnition model P Rewrd function R Find: Policy π Reinforcement lerning Trnition model nd rewrd function initilly unknown Still need to find the right policy Lern

More information

{ } = E! & $ " k r t +k +1

{ } = E! & $  k r t +k +1 Chpter 4: Dynmic Progrmming Objectives of this chpter: Overview of collection of clssicl solution methods for MDPs known s dynmic progrmming (DP) Show how DP cn be used to compute vlue functions, nd hence,

More information

Chapter 4: Dynamic Programming

Chapter 4: Dynamic Programming Chpter 4: Dynmic Progrmming Objectives of this chpter: Overview of collection of clssicl solution methods for MDPs known s dynmic progrmming (DP) Show how DP cn be used to compute vlue functions, nd hence,

More information

Bellman Optimality Equation for V*

Bellman Optimality Equation for V* Bellmn Optimlity Eqution for V* The vlue of stte under n optiml policy must equl the expected return for the best ction from tht stte: V (s) mx Q (s,) A(s) mx A(s) mx A(s) Er t 1 V (s t 1 ) s t s, t s

More information

1 Online Learning and Regret Minimization

1 Online Learning and Regret Minimization 2.997 Decision-Mking in Lrge-Scle Systems My 10 MIT, Spring 2004 Hndout #29 Lecture Note 24 1 Online Lerning nd Regret Minimiztion In this lecture, we consider the problem of sequentil decision mking in

More information

LECTURE NOTE #12 PROF. ALAN YUILLE

LECTURE NOTE #12 PROF. ALAN YUILLE LECTURE NOTE #12 PROF. ALAN YUILLE 1. Clustering, K-mens, nd EM Tsk: set of unlbeled dt D = {x 1,..., x n } Decompose into clsses w 1,..., w M where M is unknown. Lern clss models p(x w)) Discovery of

More information

arxiv: v1 [cs.lg] 23 Oct 2018

arxiv: v1 [cs.lg] 23 Oct 2018 Hierrchicl Approches for Reinforcement Lerning in Prmeterized Action Spce Ermo Wei nd Drew Wicke nd Sen Luke Deprtment of Computer Science, George Mson University, Firfx, VA USA ewei@cs.gmu.edu, dwicke@gmu.edu,

More information

arxiv: v1 [cs.ai] 14 Feb 2018

arxiv: v1 [cs.ai] 14 Feb 2018 Yng Go 1 Huzhe(Hrry) Xu 1 Ji Lin 2 Fisher Yu 1 Sergey Levine 1 Trevor Drrell 1 rxiv:1802.05313v1 cs.ai 14 Feb 2018 Abstrct Robust rel-world lerning should benefit from both demonstrtions nd interctions

More information

Multi-Armed Bandits: Non-adaptive and Adaptive Sampling

Multi-Armed Bandits: Non-adaptive and Adaptive Sampling CSE 547/Stt 548: Mchine Lerning for Big Dt Lecture Multi-Armed Bndits: Non-dptive nd Adptive Smpling Instructor: Shm Kkde 1 The (stochstic) multi-rmed bndit problem The bsic prdigm is s follows: K Independent

More information

Solution for Assignment 1 : Intro to Probability and Statistics, PAC learning

Solution for Assignment 1 : Intro to Probability and Statistics, PAC learning Solution for Assignment 1 : Intro to Probbility nd Sttistics, PAC lerning 10-701/15-781: Mchine Lerning (Fll 004) Due: Sept. 30th 004, Thursdy, Strt of clss Question 1. Bsic Probbility ( 18 pts) 1.1 (

More information

Math 426: Probability Final Exam Practice

Math 426: Probability Final Exam Practice Mth 46: Probbility Finl Exm Prctice. Computtionl problems 4. Let T k (n) denote the number of prtitions of the set {,..., n} into k nonempty subsets, where k n. Argue tht T k (n) kt k (n ) + T k (n ) by

More information

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1 The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the

More information

3.4 Numerical integration

3.4 Numerical integration 3.4. Numericl integrtion 63 3.4 Numericl integrtion In mny economic pplictions it is necessry to compute the definite integrl of relvlued function f with respect to "weight" function w over n intervl [,

More information

arxiv: v2 [cs.lg] 30 May 2018

arxiv: v2 [cs.lg] 30 May 2018 Fourier Policy Grdients Mtthew Fellows * 1 Kmil Ciosek * 1 Shimon Whiteson 1 rxiv:180.06891v cs.lg] 30 My 018 Abstrct We propose new wy of deriving policy grdient updtes for reinforcement lerning. Our

More information

Continuous Random Variables

Continuous Random Variables STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is rel-vlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht

More information

arxiv: v2 [cs.lg] 7 Mar 2018

arxiv: v2 [cs.lg] 7 Mar 2018 Comparing Deep Reinforcement Learning and Evolutionary Methods in Continuous Control arxiv:1712.00006v2 [cs.lg] 7 Mar 2018 Shangtong Zhang 1, Osmar R. Zaiane 2 12 Dept. of Computing Science, University

More information

1 Linear Least Squares

1 Linear Least Squares Lest Squres Pge 1 1 Liner Lest Squres I will try to be consistent in nottion, with n being the number of dt points, nd m < n being the number of prmeters in model function. We re interested in solving

More information

than 1. It means in particular that the function is decreasing and approaching the x-

than 1. It means in particular that the function is decreasing and approaching the x- 6 Preclculus Review Grph the functions ) (/) ) log y = b y = Solution () The function y = is n eponentil function with bse smller thn It mens in prticulr tht the function is decresing nd pproching the

More information

Learning to Serve and Bounce a Ball

Learning to Serve and Bounce a Ball Sndr Amend Gregor Gebhrdt Technische Universität Drmstdt Abstrct In this pper we investigte lerning the tsks of bll serving nd bll bouncing. These tsks disply chrcteristics which re common in vriety of

More information

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah 1. Born-Oppenheimer pprox.- energy surfces 2. Men-field (Hrtree-Fock) theory- orbitls 3. Pros nd cons of HF- RHF, UHF 4. Beyond HF- why? 5. First, one usully does HF-how? 6. Bsis sets nd nottions 7. MPn,

More information

Planning to Be Surprised: Optimal Bayesian Exploration in Dynamic Environments

Planning to Be Surprised: Optimal Bayesian Exploration in Dynamic Environments Plnning to Be Surprised: Optiml Byesin Explortion in Dynmic Environments Yi Sun, Fustino Gomez, nd Jürgen Schmidhuber IDSIA, Glleri 2, Mnno, CH-6928, Switzerlnd {yi,tino,juergen}@idsi.ch Abstrct. To mximize

More information

Chapter 9: Inferences based on Two samples: Confidence intervals and tests of hypotheses

Chapter 9: Inferences based on Two samples: Confidence intervals and tests of hypotheses Chpter 9: Inferences bsed on Two smples: Confidence intervls nd tests of hypotheses 9.1 The trget prmeter : difference between two popultion mens : difference between two popultion proportions : rtio of

More information

A Fast and Reliable Policy Improvement Algorithm

A Fast and Reliable Policy Improvement Algorithm A Fst nd Relible Policy Improvement Algorithm Ysin Abbsi-Ydkori Peter L. Brtlett Stephen J. Wright Queenslnd University of Technology UC Berkeley nd QUT University of Wisconsin-Mdison Abstrct We introduce

More information

Introduction of Reinforcement Learning

Introduction of Reinforcement Learning Introduction of Reinforcement Learning Deep Reinforcement Learning Reference Textbook: Reinforcement Learning: An Introduction http://incompleteideas.net/sutton/book/the-book.html Lectures of David Silver

More information

Decision Networks. CS 188: Artificial Intelligence Fall Example: Decision Networks. Decision Networks. Decisions as Outcome Trees

Decision Networks. CS 188: Artificial Intelligence Fall Example: Decision Networks. Decision Networks. Decisions as Outcome Trees CS 188: Artificil Intelligence Fll 2011 Decision Networks ME: choose the ction which mximizes the expected utility given the evidence mbrell Lecture 17: Decision Digrms 10/27/2011 Cn directly opertionlize

More information

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS. THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

More information

Module 6 Value Iteration. CS 886 Sequential Decision Making and Reinforcement Learning University of Waterloo

Module 6 Value Iteration. CS 886 Sequential Decision Making and Reinforcement Learning University of Waterloo Module 6 Vlue Itertion CS 886 Sequentil Decision Mking nd Reinforcement Lerning University of Wterloo Mrkov Decision Process Definition Set of sttes: S Set of ctions (i.e., decisions): A Trnsition model:

More information

Artificial Intelligence Markov Decision Problems

Artificial Intelligence Markov Decision Problems rtificil Intelligence Mrkov eciion Problem ilon - briefly mentioned in hpter Ruell nd orvig - hpter 7 Mrkov eciion Problem; pge of Mrkov eciion Problem; pge of exmple: probbilitic blockworld ction outcome

More information

Reinforcement Learning and Policy Reuse

Reinforcement Learning and Policy Reuse Reinforcement Lerning nd Policy Reue Mnuel M. Veloo PEL Fll 206 Reding: Reinforcement Lerning: An Introduction R. Sutton nd A. Brto Probbilitic policy reue in reinforcement lerning gent Fernndo Fernndez

More information

A DEEP REINFORCEMENT LEARNING APPROACH TO USING WHOLE BUILDING ENERGY MODEL FOR HVAC OPTIMAL CONTROL

A DEEP REINFORCEMENT LEARNING APPROACH TO USING WHOLE BUILDING ENERGY MODEL FOR HVAC OPTIMAL CONTROL 2018 Building Performnce Modeling Conference nd SimBuild co-orgnized by ASHRAE nd IBPSA-USA Chicgo, IL September 26-28, 2018 A DEEP REINFORCEMENT LEARNING APPROACH TO USING WHOLE BUILDING ENERGY MODEL

More information

Riemann is the Mann! (But Lebesgue may besgue to differ.)

Riemann is the Mann! (But Lebesgue may besgue to differ.) Riemnn is the Mnn! (But Lebesgue my besgue to differ.) Leo Livshits My 2, 2008 1 For finite intervls in R We hve seen in clss tht every continuous function f : [, b] R hs the property tht for every ɛ >

More information

Name Solutions to Test 3 November 8, 2017

Name Solutions to Test 3 November 8, 2017 Nme Solutions to Test 3 November 8, 07 This test consists of three prts. Plese note tht in prts II nd III, you cn skip one question of those offered. Some possibly useful formuls cn be found below. Brrier

More information

A signalling model of school grades: centralized versus decentralized examinations

A signalling model of school grades: centralized versus decentralized examinations A signlling model of school grdes: centrlized versus decentrlized exmintions Mri De Pol nd Vincenzo Scopp Diprtimento di Economi e Sttistic, Università dell Clbri m.depol@unicl.it; v.scopp@unicl.it 1 The

More information

Efficient Planning. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Efficient Planning. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction Efficient Plnning 1 Tuesdy clss summry: Plnning: ny computtionl process tht uses model to crete or improve policy Dyn frmework: 2 Questions during clss Why use simulted experience? Cn t you directly compute

More information

Interpreting Integrals and the Fundamental Theorem

Interpreting Integrals and the Fundamental Theorem Interpreting Integrls nd the Fundmentl Theorem Tody, we go further in interpreting the mening of the definite integrl. Using Units to Aid Interprettion We lredy know tht if f(t) is the rte of chnge of

More information

Deep Reinforcement Learning via Policy Optimization

Deep Reinforcement Learning via Policy Optimization Deep Reinforcement Learning via Policy Optimization John Schulman July 3, 2017 Introduction Deep Reinforcement Learning: What to Learn? Policies (select next action) Deep Reinforcement Learning: What to

More information

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1 Exm, Mthemtics 471, Section ETY6 6:5 pm 7:4 pm, Mrch 1, 16, IH-115 Instructor: Attil Máté 1 17 copies 1. ) Stte the usul sufficient condition for the fixed-point itertion to converge when solving the eqution

More information

Hidden Markov Models

Hidden Markov Models Hidden Mrkov Models Huptseminr Mchine Lerning 18.11.2003 Referent: Nikols Dörfler 1 Overview Mrkov Models Hidden Mrkov Models Types of Hidden Mrkov Models Applictions using HMMs Three centrl problems:

More information

Acceptance Sampling by Attributes

Acceptance Sampling by Attributes Introduction Acceptnce Smpling by Attributes Acceptnce smpling is concerned with inspection nd decision mking regrding products. Three spects of smpling re importnt: o Involves rndom smpling of n entire

More information

CS 188: Artificial Intelligence Fall Announcements

CS 188: Artificial Intelligence Fall Announcements CS 188: Artificil Intelligence Fll 2009 Lecture 20: Prticle Filtering 11/5/2009 Dn Klein UC Berkeley Announcements Written 3 out: due 10/12 Project 4 out: due 10/19 Written 4 proly xed, Project 5 moving

More information

Bayesian Networks: Approximate Inference

Bayesian Networks: Approximate Inference pproches to inference yesin Networks: pproximte Inference xct inference Vrillimintion Join tree lgorithm pproximte inference Simplify the structure of the network to mkxct inferencfficient (vritionl methods,

More information

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space. Clculus 3 Li Vs Spce Curves Recll the prmetric equtions of curve in xy-plne nd compre them with prmetric equtions of curve in spce. Prmetric curve in plne x = x(t) y = y(t) Prmetric curve in spce x = x(t)

More information

Ordinary Differential Equations- Boundary Value Problem

Ordinary Differential Equations- Boundary Value Problem Ordinry Differentil Equtions- Boundry Vlue Problem Shooting method Runge Kutt method Computer-bsed solutions o BVPFD subroutine (Fortrn IMSL subroutine tht Solves (prmeterized) system of differentil equtions

More information

Classical Mechanics. From Molecular to Con/nuum Physics I WS 11/12 Emiliano Ippoli/ October, 2011

Classical Mechanics. From Molecular to Con/nuum Physics I WS 11/12 Emiliano Ippoli/ October, 2011 Clssicl Mechnics From Moleculr to Con/nuum Physics I WS 11/12 Emilino Ippoli/ October, 2011 Wednesdy, October 12, 2011 Review Mthemtics... Physics Bsic thermodynmics Temperture, idel gs, kinetic gs theory,

More information

CS 188: Artificial Intelligence Spring 2007

CS 188: Artificial Intelligence Spring 2007 CS 188: Artificil Intelligence Spring 2007 Lecture 3: Queue-Bsed Serch 1/23/2007 Srini Nrynn UC Berkeley Mny slides over the course dpted from Dn Klein, Sturt Russell or Andrew Moore Announcements Assignment

More information

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014 SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 014 Mrk Scheme: Ech prt of Question 1 is worth four mrks which re wrded solely for the correct nswer.

More information

NUMERICAL INTEGRATION

NUMERICAL INTEGRATION NUMERICAL INTEGRATION How do we evlute I = f (x) dx By the fundmentl theorem of clculus, if F (x) is n ntiderivtive of f (x), then I = f (x) dx = F (x) b = F (b) F () However, in prctice most integrls

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

MATH 115 FINAL EXAM. April 25, 2005

MATH 115 FINAL EXAM. April 25, 2005 MATH 115 FINAL EXAM April 25, 2005 NAME: Solution Key INSTRUCTOR: SECTION NO: 1. Do not open this exm until you re told to begin. 2. This exm hs 9 pges including this cover. There re 9 questions. 3. Do

More information

Chapter 5 : Continuous Random Variables

Chapter 5 : Continuous Random Variables STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 216 Néhémy Lim Chpter 5 : Continuous Rndom Vribles Nottions. N {, 1, 2,...}, set of nturl numbers (i.e. ll nonnegtive integers); N {1, 2,...}, set of ll

More information

14.4. Lengths of curves and surfaces of revolution. Introduction. Prerequisites. Learning Outcomes

14.4. Lengths of curves and surfaces of revolution. Introduction. Prerequisites. Learning Outcomes Lengths of curves nd surfces of revolution 4.4 Introduction Integrtion cn be used to find the length of curve nd the re of the surfce generted when curve is rotted round n xis. In this section we stte

More information

APPROXIMATE INTEGRATION

APPROXIMATE INTEGRATION APPROXIMATE INTEGRATION. Introduction We hve seen tht there re functions whose nti-derivtives cnnot be expressed in closed form. For these resons ny definite integrl involving these integrnds cnnot be

More information

Math 270A: Numerical Linear Algebra

Math 270A: Numerical Linear Algebra Mth 70A: Numericl Liner Algebr Instructor: Michel Holst Fll Qurter 014 Homework Assignment #3 Due Give to TA t lest few dys before finl if you wnt feedbck. Exercise 3.1. (The Bsic Liner Method for Liner

More information

CBE 291b - Computation And Optimization For Engineers

CBE 291b - Computation And Optimization For Engineers The University of Western Ontrio Fculty of Engineering Science Deprtment of Chemicl nd Biochemicl Engineering CBE 9b - Computtion And Optimiztion For Engineers Mtlb Project Introduction Prof. A. Jutn Jn

More information

Asymptotic results for Normal-Cauchy model

Asymptotic results for Normal-Cauchy model Asymptotic results for Norml-Cuchy model John D. Cook Deprtment of Biosttistics P. O. Box 342, Unit 49 The University of Texs, M. D. Anderson Cncer Center Houston, Texs 7723-42, USA cook@mdnderson.org

More information

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 17

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 17 EECS 70 Discrete Mthemtics nd Proility Theory Spring 2013 Annt Shi Lecture 17 I.I.D. Rndom Vriles Estimting the is of coin Question: We wnt to estimte the proportion p of Democrts in the US popultion,

More information

Physics 9 Fall 2011 Homework 2 - Solutions Friday September 2, 2011

Physics 9 Fall 2011 Homework 2 - Solutions Friday September 2, 2011 Physics 9 Fll 0 Homework - s Fridy September, 0 Mke sure your nme is on your homework, nd plese box your finl nswer. Becuse we will be giving prtil credit, be sure to ttempt ll the problems, even if you

More information

Section 11.5 Estimation of difference of two proportions

Section 11.5 Estimation of difference of two proportions ection.5 Estimtion of difference of two proportions As seen in estimtion of difference of two mens for nonnorml popultion bsed on lrge smple sizes, one cn use CLT in the pproximtion of the distribution

More information

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by. NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with

More information

Math& 152 Section Integration by Parts

Math& 152 Section Integration by Parts Mth& 5 Section 7. - Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible

More information

Non-Linear & Logistic Regression

Non-Linear & Logistic Regression Non-Liner & Logistic Regression If the sttistics re boring, then you've got the wrong numbers. Edwrd R. Tufte (Sttistics Professor, Yle University) Regression Anlyses When do we use these? PART 1: find

More information

This lecture covers Chapter 8 of HMU: Properties of CFLs

This lecture covers Chapter 8 of HMU: Properties of CFLs This lecture covers Chpter 8 of HMU: Properties of CFLs Turing Mchine Extensions of Turing Mchines Restrictions of Turing Mchines Additionl Reding: Chpter 8 of HMU. Turing Mchine: Informl Definition B

More information

Guided Learning of Control Graphs for Physics-Based Characters

Guided Learning of Control Graphs for Physics-Based Characters Guided Lerning of Control Grphs for Physics-Bsed Chrcters Libin Liu 1 Michiel vn de Pnne 1 KngKng Yin 2 1 The University of British Columbi 2 Ntionl University of Singpore 1 Why Physics-bsed Chrcters?

More information

Quantum Physics III (8.06) Spring 2005 Solution Set 5

Quantum Physics III (8.06) Spring 2005 Solution Set 5 Quntum Physics III (8.06 Spring 005 Solution Set 5 Mrch 8, 004. The frctionl quntum Hll effect (5 points As we increse the flux going through the solenoid, we increse the mgnetic field, nd thus the vector

More information

Chapter 3 Solving Nonlinear Equations

Chapter 3 Solving Nonlinear Equations Chpter 3 Solving Nonliner Equtions 3.1 Introduction The nonliner function of unknown vrible x is in the form of where n could be non-integer. Root is the numericl vlue of x tht stisfies f ( x) 0. Grphiclly,

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: How to identify the leding coefficients nd degrees of polynomils How to dd nd subtrct polynomils How to multiply polynomils

More information

CS667 Lecture 6: Monte Carlo Integration 02/10/05

CS667 Lecture 6: Monte Carlo Integration 02/10/05 CS667 Lecture 6: Monte Crlo Integrtion 02/10/05 Venkt Krishnrj Lecturer: Steve Mrschner 1 Ide The min ide of Monte Crlo Integrtion is tht we cn estimte the vlue of n integrl by looking t lrge number of

More information

Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 17

Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 17 CS 70 Discrete Mthemtics nd Proility Theory Summer 2014 Jmes Cook Note 17 I.I.D. Rndom Vriles Estimting the is of coin Question: We wnt to estimte the proportion p of Democrts in the US popultion, y tking

More information

New Expansion and Infinite Series

New Expansion and Infinite Series Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

More information

5.7 Improper Integrals

5.7 Improper Integrals 458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the

More information

5.3 Nonlinear stability of Rayleigh-Bénard convection

5.3 Nonlinear stability of Rayleigh-Bénard convection 118 5.3 Nonliner stbility of Ryleigh-Bénrd convection In Chpter 1, we sw tht liner stbility only tells us whether system is stble or unstble to infinitesimlly-smll perturbtions, nd tht there re cses in

More information

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that Arc Length of Curves in Three Dimensionl Spce If the vector function r(t) f(t) i + g(t) j + h(t) k trces out the curve C s t vries, we cn mesure distnces long C using formul nerly identicl to one tht we

More information

A. Limits - L Hopital s Rule ( ) How to find it: Try and find limits by traditional methods (plugging in). If you get 0 0 or!!, apply C.! 1 6 C.

A. Limits - L Hopital s Rule ( ) How to find it: Try and find limits by traditional methods (plugging in). If you get 0 0 or!!, apply C.! 1 6 C. A. Limits - L Hopitl s Rule Wht you re finding: L Hopitl s Rule is used to find limits of the form f ( x) lim where lim f x x! c g x ( ) = or lim f ( x) = limg( x) = ". ( ) x! c limg( x) = 0 x! c x! c

More information

We divide the interval [a, b] into subintervals of equal length x = b a n

We divide the interval [a, b] into subintervals of equal length x = b a n Arc Length Given curve C defined by function f(x), we wnt to find the length of this curve between nd b. We do this by using process similr to wht we did in defining the Riemnn Sum of definite integrl:

More information

Numerical integration

Numerical integration 2 Numericl integrtion This is pge i Printer: Opque this 2. Introduction Numericl integrtion is problem tht is prt of mny problems in the economics nd econometrics literture. The orgniztion of this chpter

More information

different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s).

different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s). Mth 1A with Professor Stnkov Worksheet, Discussion #41; Wednesdy, 12/6/217 GSI nme: Roy Zho Problems 1. Write the integrl 3 dx s limit of Riemnn sums. Write it using 2 intervls using the 1 x different

More information

CS 109 Lecture 11 April 20th, 2016

CS 109 Lecture 11 April 20th, 2016 CS 09 Lecture April 0th, 06 Four Prototypicl Trjectories Review The Norml Distribution is Norml Rndom Vrible: ~ Nµ, σ Probbility Density Function PDF: f x e σ π E[ ] µ Vr σ x µ / σ Also clled Gussin Note:

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004 Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when

More information

38.2. The Uniform Distribution. Introduction. Prerequisites. Learning Outcomes

38.2. The Uniform Distribution. Introduction. Prerequisites. Learning Outcomes The Uniform Distribution 8. Introduction This Section introduces the simplest type of continuous probbility distribution which fetures continuous rndom vrible X with probbility density function f(x) which

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

Trust Region Policy Optimization

Trust Region Policy Optimization Consider n infinite-horizon discounted Mrkov decision process (MDP), defined by the tuple (S, A, P, r, ρ 0, γ), where S is finite set of sttes, A is finite set of ctions, P : S A S R is the trnsition probbility

More information

dt. However, we might also be curious about dy

dt. However, we might also be curious about dy Section 0. The Clculus of Prmetric Curves Even though curve defined prmetricly my not be function, we cn still consider concepts such s rtes of chnge. However, the concepts will need specil tretment. For

More information

Intro to Nuclear and Particle Physics (5110)

Intro to Nuclear and Particle Physics (5110) Intro to Nucler nd Prticle Physics (5110) Feb, 009 The Nucler Mss Spectrum The Liquid Drop Model //009 1 E(MeV) n n(n-1)/ E/[ n(n-1)/] (MeV/pir) 1 C 16 O 0 Ne 4 Mg 7.7 14.44 19.17 8.48 4 5 6 6 10 15.4.41

More information

Global Motion. Estimate motion using all pixels in the image. Parametric flow gives an equation, which describes optical flow for each pixel.

Global Motion. Estimate motion using all pixels in the image. Parametric flow gives an equation, which describes optical flow for each pixel. Globl Flow Globl Motion Estimte motion using ll piels in the imge. Prmetric low gives n eqution, which describes opticl low or ech piel. Aine Projective Globl motion cn be used to generte mosics Object-bsed

More information

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0) 1 Tylor polynomils In Section 3.5, we discussed how to pproximte function f(x) round point in terms of its first derivtive f (x) evluted t, tht is using the liner pproximtion f() + f ()(x ). We clled this

More information

Section 6.1 Definite Integral

Section 6.1 Definite Integral Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined

More information

MATHS NOTES. SUBJECT: Maths LEVEL: Higher TEACHER: Aidan Roantree. The Institute of Education Topics Covered: Powers and Logs

MATHS NOTES. SUBJECT: Maths LEVEL: Higher TEACHER: Aidan Roantree. The Institute of Education Topics Covered: Powers and Logs MATHS NOTES The Institute of Eduction 06 SUBJECT: Mths LEVEL: Higher TEACHER: Aidn Rontree Topics Covered: Powers nd Logs About Aidn: Aidn is our senior Mths techer t the Institute, where he hs been teching

More information

CS 188: Artificial Intelligence Fall 2010

CS 188: Artificial Intelligence Fall 2010 CS 188: Artificil Intelligence Fll 2010 Lecture 18: Decision Digrms 10/28/2010 Dn Klein C Berkeley Vlue of Informtion 1 Decision Networks ME: choose the ction which mximizes the expected utility given

More information

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2.

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2. Mth 43 Section 6. Section 6.: Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot

More information

1. Find the derivative of the following functions. a) f(x) = 2 + 3x b) f(x) = (5 2x) 8 c) f(x) = e2x

1. Find the derivative of the following functions. a) f(x) = 2 + 3x b) f(x) = (5 2x) 8 c) f(x) = e2x I. Dierentition. ) Rules. *product rule, quotient rule, chin rule MATH 34B FINAL REVIEW. Find the derivtive of the following functions. ) f(x) = 2 + 3x x 3 b) f(x) = (5 2x) 8 c) f(x) = e2x 4x 7 +x+2 d)

More information

Monte Carlo method in solving numerical integration and differential equation

Monte Carlo method in solving numerical integration and differential equation Monte Crlo method in solving numericl integrtion nd differentil eqution Ye Jin Chemistry Deprtment Duke University yj66@duke.edu Abstrct: Monte Crlo method is commonly used in rel physics problem. The

More information

MArkov decision processes (MDPs) have been widely

MArkov decision processes (MDPs) have been widely Spre Mrkov Deciion Procee with Cul Spre Tlli Entropy Regulriztion for Reinforcement Lerning yungje Lee, Sungjoon Choi, nd Songhwi Oh rxiv:709.0693v3 [c.lg] 3 Oct 07 Abtrct In thi pper, re Mrkov deciion

More information