Ordinary Differential Equations- Boundary Value Problem

Size: px
Start display at page:

Download "Ordinary Differential Equations- Boundary Value Problem"

Transcription

1 Ordinry Differentil Equtions- Boundry Vlue Problem Shooting method Runge Kutt method Computer-bsed solutions o BVPFD subroutine (Fortrn IMSL subroutine tht Solves (prmeterized) system of differentil equtions with boundry conditions t two points, using vrible order, vrible step size finite difference method with deferred corrections) o MALAB solution of boundry vlue problems for ordinry differentil equtions (bvp4c ) Differentil Equtions Ordinry Differentil Equtions d dt v 6 tv involve one or more Ordinry derivtives of unknown functions Differentil Equtions Prtil Differentil Equtions u u y x involve one or more prtil derivtives of unknown functions King Sud University ١ King Sud University ٢ Auxiliry conditions Initil Conditions ll conditions re t one point of the independent vrible uxiliry conditions Boundry Conditions he conditions re not t one point of the independent vrible Initil vlue nd Boundry-Vlue Problems Initil-Vlue Problems he uxiliry conditions re t one point of the independent vrible x x x e t x(), x ().5 Boundry-Vlue Problems he uxiliry conditions re not t one point of the independent vrible More difficult to solve thn initil vlue problem t x x x e x ( ), x ( ).5 sme different King Sud University ٣ King Sud University ٤

2 Clssifiction of ODE Clssifiction of the Methods ODE cn be clssified in different wys Order First order ODE Second order ODE N th order ODE Linerity Liner ODE Nonliner ODE Auxiliry conditions Initil vlue problems Boundry vlue problems Single-Step Methods Estimtes of the solution t prticulr step re entirely bsed on informtion on the previous step Numericl Methods for solving ODE Multiple-Step Methods Estimtes of the solution t prticulr step re bsed on informtion on more thn one step Euler, Runge-Kutt: single step methods & Adm-Moulton method: multi-step method King Sud University ٥ King Sud University ٦ Conversion of High Order ODE s to System of First Order ODE s A rod is being heded t its two ends nd the rod is exposed to the outside temperture. Conversion of High Order ODE s to System of First Order ODE s At the stedy stte, the temperture of the rod is given by the differentil eqution h ( ) Here, h is the het trnsfer coefficient. he boundry conditions re: (x ) n(x L) Wht is the stedy stte temperture for < x < L? King Sud University ٧ King Sud University ٨

3 Conversion of High Order ODE s to System of First Order ODE s he nlyticl solution of h ( ) For m rod with, () 4, () nd h.. is s follows e e.x.x Conversion of High Order ODE s to System of First Order ODE s o be ble to solve this second order ODE, we hve to convert it into system of first order ODE s. Define z s hen, dz d z h( ) he system becomes d z dz h ( ) o solve the system, the initil vlue for z (i.e. z ) is needed! King Sud University ٩ King Sud University ١٠ Conversion of High Order ODE s to System of First Order ODE s Higher order ODE s cn be solved by converting them to system of first order ODE s. he conversion works by introducing new vribles. For the following second order ODE: with the initil vlues s y y.5 d y dy y sin x Introduce new vrible z s dy z Conversion of High Order ODE s to System of First Order ODE s d y dy y sin Introduce new vrible z which is defined s z From the definition of z, dz d y Now we cn write the following system he initil conditions now re y nd z.5. x dy dz z y sin x dy z King Sud University ١١ King Sud University ١٢

4 he finite divided difference pproximtion for the nd derivtive cn be substituted into the governing eqution, e.g consider the temperture distribution in the rod i i i ( ) h i i i h ( ) Collect terms i i h ( ) h x h ( ) i i i We cn now pply this eqution to ech interior node on the rod. Divide the rod into grid, nd consider node to be t ech division. i.e.. x m x m L m King Sud University ١٣ King Sud University ١٤ ( h ) i i h ( h ) i i h () x m L m () () x i 4 5 () Consider the previous problem: L m () 4 () h. We need to solve for the temperture t the interior nodes (4 unknowns). Apply the governing eqution t these nodes (4 equtions). Wht is the mtrix? Notice the lbeling for numbering nd i King Sud University ١٥ King Sud University ١٦

5 ( h ) i i h () x i 4 5 () ( h ) i i h () x i 4 5 () 4 Note lso tht the dependent vlues re known t the boundries (hence the term boundry vlue problem) 4 Apply the governing eqution t node ( h x ) h x 4 (.4 ) King Sud University ١٧ King Sud University ١٨ ( h ) i i h () x i 4 5 () ( h ) i i h () x i 4 5 () Apply the eqution t node 4 ( h ).4.8 h We get similr eqution t node 4 ( h ) h King Sud University ١٩ King Sud University ٢٠

6 ( h ) i i h () x i 4 5 At node 4, we consider the boundry t the right. ( h ) h () 4 For the four interior nodes, we get the following 4 x 4 mtrix.4 he solution is: () { } [ ] 4 4 i 4 5 () King Sud University ٢١ King Sud University ٢٢ Mtlb exmple Exmple.. Solve the nonliner boundry vlue problem d y dy ( x y ) 8 for <x<, where y()7 nd y()4/ Crete the function f s seprte m-file nd sve it in the current working directory. function f f(x,y,yp) f (/8)*(*x^-y*yp); %Note tht ypy In the commnd window type >> Y nonlinerbvp_fdm(,,7,4/); Note tht Y(:,) represents x nd Y(:,) is vector y(x) >> yexct (Y(:,)).^6./Y(:,); plot(y(:,),yexct,c) Mtlb exmple d y dy rnge <x<, ( x y ) 8 B.C. y()7 nd y()4/ Exct solution 6 y ( x ) x x Numericl Solution y() lph y(b) bet King Sud University ٢٣ King Sud University ٢٤

7 Solution of Boundry-Vlue Problems Shooting method Shooting method for Boundry-Vlue Problems. Guess vlues for the uxiliry conditions t one point of time.. Solve the initil vlue problem using Euler,Runge-Kutt,. Check if the boundry conditions is stisfied otherwise modify the guess nd resolve the problem. Use interpoltion in updting the guess. It is n itertive procedure nd cn be efficient in solving the BVP King Sud University ٢٥ King Sud University ٢٦ Solution of Boundry-Vlue Problems - Shooting method Shooting method - Exmple Boundry-Vlue Problem convert Initil-vlue problem ẏ 4y 4x y(), y() Originl BVP Find y ( x ) to solve BVP y y y x y ( )., y ().8. Convert the ODE to system of first order ODE. guess the initil conditions tht re not vilble.. Solve the Initil-vlue problem 4. Check if the known boundry conditions re stisfied 5. If needed modify the guess nd resolve the problem gin x King Sud University ٢٧ King Sud University ٢٨

8 Shooting method - Exmple Shooting method - Exmple ẏ 4y 4x y(), y() Originl BVP ẏ 4y 4x y(), y() Originl BVP.. to be determined x x King Sud University ٢٩ King Sud University ٣٠ Shooting method - Exmple Step: convert to systems of first order ODE y 4y 4x y(), y() Convert to system of y y, y 4(y ) x first order Equtions y() y()?. dy y y, y y. d y y 4( y x ) Shooting method - Exmple Guess # he problem will be solved using RK with h for different vlues of y () until we hve y(). King Sud University ٣١ King Sud University ٣٢

9 Shooting method - Exmple Guess # Shooting method - Exmple Interpoltion for Guess # King Sud University ٣٣ King Sud University ٣٤ Shooting method - Exmple Interpoltion for Guess # Shooting method - Exmple Guess # Guess.574 King Sud University ٣٥ King Sud University ٣٦

10 Shooting method Exmple - Given: h ( ) d z dz h ( ) We need n initil vlue of z. For the shooting method, guess n initil vlue. Guessing z() Shooting method Exmple - dz ( ) h Using fourth-order RK method with step size of, () 68.8 his differs from the BC () Mking nother guess, z() () 85.9 Guessing z() Becuse the originl ODE is liner, the estimtes of z() re linerly relted. King Sud University ٣٧ King Sud University ٣٨ Shooting method Exmple - Using liner interpoltion formul between the vlues of z(), determine new vlue of z() Recll: first estimte z() () 68.8 second estimte z() () 85.9 Wht is z() tht would give us ()? Shooting method Exmple - z( ) ( 68. 8) () z() () z() We cn now use this to solve the first order ODE h ( ) d z dz h ( ) King Sud University ٣٩ King Sud University ٤٠

11 5 5 5 A n ly tic l Solu t ion Sh ootin g Meth od 5 distnce (m ) A n ly ticl Solu tion Sh ooting Met h od Finite Differ ence 5 distnce (m ) Summry of Shooting method. Guess the unvilble vlues for the uxiliry conditions t one point of independent vrible.. Solve the initil vlue problem. Check if the boundry conditions is stisfied otherwise modify the guess nd resolve the problem. 4. Repet () until the boundry conditions re stisfied For nonliner boundry vlue problems, liner interpoltion will not necessrily result in n ccurte estimtion. One lterntive is to pply three pplictions of the shooting method nd use qudrtic interpoltion.. King Sud University ٤١ King Sud University ٤٢ Properties of Shooting method. Using interpoltion to updte the guess often results in few itertions before reching the solution. he method cn be cumbersome for high order BVP becuse of the need to guess the initil condition for more thn one vrible. Runge-Kutt Method Sme s discussed before King Sud University ٤٣ King Sud University ٤٤

12 Computer-bsed solutions Computer-bsed solutions o o BVPFD subroutine (Fortrn IMSL subroutine tht Solves (prmeterized) system of differentil equtions with boundry conditions t two points, using vrible order, vrible step size finite difference method with deferred corrections). MALAB solution of boundry vlue problems for ordinry differentil equtions (bvp4c ) See the IMSL document for detiled description of this subroutine See Exmple of using BVPFD subroutine King Sud University ٤٥ King Sud University ٤٦ Computer-bsed solutions Computer-bsed solutions o MALAB solution of boundry vlue problems for ordinry differentil equtions (bvp4c ) bvp4c - Solve boundry vlue problems for ordinry differentil equtions Syntx sol bvp4c(odefun,bcfun,solinit) sol bvp4c(odefun,bcfun,solinit,options) solinit bvpinit(x, yinit, prms) Arguments.. etc See: King Sud University ٤٧ King Sud University ٤٨

13 Computer-bsed solutions King Sud University ٤٩ King Sud University ٥٠

CBE 291b - Computation And Optimization For Engineers

CBE 291b - Computation And Optimization For Engineers The University of Western Ontrio Fculty of Engineering Science Deprtment of Chemicl nd Biochemicl Engineering CBE 9b - Computtion And Optimiztion For Engineers Mtlb Project Introduction Prof. A. Jutn Jn

More information

Chapter 3 Solving Nonlinear Equations

Chapter 3 Solving Nonlinear Equations Chpter 3 Solving Nonliner Equtions 3.1 Introduction The nonliner function of unknown vrible x is in the form of where n could be non-integer. Root is the numericl vlue of x tht stisfies f ( x) 0. Grphiclly,

More information

New Expansion and Infinite Series

New Expansion and Infinite Series Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

Numerical Integration. Newton Cotes Formulas. Quadrature. Newton Cotes Formulas. To approximate the integral b

Numerical Integration. Newton Cotes Formulas. Quadrature. Newton Cotes Formulas. To approximate the integral b Numericl Integrtion Newton Cotes Formuls Given function f : R R nd two rel numbers, b R, < b, we clculte (pproximtely) the integrl I(f,, b) = f (x) dx K. Frischmuth (IfM UR) Numerics for CSE 08/09 8 /

More information

B.Sc. in Mathematics (Ordinary)

B.Sc. in Mathematics (Ordinary) R48/0 DUBLIN INSTITUTE OF TECHNOLOGY KEVIN STREET, DUBLIN 8 B.Sc. in Mthemtics (Ordinry) SUPPLEMENTAL EXAMINATIONS 01 Numericl Methods Dr. D. Mckey Dr. C. Hills Dr. E.A. Cox Full mrks for complete nswers

More information

Z b. f(x)dx. Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate an area by computing I, but...

Z b. f(x)dx. Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate an area by computing I, but... Chpter 7 Numericl Methods 7. Introduction In mny cses the integrl f(x)dx cn be found by finding function F (x) such tht F 0 (x) =f(x), nd using f(x)dx = F (b) F () which is known s the nlyticl (exct) solution.

More information

Orthogonal Polynomials

Orthogonal Polynomials Mth 4401 Gussin Qudrture Pge 1 Orthogonl Polynomils Orthogonl polynomils rise from series solutions to differentil equtions, lthough they cn be rrived t in vriety of different mnners. Orthogonl polynomils

More information

Consequently, the temperature must be the same at each point in the cross section at x. Let:

Consequently, the temperature must be the same at each point in the cross section at x. Let: HW 2 Comments: L1-3. Derive the het eqution for n inhomogeneous rod where the therml coefficients used in the derivtion of the het eqution for homogeneous rod now become functions of position x in the

More information

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by. NUMERICAL INTEGRATION 1 Introduction The inverse process to differentition in clculus is integrtion. Mthemticlly, integrtion is represented by f(x) dx which stnds for the integrl of the function f(x) with

More information

In Section 5.3 we considered initial value problems for the linear second order equation. y.a/ C ˇy 0.a/ D k 1 (13.1.4)

In Section 5.3 we considered initial value problems for the linear second order equation. y.a/ C ˇy 0.a/ D k 1 (13.1.4) 678 Chpter 13 Boundry Vlue Problems for Second Order Ordinry Differentil Equtions 13.1 TWO-POINT BOUNDARY VALUE PROBLEMS In Section 5.3 we considered initil vlue problems for the liner second order eqution

More information

CAAM 453 NUMERICAL ANALYSIS I Examination There are four questions, plus a bonus. Do not look at them until you begin the exam.

CAAM 453 NUMERICAL ANALYSIS I Examination There are four questions, plus a bonus. Do not look at them until you begin the exam. Exmintion 1 Posted 23 October 2002. Due no lter thn 5pm on Mondy, 28 October 2002. Instructions: 1. Time limit: 3 uninterrupted hours. 2. There re four questions, plus bonus. Do not look t them until you

More information

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Partial Derivatives. Limits. For a single variable function f (x), the limit lim Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

More information

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation 1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space. Clculus 3 Li Vs Spce Curves Recll the prmetric equtions of curve in xy-plne nd compre them with prmetric equtions of curve in spce. Prmetric curve in plne x = x(t) y = y(t) Prmetric curve in spce x = x(t)

More information

Ordinary differential equations

Ordinary differential equations Ordinry differentil equtions Introduction to Synthetic Biology E Nvrro A Montgud P Fernndez de Cordob JF Urchueguí Overview Introduction-Modelling Bsic concepts to understnd n ODE. Description nd properties

More information

Chapter Direct Method of Interpolation More Examples Civil Engineering

Chapter Direct Method of Interpolation More Examples Civil Engineering Chpter 5. Direct Method of Interpoltion More Exmples Civil Engineering Exmple o mximie ctch of bss in lke, it is suggested to throw the line to the depth of the thermocline. he chrcteristic feture of this

More information

Math Week 5 concepts and homework, due Friday February 10

Math Week 5 concepts and homework, due Friday February 10 Mt 2280-00 Week 5 concepts nd omework, due Fridy Februry 0 Recll tt ll problems re good for seeing if you cn work wit te underlying concepts; tt te underlined problems re to be nded in; nd tt te Fridy

More information

Numerical integration

Numerical integration 2 Numericl integrtion This is pge i Printer: Opque this 2. Introduction Numericl integrtion is problem tht is prt of mny problems in the economics nd econometrics literture. The orgniztion of this chpter

More information

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1 Exm, Mthemtics 471, Section ETY6 6:5 pm 7:4 pm, Mrch 1, 16, IH-115 Instructor: Attil Máté 1 17 copies 1. ) Stte the usul sufficient condition for the fixed-point itertion to converge when solving the eqution

More information

3.4 Numerical integration

3.4 Numerical integration 3.4. Numericl integrtion 63 3.4 Numericl integrtion In mny economic pplictions it is necessry to compute the definite integrl of relvlued function f with respect to "weight" function w over n intervl [,

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Mth 520 Finl Exm Topic Outline Sections 1 3 (Xio/Dums/Liw) Spring 2008 The finl exm will be held on Tuesdy, My 13, 2-5pm in 117 McMilln Wht will be covered The finl exm will cover the mteril from ll of

More information

Section 3.3: Fredholm Integral Equations

Section 3.3: Fredholm Integral Equations Section 3.3: Fredholm Integrl Equtions Suppose tht k : [, b] [, b] R nd g : [, b] R re given functions nd tht we wish to find n f : [, b] R tht stisfies f(x) = g(x) + k(x, y) f(y) dy. () Eqution () is

More information

Chapter 7 Notes, Stewart 8e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m x cos n (x) dx...

Chapter 7 Notes, Stewart 8e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m x cos n (x) dx... Contents 7.1 Integrtion by Prts................................... 2 7.2 Trigonometric Integrls.................................. 8 7.2.1 Evluting sin m x cos n (x)......................... 8 7.2.2 Evluting

More information

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes Jim Lmbers MAT 169 Fll Semester 2009-10 Lecture 4 Notes These notes correspond to Section 8.2 in the text. Series Wht is Series? An infinte series, usully referred to simply s series, is n sum of ll of

More information

Numerical Integration

Numerical Integration Chpter 5 Numericl Integrtion Numericl integrtion is the study of how the numericl vlue of n integrl cn be found. Methods of function pproximtion discussed in Chpter??, i.e., function pproximtion vi the

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vritionl nd Approximte Methods in Applied Mthemtics - A Peirce UBC Lecture 4: Piecewise Cubic Interpoltion Compiled 5 September In this lecture we consider piecewise cubic interpoltion

More information

AMATH 731: Applied Functional Analysis Fall Some basics of integral equations

AMATH 731: Applied Functional Analysis Fall Some basics of integral equations AMATH 731: Applied Functionl Anlysis Fll 2009 1 Introduction Some bsics of integrl equtions An integrl eqution is n eqution in which the unknown function u(t) ppers under n integrl sign, e.g., K(t, s)u(s)

More information

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph

More information

The problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on the tests.

The problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on the tests. ADVANCED CALCULUS PRACTICE PROBLEMS JAMES KEESLING The problems tht follow illustrte the methods covered in clss. They re typicl of the types of problems tht will be on the tests. 1. Riemnn Integrtion

More information

Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6.1 INTRO to LAPLACE TRANSFORMS Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

More information

Introduction to Finite Element Method

Introduction to Finite Element Method Introduction to Finite Element Method Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pn.pl/ tzielins/ Tble of Contents 1 Introduction 1 1.1 Motivtion nd generl concepts.............

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

Construction of Gauss Quadrature Rules

Construction of Gauss Quadrature Rules Jim Lmbers MAT 772 Fll Semester 2010-11 Lecture 15 Notes These notes correspond to Sections 10.2 nd 10.3 in the text. Construction of Guss Qudrture Rules Previously, we lerned tht Newton-Cotes qudrture

More information

CBE 450 Chemical Reactor Fundamentals Fall, 2009 Homework Assignment #3

CBE 450 Chemical Reactor Fundamentals Fall, 2009 Homework Assignment #3 BE 450 hemicl Rector Fundmentls Fll, 009 Homework ssignment #3 1. Numericl Solution of Sgle Nonler lgebric Eqution onsider contuous stirred-tnk rector (STR) which the followg dimeriztion rection goes from

More information

20 MATHEMATICS POLYNOMIALS

20 MATHEMATICS POLYNOMIALS 0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

More information

Taylor Polynomial Inequalities

Taylor Polynomial Inequalities Tylor Polynomil Inequlities Ben Glin September 17, 24 Abstrct There re instnces where we my wish to pproximte the vlue of complicted function round given point by constructing simpler function such s polynomil

More information

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS. THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

More information

Math 270A: Numerical Linear Algebra

Math 270A: Numerical Linear Algebra Mth 70A: Numericl Liner Algebr Instructor: Michel Holst Fll Qurter 014 Homework Assignment #3 Due Give to TA t lest few dys before finl if you wnt feedbck. Exercise 3.1. (The Bsic Liner Method for Liner

More information

A. Limits - L Hopital s Rule ( ) How to find it: Try and find limits by traditional methods (plugging in). If you get 0 0 or!!, apply C.! 1 6 C.

A. Limits - L Hopital s Rule ( ) How to find it: Try and find limits by traditional methods (plugging in). If you get 0 0 or!!, apply C.! 1 6 C. A. Limits - L Hopitl s Rule Wht you re finding: L Hopitl s Rule is used to find limits of the form f ( x) lim where lim f x x! c g x ( ) = or lim f ( x) = limg( x) = ". ( ) x! c limg( x) = 0 x! c x! c

More information

Chapter 3 Polynomials

Chapter 3 Polynomials Dr M DRAIEF As described in the introduction of Chpter 1, pplictions of solving liner equtions rise in number of different settings In prticulr, we will in this chpter focus on the problem of modelling

More information

Lecture 24: Laplace s Equation

Lecture 24: Laplace s Equation Introductory lecture notes on Prtil Differentil Equtions - c Anthony Peirce. Not to e copied, used, or revised without explicit written permission from the copyright owner. 1 Lecture 24: Lplce s Eqution

More information

We will see what is meant by standard form very shortly

We will see what is meant by standard form very shortly THEOREM: For fesible liner progrm in its stndrd form, the optimum vlue of the objective over its nonempty fesible region is () either unbounded or (b) is chievble t lest t one extreme point of the fesible

More information

u t = k 2 u x 2 (1) a n sin nπx sin 2 L e k(nπ/l) t f(x) = sin nπx f(x) sin nπx dx (6) 2 L f(x 0 ) sin nπx 0 2 L sin nπx 0 nπx

u t = k 2 u x 2 (1) a n sin nπx sin 2 L e k(nπ/l) t f(x) = sin nπx f(x) sin nπx dx (6) 2 L f(x 0 ) sin nπx 0 2 L sin nπx 0 nπx Chpter 9: Green s functions for time-independent problems Introductory emples One-dimensionl het eqution Consider the one-dimensionl het eqution with boundry conditions nd initil condition We lredy know

More information

Math& 152 Section Integration by Parts

Math& 152 Section Integration by Parts Mth& 5 Section 7. - Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible

More information

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac REVIEW OF ALGEBRA Here we review the bsic rules nd procedures of lgebr tht you need to know in order to be successful in clculus. ARITHMETIC OPERATIONS The rel numbers hve the following properties: b b

More information

DOING PHYSICS WITH MATLAB MATHEMATICAL ROUTINES

DOING PHYSICS WITH MATLAB MATHEMATICAL ROUTINES DOIG PHYSICS WITH MATLAB MATHEMATICAL ROUTIES COMPUTATIO OF OE-DIMESIOAL ITEGRALS In Cooper School of Physics, University of Sydney in.cooper@sydney.edu.u DOWLOAD DIRECTORY FOR MATLAB SCRIPTS mth_integrtion_1d.m

More information

Lecture 14: Quadrature

Lecture 14: Quadrature Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be rel-vlues nd smooth The pproximtion of n integrl by numericl

More information

Applied Partial Differential Equations with Fourier Series and Boundary Value Problems 5th Edition Richard Haberman

Applied Partial Differential Equations with Fourier Series and Boundary Value Problems 5th Edition Richard Haberman Applied Prtil Differentil Equtions with Fourier Series nd Boundry Vlue Problems 5th Edition Richrd Hbermn Person Eduction Limited Edinburgh Gte Hrlow Essex CM20 2JE Englnd nd Associted Compnies throughout

More information

A Bernstein polynomial approach for solution of nonlinear integral equations

A Bernstein polynomial approach for solution of nonlinear integral equations Avilble online t wwwisr-publictionscom/jns J Nonliner Sci Appl, 10 (2017), 4638 4647 Reserch Article Journl Homepge: wwwtjnscom - wwwisr-publictionscom/jns A Bernstein polynomil pproch for solution of

More information

CMDA 4604: Intermediate Topics in Mathematical Modeling Lecture 19: Interpolation and Quadrature

CMDA 4604: Intermediate Topics in Mathematical Modeling Lecture 19: Interpolation and Quadrature CMDA 4604: Intermedite Topics in Mthemticl Modeling Lecture 19: Interpoltion nd Qudrture In this lecture we mke brief diversion into the res of interpoltion nd qudrture. Given function f C[, b], we sy

More information

1 1D heat and wave equations on a finite interval

1 1D heat and wave equations on a finite interval 1 1D het nd wve equtions on finite intervl In this section we consider generl method of seprtion of vribles nd its pplictions to solving het eqution nd wve eqution on finite intervl ( 1, 2. Since by trnsltion

More information

Summary: Method of Separation of Variables

Summary: Method of Separation of Variables Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section

More information

Best Approximation in the 2-norm

Best Approximation in the 2-norm Jim Lmbers MAT 77 Fll Semester 1-11 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the -norm Suppose tht we wish to obtin function f n (x) tht is liner combintion

More information

1 2-D Second Order Equations: Separation of Variables

1 2-D Second Order Equations: Separation of Variables Chpter 12 PDEs in Rectngles 1 2-D Second Order Equtions: Seprtion of Vribles 1. A second order liner prtil differentil eqution in two vribles x nd y is A 2 u x + B 2 u 2 x y + C 2 u y + D u 2 x + E u +

More information

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1 3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

More information

MATH 3795 Lecture 18. Numerical Solution of Ordinary Differential Equations.

MATH 3795 Lecture 18. Numerical Solution of Ordinary Differential Equations. MATH 3795 Lecture 18. Numericl Solution of Ordinry Differentil Equtions. Dmitriy Leykekhmn Fll 2008 Gols Introduce ordinry differentil equtions (ODEs) nd initil vlue problems (IVPs). Exmples of IVPs. Existence

More information

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1 MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further

More information

5.2 Exponent Properties Involving Quotients

5.2 Exponent Properties Involving Quotients 5. Eponent Properties Involving Quotients Lerning Objectives Use the quotient of powers property. Use the power of quotient property. Simplify epressions involving quotient properties of eponents. Use

More information

5.5 The Substitution Rule

5.5 The Substitution Rule 5.5 The Substitution Rule Given the usefulness of the Fundmentl Theorem, we wnt some helpful methods for finding ntiderivtives. At the moment, if n nti-derivtive is not esily recognizble, then we re in

More information

How do you know you have SLE?

How do you know you have SLE? Simultneous Liner Equtions Simultneous Liner Equtions nd Liner Algebr Simultneous liner equtions (SLE s) occur frequently in Sttics, Dynmics, Circuits nd other engineering clsses Need to be ble to, nd

More information

{ } = E! & $ " k r t +k +1

{ } = E! & $  k r t +k +1 Chpter 4: Dynmic Progrmming Objectives of this chpter: Overview of collection of clssicl solution methods for MDPs known s dynmic progrmming (DP) Show how DP cn be used to compute vlue functions, nd hence,

More information

Non-Linear & Logistic Regression

Non-Linear & Logistic Regression Non-Liner & Logistic Regression If the sttistics re boring, then you've got the wrong numbers. Edwrd R. Tufte (Sttistics Professor, Yle University) Regression Anlyses When do we use these? PART 1: find

More information

Chapter 4: Dynamic Programming

Chapter 4: Dynamic Programming Chpter 4: Dynmic Progrmming Objectives of this chpter: Overview of collection of clssicl solution methods for MDPs known s dynmic progrmming (DP) Show how DP cn be used to compute vlue functions, nd hence,

More information

Numerical Integration. 1 Introduction. 2 Midpoint Rule, Trapezoid Rule, Simpson Rule. AMSC/CMSC 460/466 T. von Petersdorff 1

Numerical Integration. 1 Introduction. 2 Midpoint Rule, Trapezoid Rule, Simpson Rule. AMSC/CMSC 460/466 T. von Petersdorff 1 AMSC/CMSC 46/466 T. von Petersdorff 1 umericl Integrtion 1 Introduction We wnt to pproximte the integrl I := f xdx where we re given, b nd the function f s subroutine. We evlute f t points x 1,...,x n

More information

Functions of Several Variables

Functions of Several Variables Functions of Severl Vribles Sketching Level Curves Sections Prtil Derivtives on every open set on which f nd the prtils, 2 f y = 2 f y re continuous. Norml Vector x, y, 2 f y, 2 f y n = ± (x 0,y 0) (x

More information

Conservation Law. Chapter Goal. 5.2 Theory

Conservation Law. Chapter Goal. 5.2 Theory Chpter 5 Conservtion Lw 5.1 Gol Our long term gol is to understnd how mny mthemticl models re derived. We study how certin quntity chnges with time in given region (sptil domin). We first derive the very

More information

2D1431 Machine Learning Lab 3: Reinforcement Learning

2D1431 Machine Learning Lab 3: Reinforcement Learning 2D1431 Mchine Lerning Lb 3: Reinforcement Lerning Frnk Hoffmnn modified by Örjn Ekeberg December 7, 2004 1 Introduction In this lb you will lern bout dynmic progrmming nd reinforcement lerning. It is ssumed

More information

Families of Solutions to Bernoulli ODEs

Families of Solutions to Bernoulli ODEs In the fmily of solutions to the differentil eqution y ry dx + = it is shown tht vrition of the initil condition y( 0 = cuses horizontl shift in the solution curve y = f ( x, rther thn the verticl shift

More information

21.6 Green Functions for First Order Equations

21.6 Green Functions for First Order Equations 21.6 Green Functions for First Order Equtions Consider the first order inhomogeneous eqution subject to homogeneous initil condition, B[y] y() = 0. The Green function G( ξ) is defined s the solution to

More information

Administrivia CSE 190: Reinforcement Learning: An Introduction

Administrivia CSE 190: Reinforcement Learning: An Introduction Administrivi CSE 190: Reinforcement Lerning: An Introduction Any emil sent to me bout the course should hve CSE 190 in the subject line! Chpter 4: Dynmic Progrmming Acknowledgment: A good number of these

More information

Review of basic calculus

Review of basic calculus Review of bsic clculus This brief review reclls some of the most importnt concepts, definitions, nd theorems from bsic clculus. It is not intended to tech bsic clculus from scrtch. If ny of the items below

More information

LECTURE 1. Introduction. 1. Rough Classiæcation of Partial Diæerential Equations

LECTURE 1. Introduction. 1. Rough Classiæcation of Partial Diæerential Equations LECTURE 1 Introduction 1. Rough Clssiction of Prtil Dierentil Equtions A prtil dierentil eqution is eqution relting function of n vribles x 1 ;::: ;x n, its prtil derivtives, nd the coordintes x =èx 1

More information

Studies on Nuclear Fuel Rod Thermal Performance

Studies on Nuclear Fuel Rod Thermal Performance Avilble online t www.sciencedirect.com Energy Procedi 1 (1) 1 17 Studies on Nucler Fuel od herml Performnce Eskndri, M.1; Bvndi, A ; Mihndoost, A3* 1 Deprtment of Physics, Islmic Azd University, Shirz

More information

Department of Chemical Engineering ChE-101: Approaches to Chemical Engineering Problem Solving MATLAB Tutorial VII

Department of Chemical Engineering ChE-101: Approaches to Chemical Engineering Problem Solving MATLAB Tutorial VII Tutoril VII: Liner Regression Lst updted 5/8/06 b G.G. Botte Deprtment of Chemicl Engineering ChE-0: Approches to Chemicl Engineering Problem Solving MATLAB Tutoril VII Liner Regression Using Lest Squre

More information

M344 - ADVANCED ENGINEERING MATHEMATICS

M344 - ADVANCED ENGINEERING MATHEMATICS M3 - ADVANCED ENGINEERING MATHEMATICS Lecture 18: Lplce s Eqution, Anltic nd Numericl Solution Our emple of n elliptic prtil differentil eqution is Lplce s eqution, lso clled the Diffusion Eqution. If

More information

1 E3102: a study guide and review, Version 1.0

1 E3102: a study guide and review, Version 1.0 1 E3102: study guide nd review, Version 1.0 Here is list of subjects tht I think we ve covered in clss (your milege my vry). If you understnd nd cn do the bsic problems in this guide you should be in very

More information

Reinforcement learning II

Reinforcement learning II CS 1675 Introduction to Mchine Lerning Lecture 26 Reinforcement lerning II Milos Huskrecht milos@cs.pitt.edu 5329 Sennott Squre Reinforcement lerning Bsics: Input x Lerner Output Reinforcement r Critic

More information

ODE: Existence and Uniqueness of a Solution

ODE: Existence and Uniqueness of a Solution Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =

More information

Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6.1 INTRO to LAPLACE TRANSFORMS Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

More information

Notes on length and conformal metrics

Notes on length and conformal metrics Notes on length nd conforml metrics We recll how to mesure the Eucliden distnce of n rc in the plne. Let α : [, b] R 2 be smooth (C ) rc. Tht is α(t) (x(t), y(t)) where x(t) nd y(t) re smooth rel vlued

More information

Math Lecture 23

Math Lecture 23 Mth 8 - Lecture 3 Dyln Zwick Fll 3 In our lst lecture we delt with solutions to the system: x = Ax where A is n n n mtrix with n distinct eigenvlues. As promised, tody we will del with the question of

More information

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

AQA Further Pure 1. Complex Numbers. Section 1: Introduction to Complex Numbers. The number system

AQA Further Pure 1. Complex Numbers. Section 1: Introduction to Complex Numbers. The number system Complex Numbers Section 1: Introduction to Complex Numbers Notes nd Exmples These notes contin subsections on The number system Adding nd subtrcting complex numbers Multiplying complex numbers Complex

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

PDE Notes. Paul Carnig. January ODE s vs PDE s 1

PDE Notes. Paul Carnig. January ODE s vs PDE s 1 PDE Notes Pul Crnig Jnury 2014 Contents 1 ODE s vs PDE s 1 2 Section 1.2 Het diffusion Eqution 1 2.1 Fourier s w of Het Conduction............................. 2 2.2 Energy Conservtion.....................................

More information

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0) 1 Tylor polynomils In Section 3.5, we discussed how to pproximte function f(x) round point in terms of its first derivtive f (x) evluted t, tht is using the liner pproximtion f() + f ()(x ). We clled this

More information

Chapter 14. Matrix Representations of Linear Transformations

Chapter 14. Matrix Representations of Linear Transformations Chpter 4 Mtrix Representtions of Liner Trnsformtions When considering the Het Stte Evolution, we found tht we could describe this process using multipliction by mtrix. This ws nice becuse computers cn

More information

NUMERICAL INTEGRATION

NUMERICAL INTEGRATION NUMERICAL INTEGRATION How do we evlute I = f (x) dx By the fundmentl theorem of clculus, if F (x) is n ntiderivtive of f (x), then I = f (x) dx = F (x) b = F (b) F () However, in prctice most integrls

More information

Plates on elastic foundation

Plates on elastic foundation Pltes on elstic foundtion Circulr elstic plte, xil-symmetric lod, Winkler soil (fter Timoshenko & Woinowsky-Krieger (1959) - Chpter 8) Prepred by Enzo Mrtinelli Drft version ( April 016) Introduction Winkler

More information

c n φ n (x), 0 < x < L, (1) n=1

c n φ n (x), 0 < x < L, (1) n=1 SECTION : Fourier Series. MATH4. In section 4, we will study method clled Seprtion of Vribles for finding exct solutions to certin clss of prtil differentil equtions (PDEs. To do this, it will be necessry

More information

SOLUTION OF QUADRATIC NONLINEAR PROBLEMS WITH MULTIPLE SCALES LINDSTEDT-POINCARE METHOD. Mehmet Pakdemirli and Gözde Sarı

SOLUTION OF QUADRATIC NONLINEAR PROBLEMS WITH MULTIPLE SCALES LINDSTEDT-POINCARE METHOD. Mehmet Pakdemirli and Gözde Sarı Mthemticl nd Computtionl Applictions, Vol., No., pp. 37-5, 5 http://dx.doi.org/.99/mc-5- SOLUTION OF QUADRATIC NONLINEAR PROBLEMS WITH MULTIPLE SCALES LINDSTEDT-POINCARE METHOD Mehmet Pkdemirli nd Gözde

More information

Mathematics of Motion II Projectiles

Mathematics of Motion II Projectiles Chmp+ Fll 2001 Dn Stump 1 Mthemtics of Motion II Projectiles Tble of vribles t time v velocity, v 0 initil velocity ccelertion D distnce x position coordinte, x 0 initil position x horizontl coordinte

More information

Data Structures and Algorithms CMPSC 465

Data Structures and Algorithms CMPSC 465 Dt Structures nd Algorithms CMPSC 465 LECTURE 10 Solving recurrences Mster theorem Adm Smith S. Rskhodnikov nd A. Smith; bsed on slides by E. Demine nd C. Leiserson Review questions Guess the solution

More information

The Dirichlet Problem in a Two Dimensional Rectangle. Section 13.5

The Dirichlet Problem in a Two Dimensional Rectangle. Section 13.5 The Dirichlet Prolem in Two Dimensionl Rectngle Section 13.5 1 Dirichlet Prolem in Rectngle In these notes we will pply the method of seprtion of vriles to otin solutions to elliptic prolems in rectngle

More information

Lecture 12: Numerical Quadrature

Lecture 12: Numerical Quadrature Lecture 12: Numericl Qudrture J.K. Ryn@tudelft.nl WI3097TU Delft Institute of Applied Mthemtics Delft University of Technology 5 December 2012 () Numericl Qudrture 5 December 2012 1 / 46 Outline 1 Review

More information

Recitation 3: More Applications of the Derivative

Recitation 3: More Applications of the Derivative Mth 1c TA: Pdric Brtlett Recittion 3: More Applictions of the Derivtive Week 3 Cltech 2012 1 Rndom Question Question 1 A grph consists of the following: A set V of vertices. A set E of edges where ech

More information