# Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 17

Save this PDF as:
Size: px
Start display at page:

Download "Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 17"

## Transcription

1 EECS 70 Discrete Mthemtics nd Proility Theory Spring 2013 Annt Shi Lecture 17 I.I.D. Rndom Vriles Estimting the is of coin Question: We wnt to estimte the proportion p of Democrts in the US popultion, y tking smll rndom smple. How lrge does our smple hve to e to gurntee tht our estimte will e within (sy) n dditive fctor of 0.1 of the true vlue with proility t lest 0.95? This is perhps the most sic sttisticl estimtion prolem, nd shows up everywhere. We will develop simple solution tht uses only Cheyshev s inequlity. More refined methods cn e used to get shrper results. Let s denote the size of our smple y n (to e determined), nd the numer of Democrts in it y the rndom vrile S n. (The suscript n just reminds us tht the r.v. depends on the size of the smple.) Then our estimte will e the vlue A n = 1 n S n. Now s hs often een the cse, we will find it helpful to write S n = X 1 + X X n, where { 1 if person i in smple is Democrt; X i = 0 otherwise. Note tht ech X i cn e viewed s coin toss, with Heds proility p (though of course we do not know the vlue of p!). And the coin tosses re independent. 1 We cll such fmily of rndom vriles independent, identiclly distriuted, or i.i.d. for short. (For precise definition of independent rndom vriles, see the next lecture note; for now we work with the intuitive mening tht knowing the vlue of ny suset of the r.v. s does not chnge the distriution of the others.) Wht is the expecttion of our estimte? E(A n ) = E( 1 n S n) = 1 n E(X 1 + X X n ) = 1 n (np) = p. So for ny vlue of n, our estimte will lwys hve the correct expecttion p. [Such r.v. is often clled n unised estimtor of p.] Now presumly, s we increse our smple size n, our estimte should get more nd more ccurte. This will show up in the fct tht the vrince decreses with n: i.e., s n increses, the proility tht we re fr from the men p will get smller. To see this, we need to compute Vr(A n ). But A n = 1 n n X i, which is just multiple of sum of independent rndom vriles. Theorem 17.1: For ny rndom vrile X nd constnt c, we hve Vr(cX) = c 2 Vr(X). 1 We re ssuming here tht the smpling is done with replcement ; i.e., we select ech person in the smple from the entire popultion, including those we hve lredy picked. So there is smll chnce tht we will pick the sme person twice. EECS 70, Spring 2013, Lecture 17 1

2 And for independent rndom vriles X,Y, we hve Vr(X +Y ) = Vr(X) + Vr(Y ). Before we prove this theorem, let us formlize something we hve een ssuming implicitly for some time: Joint Distriutions Consider two rndom vriles X nd Y defined on the sme proility spce. By linerity of expecttion, we know tht E(X +Y ) = E(X)+E(Y ). Since E(X) cn e clculted if we know the distriution of X nd E(Y ) cn e clculted if we know the distriution of Y, this mens tht E(X +Y ) cn e computed knowing only the two individul distriutions. No informtion is needed out the reltionship etween X nd Y. This is not true if we need to compute, sy, E((X +Y ) 2 ), e.g. s when we computed the vrince of inomil r.v. This is ecuse E((X +Y ) 2 ) = E(X 2 )+2E(XY )+E(Y 2 ), nd E(XY ) depends on the reltionship etween X nd Y. How cn we cpture such reltionship? Recll tht the distriution of single rndom vrile X is the collection of the proilities of ll events X =, for ll possile vlues of tht X cn tke on. When we hve two rndom vriles X nd Y, we cn think of (X,Y ) s "two-dimensionl" rndom vrile, in which cse the events of interest re X = Y = for ll possile vlues of (,) tht (X,Y ) cn tke on. Thus, nturl generliztion of the notion of distriution to multiple rndom vriles is the following. Definition 17.1 (joint distriution): The joint distriution of two discrete rndom vriles X nd Y is the collection of vlues {(,,Pr[X = Y = ]) : (,) A B}, where A nd B re the sets of ll possile vlues tken y X nd Y respectively. This notion oviously generlizes to three or more rndom vriles. Since we will write Pr[X = Y = ] quite often, we will revite it to Pr[X =,Y = ]. Just like the distriution of single rndom vrile, the joint distriution is normlized, i.e. Pr[X =,Y = ] = 1. A, B This follows from noticing tht the events X = Y =, A, B, prtition the smple spce. Independent Rndom Vriles Independence for rndom vriles is defined in nlogous fshion to independence for events: Definition 17.2 (independent r.v. s): Rndom vriles X nd Y on the sme proility spce re sid to e independent if the events X = nd Y = re independent for ll vlues,. Equivlently, the joint distriution of independent r.v. s decomposes s Pr[X =,Y = ] = Pr[X = ]Pr[Y = ],. Note tht for independent r.v. s, the joint distriution is fully specified y the mrginl distriutions. Mutul independence of more thn two r.v. s is defined similrly. A very importnt exmple of independent r.v. s is indictor r.v. s for independent events. Thus, for exmple, if {X i } re indictor r.v. s for the ith toss of coin eing Heds, then the X i re mutully independent r.v. s. We sw tht the expecttion of sum of r.v. s is the sum of the expecttions of the individul r.v. s. This is not true in generl for vrince. However, s the ove theorem sttes, this is true if the rndom vriles re independent. To see this, first we look t the expecttion of product of independent r.v. s (which is quntity tht frequently shows up in vrince clcultions, s we hve seen). Theorem 17.2: For independent rndom vriles X,Y, we hve E(XY ) = E(X)E(Y ). EECS 70, Spring 2013, Lecture 17 2

3 Proof: We hve E(XY ) = = = ( Pr[X =,Y = ] Pr[X = ] Pr[Y = ] Pr[X = ] = E(X) E(Y ), ) ( Pr[Y = ] s required. In the second line here we mde crucil use of independence. For exmple, this theorem would hve llowed us to conclude immeditely in our rndom wlk exmple t the eginning of Lecture Note 16 tht E(X i X j ) = E(X i )E(X j ) = 0, without the need for clcultion. We now use the ove theorem to conclude the nice property of the vrince of independent rndom vriles stted in the theorem ove, nmely tht for independent rndom vriles X nd Y, Vr(X +Y ) = Vr(X)+ Vr(Y ): Proof: From the lterntive formul for vrince in Theorem 16.1, we hve, using linerity of expecttion extensively, Vr(X +Y ) = E((X +Y ) 2 ) E(X +Y ) 2 = E(X 2 ) + E(Y 2 ) + 2E(XY ) (E(X) + E(Y )) 2 = (E(X 2 ) E(X) 2 ) + (E(Y 2 ) E(Y ) 2 ) + 2(E(XY ) E(X)E(Y )) = Vr(X) + Vr(Y ) + 2(E(XY ) E(X)E(Y )). Now ecuse X,Y re independent, y Theorem 18.1 the finl term in this expression is zero. Hence we get our result. Note: The expression E(XY ) E(X)E(Y ) ppering in the ove proof is clled the covrince of X nd Y, nd is mesure of the dependence etween X,Y. It is zero when X,Y re independent. It is very importnt to rememer tht neither of these two results is true in generl, without the ssumption tht X,Y re independent. As simple exmple, note tht even for 0-1 r.v. X with Pr[X = 1] = p, E(X 2 ) = p is not equl to E(X) 2 = p 2 (ecuse of course X nd X re not independent!). Note lso tht the theorem does not quite sy tht vrince is liner for independent rndom vriles: it sys only tht vrinces sum. It is not true tht Vr(cX) = cvr(x) for constnt c. It sys tht Vr(cX) = c 2 Vr(X). The proof is left s strightforwrd exercise. ) We now return to our exmple of estimting the proportion of Democrts, where we were out to compute Vr(A n ): Vr(A n ) = Vr( 1 n n X i ) = ( 1 n n )2 Vr( X i ) = ( 1 n )2 n Vr(X i ) = σ 2 n, where we hve written σ 2 for the vrince of ech of the X i. So we see tht the vrince of A n decreses linerly with n. This fct ensures tht, s we tke lrger nd lrger smple sizes n, the proility tht we devite much from the expecttion p gets smller nd smller. Let s now use Cheyshev s inequlity to figure out how lrge n hs to e to ensure specified ccurcy in our estimte of the proportion of Democrts p. A nturl wy to mesure this is for us to specify two EECS 70, Spring 2013, Lecture 17 3

4 prmeters, ε nd δ, oth in the rnge (0,1). The prmeter ε controls the error we re prepred to tolerte in our estimte, nd δ controls the confidence we wnt to hve in our estimte. A more precise version of our originl question is then the following: Question: For the Democrt-estimtion prolem ove, how lrge does the smple size n hve to e in order to ensure tht Pr[ A n p ε] δ? In our originl question, we hd ε = 0.1 nd δ = Let s pply Cheyshev s inequlity to nswer our more precise question ove. Since we know Vr(A n ), this will e quite simple. From Cheyshev s inequlity, we hve Pr[ A n p ε] Vr(A n) ε 2 = σ 2 nε 2 To mke this less thn the desired vlue δ, we need to set n σ 2 ε 2 δ. (1) Now recll tht σ 2 = Vr(X i ) is the vrince of single smple X i. So, since X i is 0/1-vlued r.v., we hve σ 2 = p(1 p), nd inequlity (1) ecomes n p(1 p) ε 2. (2) δ Since p(1 p) is tkes on its mximum vlue for p = 1/2, we cn conclude tht it is sufficient to choose n such tht: n 1 4ε 2 δ. (3) Plugging in ε = 0.1 nd δ = 0.05, we see tht smple size of n = 500 is sufficient. Notice tht the size of the smple is independent of the totl size of the popultion! This is how polls cn ccurtely estimte quntities of interest for popultion of severl hundred million while smpling only very smll numer of people. Estimting generl expecttion Wht if we wnted to estimte something little more complex thn the proportion of Democrts in the popultion, such s the verge welth of people in the US? Then we could use exctly the sme scheme s ove, except tht now the r.v. X i is the welth of the ith person in our smple. Clerly E(X i ) = µ, the verge welth (which is wht we re trying to estimte). And our estimte will gin e A n = 1 n n X i, for suitly chosen smple size n. Once gin the X i re i.i.d. rndom vriles, so we gin hve E(A n ) = µ nd Vr(A n ) = σ 2 n, where σ 2 = Vr(X i ) is the vrince of the X i. (Recll tht the only fcts we used out the X i ws tht they were independent nd hd the sme distriution ctully the sme expecttion nd vrince would e enough: why?) This time, however, since we do not hve ny priori ound on the men µ, it mkes more sense to let ε e the reltive error. i.e. we wish to find n estimte tht is within n dditive error of εµ. Using eqution (1), ut sustituting εµ in plce of ε, it is enough for the smple size n to stisfy n σ 2 µ 2 1 ε 2 δ. (4) EECS 70, Spring 2013, Lecture 17 4

5 Here ε nd δ re the desired reltive error nd confidence respectively. Now of course we don t know the other two quntities, µ nd σ 2, ppering in eqution (4). In prctice, we would use lower ound on µ nd n upper ound on σ 2 (just s we used lower ound on p in the Democrts prolem). Plugging these ounds into eqution (4) will ensure tht our smple size is lrge enough. For exmple, in the verge welth prolem we could proly sfely tke µ to e t lest (sy) \$20k (proly more). However, the existence of people such s Bill Gtes mens tht we would need to tke very high vlue for the vrince σ 2. Indeed, if there is t lest one individul with welth \$50 illion, then ssuming reltively smll vlue of µ mens tht the vrince must e t lest out ( ) 2 = (Check this.) There is relly no wy round this prolem with simple uniform smpling: the uneven distriution of welth mens tht the vrince is inherently very lrge, nd we will need huge numer of smples efore we re likely to find nyody who is immensely welthy. But if we don t include such people in our smple, then our estimte will e wy too low. As further exmple, suppose we re trying to estimte the verge rte of emission from rdioctive source, nd we re willing to ssume tht the emissions follow Poisson distriution with some unknown prmeter λ of course, this λ is precisely the expecttion we re trying to estimte. Now in this cse we hve µ = λ nd lso σ 2 = λ (see the previous lecture note). So σ 2 = 1 µ 2 λ. Thus in this cse smple size of n = 1 suffices. (Agin, in prctice we would use lower ound on λ.) λε 2 δ The Lw of Lrge Numers The estimtion method we used in the previous two sections is sed on principle tht we ccept s prt of everydy life: nmely, the Lw of Lrge Numers (LLN). This sserts tht, if we oserve some rndom vrile mny times, nd tke the verge of the oservtions, then this verge will converge to single vlue, which is of course the expecttion of the rndom vrile. In other words, verging tends to smooth out ny lrge fluctutions, nd the more verging we do the etter the smoothing. Theorem 17.3: [Lw of Lrge Numers] Let X 1,X 2,...,X n e i.i.d. rndom vriles with common expecttion µ = E(X i ). Define A n = 1 n n X i. Then for ny α > 0, we hve Pr[ A n µ α] 0 s n. Proof: Let Vr(X i ) = σ 2 e the common vrince of the r.v. s; we ssume tht σ 2 is finite 2. With this (reltively mild) ssumption, the LLN is n immedite consequence of Cheyshev s Inequlity. For, s we hve seen ove, E(A n ) = µ nd Vr(A n ) = σ 2 n, so y Cheyshev we hve This completes the proof. Pr[ A n µ α] Vr(A n) α 2 = σ 2 0 s n. nα2 Notice tht the LLN sys tht the proility of ny devition α from the men, however smll, tends to zero s the numer of oservtions n in our verge tends to infinity. Thus y tking n lrge enough, we cn mke the proility of ny given devition s smll s we like. 2 If σ 2 is not finite, the LLN still holds ut the proof is much trickier. EECS 70, Spring 2013, Lecture 17 5

### Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 17

CS 70 Discrete Mthemtics nd Proility Theory Summer 2014 Jmes Cook Note 17 I.I.D. Rndom Vriles Estimting the is of coin Question: We wnt to estimte the proportion p of Democrts in the US popultion, y tking

p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

### Continuous Random Variables Class 5, Jeremy Orloff and Jonathan Bloom

Lerning Gols Continuous Rndom Vriles Clss 5, 8.05 Jeremy Orloff nd Jonthn Bloom. Know the definition of continuous rndom vrile. 2. Know the definition of the proility density function (pdf) nd cumultive

### Review of Gaussian Quadrature method

Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

### Interpreting Integrals and the Fundamental Theorem

Interpreting Integrls nd the Fundmentl Theorem Tody, we go further in interpreting the mening of the definite integrl. Using Units to Aid Interprettion We lredy know tht if f(t) is the rte of chnge of

### 1B40 Practical Skills

B40 Prcticl Skills Comining uncertinties from severl quntities error propgtion We usully encounter situtions where the result of n experiment is given in terms of two (or more) quntities. We then need

### Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:

Improper Integrls The First Fundmentl Theorem of Clculus, s we ve discussed in clss, goes s follows: If f is continuous on the intervl [, ] nd F is function for which F t = ft, then ftdt = F F. An integrl

### I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

2 The Prllel Circuit Electric Circuits: Figure 2- elow show ttery nd multiple resistors rrnged in prllel. Ech resistor receives portion of the current from the ttery sed on its resistnce. The split is

### The Regulated and Riemann Integrals

Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

### Lecture 3. In this lecture, we will discuss algorithms for solving systems of linear equations.

Lecture 3 3 Solving liner equtions In this lecture we will discuss lgorithms for solving systems of liner equtions Multiplictive identity Let us restrict ourselves to considering squre mtrices since one

### 10. AREAS BETWEEN CURVES

. AREAS BETWEEN CURVES.. Ares etween curves So res ove the x-xis re positive nd res elow re negtive, right? Wrong! We lied! Well, when you first lern out integrtion it s convenient fiction tht s true in

Qudrtic Forms Recll the Simon & Blume excerpt from n erlier lecture which sid tht the min tsk of clculus is to pproximte nonliner functions with liner functions. It s ctully more ccurte to sy tht we pproximte

### Review of Probability Distributions. CS1538: Introduction to Simulations

Review of Proility Distriutions CS1538: Introduction to Simultions Some Well-Known Proility Distriutions Bernoulli Binomil Geometric Negtive Binomil Poisson Uniform Exponentil Gmm Erlng Gussin/Norml Relevnce

### 1 Probability Density Functions

Lis Yn CS 9 Continuous Distributions Lecture Notes #9 July 6, 28 Bsed on chpter by Chris Piech So fr, ll rndom vribles we hve seen hve been discrete. In ll the cses we hve seen in CS 9, this ment tht our

### Lecture 2e Orthogonal Complement (pages )

Lecture 2e Orthogonl Complement (pges -) We hve now seen tht n orthonorml sis is nice wy to descrie suspce, ut knowing tht we wnt n orthonorml sis doesn t mke one fll into our lp. In theory, the process

### How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk out solving systems of liner equtions. These re prolems tht give couple of equtions with couple of unknowns, like: 6= x + x 7=

### 2.4 Linear Inequalities and Interval Notation

.4 Liner Inequlities nd Intervl Nottion We wnt to solve equtions tht hve n inequlity symol insted of n equl sign. There re four inequlity symols tht we will look t: Less thn , Less thn or

### Section 4: Integration ECO4112F 2011

Reding: Ching Chpter Section : Integrtion ECOF Note: These notes do not fully cover the mteril in Ching, ut re ment to supplement your reding in Ching. Thus fr the optimistion you hve covered hs een sttic

### Parse trees, ambiguity, and Chomsky normal form

Prse trees, miguity, nd Chomsky norml form In this lecture we will discuss few importnt notions connected with contextfree grmmrs, including prse trees, miguity, nd specil form for context-free grmmrs

### W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying

Vitli covers 1 Definition. A Vitli cover of set E R is set V of closed intervls with positive length so tht, for every δ > 0 nd every x E, there is some I V with λ(i ) < δ nd x I. 2 Lemm (Vitli covering)

### Bases for Vector Spaces

Bses for Vector Spces 2-26-25 A set is independent if, roughly speking, there is no redundncy in the set: You cn t uild ny vector in the set s liner comintion of the others A set spns if you cn uild everything

### Designing Information Devices and Systems I Discussion 8B

Lst Updted: 2018-10-17 19:40 1 EECS 16A Fll 2018 Designing Informtion Devices nd Systems I Discussion 8B 1. Why Bother With Thévenin Anywy? () Find Thévenin eqiuvlent for the circuit shown elow. 2kΩ 5V

### The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

1 Section 5. The Definite Integrl Suppose tht function f is continuous nd positive over n intervl [, ]. y = f(x) x The re under the grph of f nd ove the x-xis etween nd is denoted y f(x) dx nd clled the

### Math 426: Probability Final Exam Practice

Mth 46: Probbility Finl Exm Prctice. Computtionl problems 4. Let T k (n) denote the number of prtitions of the set {,..., n} into k nonempty subsets, where k n. Argue tht T k (n) kt k (n ) + T k (n ) by

### Lecture 2: January 27

CS 684: Algorithmic Gme Theory Spring 217 Lecturer: Év Trdos Lecture 2: Jnury 27 Scrie: Alert Julius Liu 2.1 Logistics Scrie notes must e sumitted within 24 hours of the corresponding lecture for full

### 4.1. Probability Density Functions

STT 1 4.1-4. 4.1. Proility Density Functions Ojectives. Continuous rndom vrile - vers - discrete rndom vrile. Proility density function. Uniform distriution nd its properties. Expected vlue nd vrince of

### Section 6.1 Definite Integral

Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined

### Surface maps into free groups

Surfce mps into free groups lden Wlker Novemer 10, 2014 Free groups wedge X of two circles: Set F = π 1 (X ) =,. We write cpitl letters for inverse, so = 1. e.g. () 1 = Commuttors Let x nd y e loops. The

### Lecture 3: Equivalence Relations

Mthcmp Crsh Course Instructor: Pdric Brtlett Lecture 3: Equivlence Reltions Week 1 Mthcmp 2014 In our lst three tlks of this clss, we shift the focus of our tlks from proof techniques to proof concepts

### Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2.

Mth 43 Section 6. Section 6.: Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot

### Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Lecture 17

CS 70 Discrete Mthemtics d Proility Theory Sprig 206 Ro d Wlrd Lecture 7 Vrice We hve see i the previous ote tht if we toss coi times with is p, the the expected umer of heds is p. Wht this mes is tht

### Section 6: Area, Volume, and Average Value

Chpter The Integrl Applied Clculus Section 6: Are, Volume, nd Averge Vlue Are We hve lredy used integrls to find the re etween the grph of function nd the horizontl xis. Integrls cn lso e used to find

### A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

### Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

### CS667 Lecture 6: Monte Carlo Integration 02/10/05

CS667 Lecture 6: Monte Crlo Integrtion 02/10/05 Venkt Krishnrj Lecturer: Steve Mrschner 1 Ide The min ide of Monte Crlo Integrtion is tht we cn estimte the vlue of n integrl by looking t lrge number of

### Continuous Random Variables

STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is rel-vlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht

### Chapters Five Notes SN AA U1C5

Chpters Five Notes SN AA U1C5 Nme Period Section 5-: Fctoring Qudrtic Epressions When you took lger, you lerned tht the first thing involved in fctoring is to mke sure to fctor out ny numers or vriles

### 1 Structural induction, finite automata, regular expressions

Discrete Structures Prelim 2 smple uestions s CS2800 Questions selected for spring 2017 1 Structurl induction, finite utomt, regulr expressions 1. We define set S of functions from Z to Z inductively s

### Mathematics Number: Logarithms

plce of mind F A C U L T Y O F E D U C A T I O N Deprtment of Curriculum nd Pedgogy Mthemtics Numer: Logrithms Science nd Mthemtics Eduction Reserch Group Supported y UBC Teching nd Lerning Enhncement

### Linear Inequalities. Work Sheet 1

Work Sheet 1 Liner Inequlities Rent--Hep, cr rentl compny,chrges \$ 15 per week plus \$ 0.0 per mile to rent one of their crs. Suppose you re limited y how much money you cn spend for the week : You cn spend

### Theoretical foundations of Gaussian quadrature

Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of

### Math 1B, lecture 4: Error bounds for numerical methods

Mth B, lecture 4: Error bounds for numericl methods Nthn Pflueger 4 September 0 Introduction The five numericl methods descried in the previous lecture ll operte by the sme principle: they pproximte the

### Math 135, Spring 2012: HW 7

Mth 3, Spring : HW 7 Problem (p. 34 #). SOLUTION. Let N the number of risins per cookie. If N is Poisson rndom vrible with prmeter λ, then nd for this to be t lest.99, we need P (N ) P (N ) ep( λ) λ ln(.)

### Vectors , (0,0). 5. A vector is commonly denoted by putting an arrow above its symbol, as in the picture above. Here are some 3-dimensional vectors:

Vectors 1-23-2018 I ll look t vectors from n lgeric point of view nd geometric point of view. Algericlly, vector is n ordered list of (usully) rel numers. Here re some 2-dimensionl vectors: (2, 3), ( )

### Recitation 3: More Applications of the Derivative

Mth 1c TA: Pdric Brtlett Recittion 3: More Applictions of the Derivtive Week 3 Cltech 2012 1 Rndom Question Question 1 A grph consists of the following: A set V of vertices. A set E of edges where ech

### Chapter 6 Continuous Random Variables and Distributions

Chpter 6 Continuous Rndom Vriles nd Distriutions Mny economic nd usiness mesures such s sles investment consumption nd cost cn hve the continuous numericl vlues so tht they cn not e represented y discrete

### MTH 505: Number Theory Spring 2017

MTH 505: Numer Theory Spring 207 Homework 2 Drew Armstrong The Froenius Coin Prolem. Consider the eqution x ` y c where,, c, x, y re nturl numers. We cn think of \$ nd \$ s two denomintions of coins nd \$c

### DEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1.

398 CHAPTER 11 ORTHOGONAL FUNCTIONS AND FOURIER SERIES 11.1 ORTHOGONAL FUNCTIONS REVIEW MATERIAL The notions of generlized vectors nd vector spces cn e found in ny liner lger text. INTRODUCTION The concepts

### Lecture 3 Gaussian Probability Distribution

Introduction Lecture 3 Gussin Probbility Distribution Gussin probbility distribution is perhps the most used distribution in ll of science. lso clled bell shped curve or norml distribution Unlike the binomil

### Lecture Solution of a System of Linear Equation

ChE Lecture Notes, Dept. of Chemicl Engineering, Univ. of TN, Knoville - D. Keffer, 5/9/98 (updted /) Lecture 8- - Solution of System of Liner Eqution 8. Why is it importnt to e le to solve system of liner

### Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

### CS103B Handout 18 Winter 2007 February 28, 2007 Finite Automata

CS103B ndout 18 Winter 2007 Ferury 28, 2007 Finite Automt Initil text y Mggie Johnson. Introduction Severl childrens gmes fit the following description: Pieces re set up on plying ord; dice re thrown or

### Minimal DFA. minimal DFA for L starting from any other

Miniml DFA Among the mny DFAs ccepting the sme regulr lnguge L, there is exctly one (up to renming of sttes) which hs the smllest possile numer of sttes. Moreover, it is possile to otin tht miniml DFA

### Best Approximation. Chapter The General Case

Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given

### Chapter 9 Definite Integrals

Chpter 9 Definite Integrls In the previous chpter we found how to tke n ntiderivtive nd investigted the indefinite integrl. In this chpter the connection etween ntiderivtives nd definite integrls is estlished

### Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given

### The steps of the hypothesis test

ttisticl Methods I (EXT 7005) Pge 78 Mosquito species Time of dy A B C Mid morning 0.0088 5.4900 5.5000 Mid Afternoon.3400 0.0300 0.8700 Dusk 0.600 5.400 3.000 The Chi squre test sttistic is the sum of

### MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27-233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.

### Homework Assignment 3 Solution Set

Homework Assignment 3 Solution Set PHYCS 44 6 Ferury, 4 Prolem 1 (Griffiths.5(c The potentil due to ny continuous chrge distriution is the sum of the contriutions from ech infinitesiml chrge in the distriution.

### Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

### 1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

### set is not closed under matrix [ multiplication, ] and does not form a group.

Prolem 2.3: Which of the following collections of 2 2 mtrices with rel entries form groups under [ mtrix ] multipliction? i) Those of the form for which c d 2 Answer: The set of such mtrices is not closed

### and that at t = 0 the object is at position 5. Find the position of the object at t = 2.

7.2 The Fundmentl Theorem of Clculus 49 re mny, mny problems tht pper much different on the surfce but tht turn out to be the sme s these problems, in the sense tht when we try to pproimte solutions we

### Convert the NFA into DFA

Convert the NF into F For ech NF we cn find F ccepting the sme lnguge. The numer of sttes of the F could e exponentil in the numer of sttes of the NF, ut in prctice this worst cse occurs rrely. lgorithm:

### 5. (±±) Λ = fw j w is string of even lengthg [ 00 = f11,00g 7. (11 [ 00)± Λ = fw j w egins with either 11 or 00g 8. (0 [ ffl)1 Λ = 01 Λ [ 1 Λ 9.

Regulr Expressions, Pumping Lemm, Right Liner Grmmrs Ling 106 Mrch 25, 2002 1 Regulr Expressions A regulr expression descries or genertes lnguge: it is kind of shorthnd for listing the memers of lnguge.

### Derivations for maximum likelihood estimation of particle size distribution using in situ video imaging

2 TWMCC Texs-Wisconsin Modeling nd Control Consortium 1 Technicl report numer 27-1 Derivtions for mximum likelihood estimtion of prticle size distriution using in situ video imging Pul A. Lrsen nd Jmes

### Bridging the gap: GCSE AS Level

Bridging the gp: GCSE AS Level CONTENTS Chpter Removing rckets pge Chpter Liner equtions Chpter Simultneous equtions 8 Chpter Fctors 0 Chpter Chnge the suject of the formul Chpter 6 Solving qudrtic equtions

### The practical version

Roerto s Notes on Integrl Clculus Chpter 4: Definite integrls nd the FTC Section 7 The Fundmentl Theorem of Clculus: The prcticl version Wht you need to know lredy: The theoreticl version of the FTC. Wht

### 20 MATHEMATICS POLYNOMIALS

0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

### Entropy and Ergodic Theory Notes 10: Large Deviations I

Entropy nd Ergodic Theory Notes 10: Lrge Devitions I 1 A chnge of convention This is our first lecture on pplictions of entropy in probbility theory. In probbility theory, the convention is tht ll logrithms

### Numerical integration

2 Numericl integrtion This is pge i Printer: Opque this 2. Introduction Numericl integrtion is problem tht is prt of mny problems in the economics nd econometrics literture. The orgniztion of this chpter

### This chapter will show you. What you should already know. 1 Write down the value of each of the following. a 5 2

1 Direct vrition 2 Inverse vrition This chpter will show you how to solve prolems where two vriles re connected y reltionship tht vries in direct or inverse proportion Direct proportion Inverse proportion

### MAA 4212 Improper Integrals

Notes by Dvid Groisser, Copyright c 1995; revised 2002, 2009, 2014 MAA 4212 Improper Integrls The Riemnn integrl, while perfectly well-defined, is too restrictive for mny purposes; there re functions which

### Riemann is the Mann! (But Lebesgue may besgue to differ.)

Riemnn is the Mnn! (But Lebesgue my besgue to differ.) Leo Livshits My 2, 2008 1 For finite intervls in R We hve seen in clss tht every continuous function f : [, b] R hs the property tht for every ɛ >

### An Overview of Integration

An Overview of Integrtion S. F. Ellermeyer July 26, 2 The Definite Integrl of Function f Over n Intervl, Suppose tht f is continuous function defined on n intervl,. The definite integrl of f from to is

### Describe in words how you interpret this quantity. Precisely what information do you get from x?

WAVE FUNCTIONS AND PROBABILITY 1 I: Thinking out the wve function In quntum mechnics, the term wve function usully refers to solution to the Schrödinger eqution, Ψ(x, t) i = 2 2 Ψ(x, t) + V (x)ψ(x, t),

### Lecture 1. Functional series. Pointwise and uniform convergence.

1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

### Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite

### Math 61CM - Solutions to homework 9

Mth 61CM - Solutions to homework 9 Cédric De Groote November 30 th, 2018 Problem 1: Recll tht the left limit of function f t point c is defined s follows: lim f(x) = l x c if for ny > 0 there exists δ

### September 13 Homework Solutions

College of Engineering nd Computer Science Mechnicl Engineering Deprtment Mechnicl Engineering 5A Seminr in Engineering Anlysis Fll Ticket: 5966 Instructor: Lrry Cretto Septemer Homework Solutions. Are

### 5: The Definite Integral

5: The Definite Integrl 5.: Estimting with Finite Sums Consider moving oject its velocity (meters per second) t ny time (seconds) is given y v t = t+. Cn we use this informtion to determine the distnce

### Solution for Assignment 1 : Intro to Probability and Statistics, PAC learning

Solution for Assignment 1 : Intro to Probbility nd Sttistics, PAC lerning 10-701/15-781: Mchine Lerning (Fll 004) Due: Sept. 30th 004, Thursdy, Strt of clss Question 1. Bsic Probbility ( 18 pts) 1.1 (

### Designing Information Devices and Systems I Spring 2018 Homework 7

EECS 16A Designing Informtion Devices nd Systems I Spring 2018 omework 7 This homework is due Mrch 12, 2018, t 23:59. Self-grdes re due Mrch 15, 2018, t 23:59. Sumission Formt Your homework sumission should

### Name Solutions to Test 3 November 8, 2017

Nme Solutions to Test 3 November 8, 07 This test consists of three prts. Plese note tht in prts II nd III, you cn skip one question of those offered. Some possibly useful formuls cn be found below. Brrier

### Chapter 5 : Continuous Random Variables

STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 216 Néhémy Lim Chpter 5 : Continuous Rndom Vribles Nottions. N {, 1, 2,...}, set of nturl numbers (i.e. ll nonnegtive integers); N {1, 2,...}, set of ll

### Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph

### The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).

The Fundmentl Theorems of Clculus Mth 4, Section 0, Spring 009 We now know enough bout definite integrls to give precise formultions of the Fundmentl Theorems of Clculus. We will lso look t some bsic emples

### Line integrals, and arc length of curves. Some intuitive explanations and definitions.

Line integrls, nd rc length of curves. Some intuitive explntions nd definitions. Version 2. 8//2006 Thnks Yhel for correcting some misprints. A new remrk hs lso een dded t the end of this document. Let

### Chapter 2. Random Variables and Probability Distributions

Rndom Vriles nd Proilit Distriutions- 6 Chpter. Rndom Vriles nd Proilit Distriutions.. Introduction In the previous chpter, we introduced common topics of proilit. In this chpter, we trnslte those concepts

### Continuous Random Variables

CPSC 53 Systems Modeling nd Simultion Continuous Rndom Vriles Dr. Anirn Mhnti Deprtment of Computer Science University of Clgry mhnti@cpsc.uclgry.c Definitions A rndom vrile is sid to e continuous if there

### Duality # Second iteration for HW problem. Recall our LP example problem we have been working on, in equality form, is given below.

Dulity #. Second itertion for HW problem Recll our LP emple problem we hve been working on, in equlity form, is given below.,,,, 8 m F which, when written in slightly different form, is 8 F Recll tht we

### Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4

Intermedite Mth Circles Wednesdy, Novemer 14, 2018 Finite Automt II Nickols Rollick nrollick@uwterloo.c Regulr Lnguges Lst time, we were introduced to the ide of DFA (deterministic finite utomton), one

### Regular Language. Nonregular Languages The Pumping Lemma. The pumping lemma. Regular Language. The pumping lemma. Infinitely long words 3/17/15

Regulr Lnguge Nonregulr Lnguges The Pumping Lemm Models of Comput=on Chpter 10 Recll, tht ny lnguge tht cn e descried y regulr expression is clled regulr lnguge In this lecture we will prove tht not ll

### Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

### Math 8 Winter 2015 Applications of Integration

Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

### 2 b. , a. area is S= 2π xds. Again, understand where these formulas came from (pages ).

AP Clculus BC Review Chpter 8 Prt nd Chpter 9 Things to Know nd Be Ale to Do Know everything from the first prt of Chpter 8 Given n integrnd figure out how to ntidifferentite it using ny of the following