Chapter IV. (Ship Hydro-Statics & Dynamics) Floatation & Stability

Size: px
Start display at page:

Download "Chapter IV. (Ship Hydro-Statics & Dynamics) Floatation & Stability"

Transcription

1 Chapter V (Ship Hydro-Statics & Dynamics) Floatation & Stability 4.1 mportant Hydro-Static Curves or Relations (see Fig at p44 & handout) Displacement Curves (displacement [molded, total] vs. draft, weight [SW, FW] vs. draft (T)) Coefficients Curves (C B, C M, C P, C WL, vs. T) VCB (KB, Z B ): Vertical distance of Center of Buoyancy (C.B) to the baseline vs. T LCB (LCF, X B ): Longitudinal Distance of C.B or floatation center (C.F) to the midship vs. T 1

2 4.1 mportant Hydro-Static Curves or Relations (Continue) TP: Tons per inch vs. T (increase in buoyancy due to per inch increase in draft) Bonbjean Curves (p63-66) a) Outline profile of a hull b) Curves of areas of transverse sections (stations) c) Drafts scales d) Purpose: compute disp. & C.B., when the vessel has 1) a large trim, or )is poised on a big wave crest or trough.

3 How to use Bonjean Curves Draw the given W.L. Find the intersection of the W.L. & each station Find the immersed area of each station Use numerical integration to find the disp. and C.B. 4. How to Compute these curves Formulas for Area, Moments & Moments of nertia a) Area d ydx A ydx, A b) Moments d xydx M xydx, M Center of Floatation x M / A c) Moments of nertia d x d x ydx L 0, C. F 0 0 x ydx x A L 0 L 0 A 3

4 Examples of Hand Computation of Displacement Sheet (Foundation for Numerical Programming) Area, floatation, etc of 4 WL (Waterplane) Displacement (molded) up to 8 WL Displacement (molded) up to 4 and 40 WL (vertical summation of waterplanes) Displacement (molded) up to 4 and 40 WL (Longitudinal summation of stations) Wetted surface Summary of results of Calculations 4 wl area 3 wl area Disp. Up to 4 wl 8 wl area 40 wl area Disp. Up to 16 wl 16 wl area Up to 4 wl Up to 4 & 40 wl 4 wl area Up to 8 wl MT MT Wetted surface Red sheet will be studied in detail 1-6 Areas & properties (F.C., c, etc) of W.L 7-11 Displacement, Z B, and X B up W.L., vertical integration Transverse station area, longitudinal integration for displacement, Z B, and X B Specific Feature (wetted surface, MT, etc. Disp. Up to 40 wl Disp. Up to 3 wl Summary 19 Summary 4

5 m1 S 3 S The distance between the two stations Simpson's 1st 3 1 y0 y1 3 y y 3 1 y0 y y1 y.. 4 Symmetric Formulas for the remaining coefficents m S S 3 the distance between the two stations Simpson's 1st rule coeff.; - Symmetric 3 3 m3 S y m 4 S ( from ) h h m5 S, m6 S m i 5

6 llustration of Table 4: C1 Station FP-0 AP-10 (half station) C C3 Half Ordinate copy from line drawing table ( 4 WL). (notice at FP. Modification of half ordinate) Simpson coefficient (Simpson rule 1) (1/ because of half station) C4 = C3 x C (area function) displacement C5 = Arm (The distance between a station and station of 5 (Midship) C6 = C5 x Function of Longitudinal Moment with respect to Midship (or station 5) C7 = Arm (same as C5) C8 = C6 x C7 Function of Longitudinal moment of inertia with respect to Midship. C9.= [C] 3 C10. Same as C3. (Simpson Coeff.) C11. = C9 x C10. Transverse moment of inertia of WL about its centerline Table 5 is similar to Table 4, except the additional computation of appendage. 6

7 llustration of Table 8 For low WLs, their change is large. Therefore, it is first to use planimeter or other means to compute the half-areas of each stations up to No. 1 WL (8 WL). C1. Station C. Half area (ft ) of the given station C3.C3/(h/3) ( divided by h/3 is not meaningful, because it later multiplying by h/3) (h = 8 the distance between the two neighboring WLs) C4.½ Simpson s Coeff. C5. C4 x C3 C6.Arm distance between this station and station 5 (midship) C7 C5 x C6 f(m) 7

8 llustration of Table 9 C1. WL No. C. f(v) Notice first row up to 8. f(v) C3. Simpson s coeff. C4. C x C3 C5. Vertical Arm above the base C6. C4 x C5. f(m) vertical moment w.r.t. the Baseline. * Notice up the data in the first row is related to displacement up to 8 WL. The Table just adding V) 8

9 llustration of Table 1 C1. Station No. C. under 8 WL. (From Table 8) C3. 8 WL x 1 C4. 16 WL x ¼ (SM ) C5. 4 WL x 1 C6. (C + C3 + C4 + C5) Function of Area of Stations C7. Arm (Distance between this station to midship) C8. C7 x C6 (Simpson rule) C9. C6*h/3 9

10 4.3 Stability A floating body reaches to an equilibrium state, if 1) its weight = the buoyancy ) the line of action of these two forces become collinear. The equilibrium: stable, or unstable or neutrally stable. Stable equilibrium: if it is slightly displaced from its equilibrium position and will return to that position. Unstable equilibrium: if it is slightly displaced form its equilibrium position and tends to move farther away from this position. Neutral equilibrium: if it is displaced slightly from this position and will remain in the new position. 10

11 Motion of a Ship: 6 degrees of freedom - Surge - Sway - Heave - Roll - Pitch - Yaw Axis Translation Rotation x Longitudinal Surge Neutral S. Roll S. NS. US y Transverse Sway Neutral S. Pitch S. z Vertical Heave S. (for sub, N.S.) Yaw NS Righting & Heeling Moments A ship or a submarine is designed to float in the upright position. Righting Moment: exists at any angle of inclination where the forces of weight and buoyancy act to move the ship toward the upright position. Heeling Moment: exists at any angle of inclination where the forces of weight and buoyancy act to move the ship away from the upright position. 11

12 For a displacement ship, W.L G---Center of Gravity, B---Center of Buoyancy M--- Transverse Metacenter, to be defined later. f M is above G, we will have a righting moment, and if M is below G, then we have a heeling moment. For submarines (immersed in water) B G G f B is above G, we have righting moment f B is below G, we have heeling moment 1

13 Upsetting Forces (overturning moments) Beam wind, wave & current pressure Lifting a weight (when the ship is loading or unloading in the harbor.) Offside weight (C.G is no longer at the center line) The loss of part of buoyancy due to damage (partially flooded, C.B. is no longer at the center line) Turning Grounding Longitudinal Equilibrium For an undamaged (intact) ship, we are usually only interested in determining the ship s draft and trim regarding the longitudinal equilibrium because the ship capsizing in the longitudinal direction is almost impossible. We only study the initial stability for the longitudinal equilibrium. 13

14 Static Stability & Dynamical Stability Static Stability: Studying the magnitude of the righting moment given the inclination (angle) of the ship*. Dynamic Stability: Calculating the amount of work done by the righting moment given the inclination of the ship. The study of dynamic Stability is based on the study of static stability. Static Stability 1) The initial stability (aka stability at small inclination) and, ) the stability at large inclinations. The initial (or small angle) stability: studies the right moments or right arm at small inclination angles. The stability at large inclination (angle): computes the right moments (or right arms) as function of the inclination angle, up to a limit angle at which the ship may lose its stability (capsizes). Hence, the initial stability can be viewed as a special case of the latter. 14

15 nitial stability Righting Arm: A symmetric ship is inclined at a small angle dφ. C.B has moved off the ship s centerline as the result of the inclination. The distance between the action of buoyancy and weight, GZ, is called righting arm. Transverse Metacenter: A vertical line through the C.B intersects the original vertical centerline at point, M. GZ GM sin d GMd if d 1 Location of the Transverse Metacenter Transverse metacentric height : the distance between the C.G. and M (GM). t is important as an index of transverse stability at small angles of inclination. GZ is positive, if the moment is righting moment. M should be above C.G, if GZ >0. f we know the location of M, we may find GM, and thus the righting arm GZ or righting moment can be determined given a small angle dφ. How to determine the location of M? 15

16 When a ship is inclined at small angle dφ WoLo Waterline (W.L) at upright position W 1 L 1 nclined W.L Bo C.B. at upright position, B 1 C.B. at inclined position - The displacement (volume) of the ship v 1, v The volume of the emerged and immersed g 1, g C.G. of the emerged and immersed wedge, respectively Equivolume nclination (v 1 =v ) f the ship is wall-sided with the range of inclinations of a small angle dφ, then the volume v 1 and v, of the two wedges between the two waterlines will be same. Thus, the displacements under the waterlines WoLo and W 1 L 1 will be same. This inclination is called equivolume inclination. Thus, the intersection of WoLo, and W 1 L 1 is at the longitudinal midsection. For most ships, while they may be wall-sided in the vicinity of WL near their midship section, they are not wall-sided near their sterns and bows. However, at a small angle of inclination, we may still approximately treat them as equivolume inclination. 16

17 When a ship is at equivolume inclination, vg1g B0B1, v1 v v According to a theorem from mechanics, if one of the bodies constituting a system moves in a direction, the C.G. of the whole system moves in the same direction parallel to the shift of the C.G. of that body. The shift of the C.G. of the system and the shift of the C.G of the shifted body are in the inverse ratio of their weights. L 3 y dx B0B1 vg1g 3 0 x B0M, tan( d) tan( d) L 1 L 3 L 3 vg1g y ( y tan d) ( y) dx tan d, y dx 0 x 3 y dx 0 the moment of inertia of W L w.r.t. the longitudinal axis x 0 0 For a ship inclined at a small angle d, the location of its transverse metacenter is approximately above its x C.B. by, which is independent of d. K. M. (Metacenter measured from keel ), or H M is the height of metacenter above the baseline. x K.M. = H M = + ZB, where Z is the vertical coordinates of the C.B. B The vertical distance between the metacenter & C.G, GM H Z + Z Z x M G B G. 17

18 f we know the vertical position of the C.G., Z and the C.B., Z the righting arm at small angles of inclination, d, B G x GZ GM d ZB ZG d and the righting moment is x M w ZB Zg d. Examples of computing KM d d B B a) Rectangular cross section d 1 3 ZB, x LB, LBd 1 x B BM 1d B d KM BM ZB 1d b) Triangular cross section d ZB, x LB, LBd 3 1 x B BM 6d B d KM BM ZB 6d 3 18

19 Natural frequency of Rolling of A Ship Free vibration M X w GM t where w GM M M X X 0 is the inertia moment of the ship w.r.t. C.G. A large GM leads to a higher natural freq. 4.4Effects of free surfaces of liquids on the righting arm pp81-83 When a liquid tank in a ship is not full, there is a free surface in this tank. The effect of the free surface of liquids on the initial stability of the ship is to decrease the righting arm. For a small parallel angle inclination, the movement of C.G of liquid is G G 0 1 d OL tan k 19

20 The increase in the heeling moment due to the movement of C.G. of liquid M G G d heeling F tan k 0 1 F OL f there is no influence of free-surface liquids, the righting moment of the ship at a small angle dφ is: ox M GM w d ZB Z g w d n the presence of a free-surface liquid, the righting moment is decreased due to a heeling moment of free-surface liquid. The reduced righting moment M is ox M M M heeling w d Z B Z g F w ol The reduced metacentric height GM : GM Z Z O X F O L B g w Comparing with the original GM, it is decreased by an amount, F OL. w The decrease can also be viewed as an increase in height of C.G. w.r.t. the baseline. F OL Z g Z g w How to decrease OL : Longitudinal subdivision: reduce the width b, and thus reduces Anti rolling tank O L 3 b l 0

21 4.5 Effects of a suspended weight on the righting arm When a ship inclines at a small angle dφ, the suspended object moves transversely Transverse movement of the weight = h dφ, where h is the distance between the suspended weight and the hanging point The increase in the heeling moment due to the transverse movement M heeling w h d n the presence of a suspended object, the righting moment & righting arm are decreased due to a heeling moment of the suspended object. The reduced righting moment M & metacentric height GM are: ox w M M M heeling w d Z B Z g h w w w ox GM GM h ZB Z g h w w n other words, the C.G of a suspended object is actually at its suspended point 1

22 Because the suspension weights & liquid with free surface tend to decrease the righting arm, or decrease the initial stability, we should avoid them. 1. Filling the liquid tank (in full) to get rid of the free surface. (creating a expandable volume). Make the inertial moment of the free surface as small as possible by adding the separation longitudinal plates (bulkhead). 3. Fasten the weights to prevent them from moving transversely. 4.6 The nclining Experiment (Test) Purpose 1. To obtain the vertical position of C.G (Center of Gravity) of the ship.. t is required by nternational convention on Safety of Life at Sea. (Every passenger or cargo vessel newly built or rebuilt)

23 4.6 The nclining Experiment (Continue) Basic Principle M: Transverse Metacenter (A vertical line through the C.B intersects the original vertical centerline at point, M) Due to the movement of weights, the heeling moment is M heeling wh where w is the total weight of the moving objects and h is the moving distance. 4.6 The nclining Experiment (Continue) The shift of the center of gravity is GG where W is the total weight of the ship. The righting moment = The heeling moment wh GM W tan wh GM GG1 cot( ) W tan( ) 1 wh W 1. w and h are recorded and hence known.. is measured by a pendulum known as stabilograph. 3. The total weight W can be determined given the draft T. (at FP, AP & midship, usually only a very small trim is allowed.) 4. Thus GM can be calculated, 3

24 4.6 The nclining Experiment (Continue) GM H Z H Z x M g, M B The metacenter height and vertical coordinate of C.B have been calculated. Thus, C.G. can be obtained. Z H GM g M Obtaining the longitudinal position of the gravity center of a ship will be explained in section The nclining Experiment (Continue) 1. The experiment should be carried out in calm water & nice weather. No wind, no heavy rain, no tides.. t is essential that the ship be free to incline (mooring ropes should be as slack as possible, but be careful.). 3. All weights capable of moving transversely should be locked in position and there should be no loose fluids in tanks. 4. The ship in inclining test should be as near completion as possible. 5. Keep as few people on board as possible. 6. The angle of inclination should be small enough with the range of validity of the theory. 7. The ship in experiment should not have a large trim. 4

25 4.7 Effect of Ship s Geometry on Stability Transverse metacenter height GM = BM (Z G Z B ) x GM ( Zg ZB ) x C LB C B B C C LBT C T T B B where C 1 dpends on waterplane. x d db dt x B T 4.7 (Continue) x d db a) ncrease B only: ( CBLBT increases) x B x d dt b) Decrease T only: ( decreases) x T db dt c) Change B & T but keep fixed: B T x d db 3 x B 5

26 Conclusion: to increase GM ( Transverse metacenter height) 1. increasing the beam, B. decreasing the draft, T 3. lowering C.G (Z G ) 4. increasing the freeboard will increase the Z G, but will improve the stability at large inclination angle. 5. Tumble home or flare will have effects on the stability at large inclination angle. 6. Bilge keels, fin stabilizers, gyroscopic stabilizers, antirolling tank also improve the stability (at pp48-5). 4.7 (Continue) Suitable metacenter height t should be large enough to satisfy the requirement of rules. Usually under full load condition, GM~0.04B. However, too large GM will result in a very small rolling period. Higher rolling frequency will cause the crew or passenger uncomfortable. This also should be avoided. (see page 37 of this notes) 6

27 4.8 Longitudinal nclination Longitudinal Metacenter: Similar to the definition of the transverse meta center, when a ship is inclined longitudinally at a small angle, A vertical line through the center of B 1 buoyancy intersects the vertical line through B 0 (before the ship is inclined) at. M L The Location of the Longitudinal Metacenter For a small angle inclination, volumes of forward wedge immersed in water and backward wedge emerged out of water are: v ( y) ( xtan ) dx where y is the half breadth. 1 l 0 Ll v ( y) ( x tan ) dx, v v v. 1 0 l Thus, yxdx yxdx, which indicates: 0 0 Ll moment of area forward of F = moment of area after F. F is the center of (mass) gravity of waterline W L, & is called center of flotation of W L. Therefore, for equal volume longitudinal inclination the new waterline always passes through the center of flotation (C.F). 7

28 Location of the Longitudinal Metacenter Using the same argument used in obtaining transverse metacenter. B B l 0 /, vg g ( y) ( xtan ) xdx yx tan xdx l 0 tan yx dx yx dx tan 0 L l FC is the moment of inertia with respect to the FC vg g transverse axis passing the center of flotation. 0 Ll FC B0 B1 B0M tan, B0M. H B M Z Z. GM Z Z FC FC ML 0 B B L B g Location of the Longitudinal Metacenter Usually Floatation Center (C.F) of a waterplane is not at the midship, Ax FC 0, T where 0, T, is the moment of inertia w.r.t. the transverse axis at midship (or station 5) and x is the distance from F.C. to the midship. 8

29 Moment to Alter Trim One nch (MT) MT: (moment to alter (change) the ship s trim per inch) at each waterline (or draft) is an important quantity. We may use the longitudinal metacenter to predict MT MT ( a function of draft) Due to the movement of a weight, assume that the ship as 1 trim, and floats at waterline W.L., 1" 1 tan, where L is in feet. L 1 L Due to the movement of the weight, G moves to G, M wh G G, G G G M tan HM Z w L L G tan 0 1 FC M whm L ZG tan w ZB ZG tan FC 1 w ZB ZG 1 L 9

30 MT ( a function of draft) FC FC 1 wfc ZG ZB, M w 1 L 1 L w 40L 3 FC 64 lb/ft, Long Ton = 40 lb, MT (ton-ft) f the longitudinal inclination is small, MT can be used to find out the longitudinal position of gravity center ( ). X G1 Trim TF TA T tan L L L FC FC T FC G0G1 Z Z tan, L Z Z Since G is in the same vertical line as C. B under W L, B G G B FC X G1 X B G0G1 X B T L 30

SHIP BUOYANCY AND STABILITY. Lecture 03 Ship initial stability

SHIP BUOYANCY AND STABILITY. Lecture 03 Ship initial stability SHIP BUOYANCY AND STABILITY Lecture 3 Ship initial stability 1 Literature J. Matusiak: Laivan kelluvuus ja vakavuus Biran A. B., Ship Hydrostatics and Stability, 23 J. Matusiak: Short Introduction to Ship

More information

Hydrostatics and Stability Dr. Hari V Warrior Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur

Hydrostatics and Stability Dr. Hari V Warrior Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur Hydrostatics and Stability Dr. Hari V Warrior Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 09 Free Surface Effect In the

More information

STABILITY AND TRIM OF MARINE VESSELS. Massachusetts Institute of Technology, Subject 2.017

STABILITY AND TRIM OF MARINE VESSELS. Massachusetts Institute of Technology, Subject 2.017 STABILITY AND TRIM OF MARINE VESSELS Concept of Mass Center for a Rigid Body Centroid the point about which moments due to gravity are zero: 6 g m i (x g x i )= 0 Æ x = 6m i x i / 6m i = 6m i x i / M g

More information

SHIP BUOYANCY AND STABILITY. Lecture 02 Ship equilibrium and introduction to ship hydrostatics

SHIP BUOYANCY AND STABILITY. Lecture 02 Ship equilibrium and introduction to ship hydrostatics SHIP BUOYANCY AND STABILITY Lecture 02 Ship equilibrium and introduction to ship hydrostatics 1 Literature J. Matusiak: Laivan kelluvuus ja vakavuus Biran A. B., Ship Hydrostatics and Stability, 2003 J.

More information

Offshore Hydromechanics Module 1

Offshore Hydromechanics Module 1 Offshore Hydromechanics Module 1 Dr. ir. Pepijn de Jong 1. Intro, Hydrostatics and Stability Introduction OE4630d1 Offshore Hydromechanics Module 1 dr.ir. Pepijn de Jong Assistant Prof. at Ship Hydromechanics

More information

Hydrostatic and Stability IN A NUTSHELL. of Floating Structures. Compendium. Relevant to Questions in Exam. Robert Bronsart

Hydrostatic and Stability IN A NUTSHELL. of Floating Structures. Compendium. Relevant to Questions in Exam. Robert Bronsart Hydrostatic and Stability of Floating Structures IN A NUTSHELL Compendium Relevant to Questions in Exam Robert Bronsart Version Date Comment 2.21 September 2015 minor corrections Author: Robert Bronsart

More information

SHIP BUOYANCY AND STABILITY

SHIP BUOYANCY AND STABILITY SHIP BUOYANCY AND STABILITY Lecture 04 Ship stability-z curve 09/11/2017 Ship Buoyancy and Stability 1 Literature J. Matusiak: Laivan kelluvuus ja vakavuus Biran A. B., Ship Hydrostatics and Stability,

More information

Buoyancy and Stability of Immersed and Floating Bodies

Buoyancy and Stability of Immersed and Floating Bodies Buoyancy and Stability of Immersed and Floating Bodies 9. 12. 2016 Hyunse Yoon, Ph.D. Associate Research Scientist IIHR-Hydroscience & Engineering Review: Pressure Force on a Plane Surface The resultant

More information

Static Forces on Surfaces-Buoyancy. Fluid Mechanics. The equilibrium of a body may be: Stable. Unstable. Neutral (could be considered stable)

Static Forces on Surfaces-Buoyancy. Fluid Mechanics. The equilibrium of a body may be: Stable. Unstable. Neutral (could be considered stable) Equilibrium of Floating Bodies: To be the floating body in equilibrium, two conditions must be satisfied: The buoyant Force (F b ) must equal the weight of the floating body (W). F b and W must act in

More information

SEAKEEPING AND MANEUVERING Prof. Dr. S. Beji 2

SEAKEEPING AND MANEUVERING Prof. Dr. S. Beji 2 SEAKEEPING AND MANEUVERING Prof. Dr. S. Beji 2 Ship Motions Ship motions in a seaway are very complicated but can be broken down into 6-degrees of freedom motions relative to 3 mutually perpendicular axes

More information

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur. Lecture - 8 Fluid Statics Part V

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur. Lecture - 8 Fluid Statics Part V Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 8 Fluid Statics Part V Good morning, I welcome you all to the session of fluid mechanics.

More information

Transport Analysis Report Full Stability Analysis. Project EXAMPLE PROJECT DEMO RUN FOR REVIEW. Client ORCA OFFSHORE

Transport Analysis Report Full Stability Analysis. Project EXAMPLE PROJECT DEMO RUN FOR REVIEW. Client ORCA OFFSHORE ONLINE MARINE ENGINEERING Transport Analysis Report Full Stability Analysis Project EXAMPLE PROJECT DEMO RUN FOR REVIEW Client ORCA OFFSHORE Issue Date 18/11/2010 Report reference number: Herm-18-Nov-10-47718

More information

Wuchang Shipbuilding Industry Co., Ltd. China Shipbuilding Industry Corporation

Wuchang Shipbuilding Industry Co., Ltd. China Shipbuilding Industry Corporation Safety Assessments for Anchor Handling Conditions of Multi-purpose Platform Work Vessels Reporter:Yu Wang Wuchang Shipbuilding Industry Co., Ltd. China Shipbuilding Industry Corporation 2009.12.04 0 Outline

More information

Chapter 2 Hydrostatics Buoyancy, Floatation and Stability

Chapter 2 Hydrostatics Buoyancy, Floatation and Stability Chapter 2 Hydrostatics uoyancy, Floatation and Stability Zerihun Alemayehu Rm. E119 AAiT Force of buoyancy an upward force exerted by a fluid pressure on fully or partially floating body Gravity Archimedes

More information

Welcome to the Ship Resistance Predictor! The total calm water resistance is given by:

Welcome to the Ship Resistance Predictor! The total calm water resistance is given by: Welcome to the Ship Resistance Predictor! What does this Excel Sheet do? This Excel sheet helps you calculate the Total Calm Water Resistance for a Ship at a given forward speed It also calculates from

More information

Chapter 1 INTRODUCTION

Chapter 1 INTRODUCTION Chapter 1 INTRODUCTION 1-1 The Fluid. 1-2 Dimensions. 1-3 Units. 1-4 Fluid Properties. 1 1-1 The Fluid: It is the substance that deforms continuously when subjected to a shear stress. Matter Solid Fluid

More information

RULES FOR CLASSIFICATION Inland navigation vessels. Part 3 Structures, equipment Chapter 2 Design load principles. Edition December 2015 DNV GL AS

RULES FOR CLASSIFICATION Inland navigation vessels. Part 3 Structures, equipment Chapter 2 Design load principles. Edition December 2015 DNV GL AS RULES FOR CLASSIFICATION Inland navigation vessels Edition December 2015 Part 3 Structures, equipment Chapter 2 s The content of this service document is the subject of intellectual property rights reserved

More information

Seakeeping characteristics of intact and damaged ship in the Adriatic Sea

Seakeeping characteristics of intact and damaged ship in the Adriatic Sea Towards Green Marine Technology and Transport Guedes Soares, Dejhalla & Pavleti (Eds) 2015 Taylor & Francis Group, London, ISBN 978-1-138-02887-6 Seakeeping characteristics of intact and damaged ship in

More information

RULES FOR CLASSIFICATION. Ships. Part 3 Hull Chapter 4 Loads. Edition January 2017 DNV GL AS

RULES FOR CLASSIFICATION. Ships. Part 3 Hull Chapter 4 Loads. Edition January 2017 DNV GL AS RULES FOR CLASSIFICATION Ships Edition January 2017 Part 3 Hull Chapter 4 The content of this service document is the subject of intellectual property rights reserved by ("DNV GL"). The user accepts that

More information

H2 Stability of a Floating Body

H2 Stability of a Floating Body H2 Stability of a Floating Body TecQuipment Ltd 2015 Do not reproduce or transmit this document in any form or by any means, electronic or mechanical, including photocopy, recording or any information

More information

Department of Aerospace and Ocean Engineering Graduate Study Specialization in Ocean Engineering. Written Preliminary Examination Information

Department of Aerospace and Ocean Engineering Graduate Study Specialization in Ocean Engineering. Written Preliminary Examination Information Department of Aerospace and Ocean Engineering Graduate Study Specialization in Ocean Engineering Written Preliminary Examination Information Faculty: Professors W. Neu, O. Hughes, A. Brown, M. Allen Test

More information

Final Exam TTK4190 Guidance and Control

Final Exam TTK4190 Guidance and Control Trondheim Department of engineering Cybernetics Contact person: Professor Thor I. Fossen Phone: 73 59 43 61 Cell: 91 89 73 61 Email: tif@itk.ntnu.no Final Exam TTK4190 Guidance and Control Friday May 15,

More information

Section 3.1. Archimedes Principle: Forces on a body in water

Section 3.1. Archimedes Principle: Forces on a body in water Section 3.1 Archimedes Principle: The Buoyant Force on an object is equal to the weight of the volume of the water displaced by the object F B =rgv Forces on a body in water Distributed forces: Gravity:

More information

RISK EVALUATION IN FLOATING OFFSHORE STRUCTURES. José M. Vasconcellos, COPPE/UFRJ, Nara Guimarães, COPPE/UFRJ,

RISK EVALUATION IN FLOATING OFFSHORE STRUCTURES. José M. Vasconcellos, COPPE/UFRJ, Nara Guimarães, COPPE/UFRJ, 10 th International Conference 53 RISK EVALUATION IN FLOATING OFFSHORE STRUCTURES José M. Vasconcellos, COPPE/UFRJ, jmarcio@ufrj.br Nara Guimarães, COPPE/UFRJ, nara@peno.coppe.ufrj.br ABSTRACT During a

More information

SCALE MODEL TESTS OF A FISHING VESSEL IN ROLL MOTION PARAMETRIC RESONANCE

SCALE MODEL TESTS OF A FISHING VESSEL IN ROLL MOTION PARAMETRIC RESONANCE N. Perez Síntesis Tecnológica. V.3 Nº 1 (26) 33-37 SCALE MODEL TESTS OF A FISHING VESSEL IN ROLL MOTION PARAMETRIC RESONANCE NELSON A. PEREZ M. Instituto de Ciencias Navales y Marítimas, M.Sc, nperez@uach.cl,

More information

Stability of free-floating ship

Stability of free-floating ship Stability of free-floating ship Part II Maciej Paw³owski Gdañsk University of Technology ABSTRACT This is the second part of the paper published in Polish Maritime Research no. 2/2005, dealing with the

More information

CAPACITY ESTIMATES AND GENERAL ARRANGEMENT

CAPACITY ESTIMATES AND GENERAL ARRANGEMENT CAPACITY ESTIMATES AND GENERAL ARRANGEMENT This will verify that sufficient space is available for the amount of cargo to be carried. For capacity ships, it is a primary factor and may be a starting point

More information

Numerical Study of the Roll Decay of Intact and Damaged Ships by Q. Gao and D. Vassalos

Numerical Study of the Roll Decay of Intact and Damaged Ships by Q. Gao and D. Vassalos Session 7 Stability of Damaged Ships Numerical Simulation of Progressive Flooding and Capsize Numerical Study of the Roll Decay of Intact and Damaged Ships by Q. Gao and D. Vassalos Qiuxin Gao and Dracos

More information

MEMBRANE TANK LNG VESSELS

MEMBRANE TANK LNG VESSELS Guide for Building and Classing Membrane Tank LNG Vessels GUIDE FOR BUILDING AND CLASSING MEMBRANE TANK LNG VESSELS (HULL STRUCTURAL DESIGN AND ANALYSIS BASED ON THE ABS SAFEHULL APPROACH) OCTOBER 2002

More information

Dynamics of Machinery

Dynamics of Machinery Dynamics of Machinery Two Mark Questions & Answers Varun B Page 1 Force Analysis 1. Define inertia force. Inertia force is an imaginary force, which when acts upon a rigid body, brings it to an equilibrium

More information

Fluid Mechanics. Forces on Fluid Elements. Fluid Elements - Definition:

Fluid Mechanics. Forces on Fluid Elements. Fluid Elements - Definition: Fluid Mechanics Chapter 2: Fluid Statics Lecture 3 Forces on Fluid Elements Fluid Elements - Definition: Fluid element can be defined as an infinitesimal region of the fluid continuum in isolation from

More information

ROLL MOTION OF A RORO-SHIP IN IRREGULAR FOLLOWING WAVES

ROLL MOTION OF A RORO-SHIP IN IRREGULAR FOLLOWING WAVES 38 Journal of Marine Science and Technology, Vol. 9, o. 1, pp. 38-44 (2001) ROLL MOTIO OF A RORO-SHIP I IRREGULAR FOLLOWIG WAVES Jianbo Hua* and Wei-Hui Wang** Keywords: roll motion, parametric excitation,

More information

Fluid Mechanics-61341

Fluid Mechanics-61341 An-Najah National University College of Engineering Fluid Mechanics-61341 Chapter [2] Fluid Statics 1 Fluid Mechanics-2nd Semester 2010- [2] Fluid Statics Fluid Statics Problems Fluid statics refers to

More information

Aalto University School of Engineering

Aalto University School of Engineering Aalto University School of Engineering Kul-24.4120 Ship Structural Design (P) Lecture 8 - Local and Global Vibratory Response Kul-24.4120 Ship Structures Response Lecture 5: Tertiary Response: Bending

More information

Motions and Resistance of a Ship in Regular Following Waves

Motions and Resistance of a Ship in Regular Following Waves Reprinted: 01-11-2000 Revised: 03-10-2007 Website: www.shipmotions.nl Report 440, September 1976, Delft University of Technology, Ship Hydromechanics Laboratory, Mekelweg 2, 2628 CD Delft, The Netherlands.

More information

Requirements for Computational Methods to be sed for the IMO Second Generation Intact Stability Criteria

Requirements for Computational Methods to be sed for the IMO Second Generation Intact Stability Criteria Proceedings of the 1 th International Conference on the Stability of Ships and Ocean Vehicles, 14-19 June 15, Glasgow, UK Requirements for Computational Methods to be sed for the IMO Second Generation

More information

Eric G. Paterson. Spring 2005

Eric G. Paterson. Spring 2005 Eric G. Paterson Department of Mechanical and Nuclear Engineering Pennsylvania State University Spring 2005 Reading and Homework Read Chapter 3. Homework Set #2 has been posted. Due date: Friday 21 January.

More information

DESIGN OPTIMIZATION STUDY ON A CONTAINERSHIP PROPULSION SYSTEM

DESIGN OPTIMIZATION STUDY ON A CONTAINERSHIP PROPULSION SYSTEM DESIGN OPTIMIZATION STUDY ON A CONTAINERSHIP PROPULSION SYSTEM Brian Cuneo Thomas McKenney Morgan Parker ME 555 Final Report April 19, 2010 ABSTRACT This study develops an optimization algorithm to explore

More information

Sailing Performance and Maneuverability of a Traditional Ryukyuan Tribute Ship

Sailing Performance and Maneuverability of a Traditional Ryukyuan Tribute Ship sia Navigation Conference 009 ailing Performance and Maneuverability of a Traditional Ryukyuan Tribute hip by Yutaka MUYM (Kanazawa Institute of Technology) Hikaru YGI (Tokai University ) Yutaka TERO (Tokai

More information

RULES FOR THE CONSTRUCTION AND CLASSIFICATION OF SHIPS IDENTIFIED BY THEIR MISSIONS DREDGERS AND MUD BARGES CHAPTERS CHAPTERS SCOPE

RULES FOR THE CONSTRUCTION AND CLASSIFICATION OF SHIPS IDENTIFIED BY THEIR MISSIONS DREDGERS AND MUD BARGES CHAPTERS CHAPTERS SCOPE PARTE II RULES FOR THE CONSTRUCTION AND CLASSIFICATION OF SHIPS IDENTIFIED BY THEIR MISSIONS TÍTULO 43 DREDGERS AND MUD BARGES SECTION 2 STRUCTURE CHAPTERS SECTION 2 STRUCTURE CHAPTERS A B C SCOPE DOCUMENTS,

More information

Fluid Engineering Mechanics

Fluid Engineering Mechanics Fluid Engineering Mechanics Chapter 3 Fluid Statics: ressure intensity and pressure head: pressure and specific weight relationship, absolute and gauge pressure, Forces on submerged planes & curved surfaces

More information

RULES PUBLICATION NO. 17/P ZONE STRENGTH ANALYSIS OF HULL STRUCTURE OF ROLL ON/ROLL OFF SHIP

RULES PUBLICATION NO. 17/P ZONE STRENGTH ANALYSIS OF HULL STRUCTURE OF ROLL ON/ROLL OFF SHIP RULES PUBLICATION NO. 17/P ZONE STRENGTH ANALYSIS OF HULL STRUCTURE OF ROLL ON/ROLL OFF SHIP 1995 Publications P (Additional Rule Requirements), issued by Polski Rejestr Statków, complete or extend the

More information

PAGE Ⅰ. INTENT 3 Ⅱ. PRINCIPAL PARTICULARS 4 Ⅳ. HOLD & TANK CAPACITY TABLE 6 Ⅴ. CURVES OF HEELING MOMENT, VOLUME AND KG 12

PAGE Ⅰ. INTENT 3 Ⅱ. PRINCIPAL PARTICULARS 4 Ⅳ. HOLD & TANK CAPACITY TABLE 6 Ⅴ. CURVES OF HEELING MOMENT, VOLUME AND KG 12 1 GRAIN LOADING INDEX PAGE Ⅰ. INTENT 3 Ⅱ. PRINCIPAL PARTICULARS 4 Ⅲ. SYMBOLS 5 Ⅳ. HOLD & TANK CAPACITY TABLE 6 Ⅴ. CURVES OF HEELING MOMENT, VOLUME AND KG 12 Ⅵ. ALLOWABLE HEELING MOMENT EXPLANATION OF ALLOWABLE

More information

Development of formulas allowing to predict hydrodynamic responses of inland vessels operated within the range of navigation 0.6 Hs 2.

Development of formulas allowing to predict hydrodynamic responses of inland vessels operated within the range of navigation 0.6 Hs 2. Gian Carlo Matheus Torres 6 th EMship cycle: October 2015 February 2017 Master Thesis Development of formulas allowing to predict hydrodynamic responses of inland vessels operated within the range of navigation

More information

Simulation of floating bodies with lattice Boltzmann

Simulation of floating bodies with lattice Boltzmann Simulation of floating bodies with lattice Boltzmann by Simon Bogner, 17.11.2011, Lehrstuhl für Systemsimulation, Friedrich-Alexander Universität Erlangen 1 Simulation of floating bodies with lattice Boltzmann

More information

Chapter 3 Fluid Statics

Chapter 3 Fluid Statics Chapter 3 Fluid Statics 3.1 Pressure Pressure : The ratio of normal force to area at a point. Pressure often varies from point to point. Pressure is a scalar quantity; it has magnitude only It produces

More information

SLAMMING LOADS AND STRENGTH ASSESSMENT FOR VESSELS

SLAMMING LOADS AND STRENGTH ASSESSMENT FOR VESSELS Guide for Slamming Loads and Strength Assessment for Vessels GUIDE FOR SLAMMING LOADS AND STRENGTH ASSESSMENT FOR VESSELS MARCH 2011 (Updated February 2016 see next page) American Bureau of Shipping Incorporated

More information

Ship Nonlinear Rolling and Roll Angle Reconstruction Based on FIR

Ship Nonlinear Rolling and Roll Angle Reconstruction Based on FIR Open Access Library Journal Ship Nonlinear Rolling and Roll Angle Reconstruction Based on FIR Jianhui Lu 1,2*, Chunlei Zhang 2, Shaonan Chen 2, Yunxia Wu 2 1 Shandong Province Key Laboratory of Ocean Engineering,

More information

Final Exam Ship Structures Page 1 MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Engineering Ship Structures

Final Exam Ship Structures Page 1 MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Engineering Ship Structures Final Exam - 53 - Ship Structures - 16 Page 1 MEMORIA UNIVERSITY OF NEWFOUNDAND Faculty of Engineering and Applied Science Engineering 53 - Ship Structures FINA EXAMINATION SONS Date: Wednesday April 13,

More information

Hydrostatics. ENGR 5961 Fluid Mechanics I: Dr. Y.S. Muzychka

Hydrostatics. ENGR 5961 Fluid Mechanics I: Dr. Y.S. Muzychka 1 Hydrostatics 2 Introduction In Fluid Mechanics hydrostatics considers fluids at rest: typically fluid pressure on stationary bodies and surfaces, pressure measurements, buoyancy and flotation, and fluid

More information

SPECIAL CONDITION. Water Load Conditions. SPECIAL CONDITION Water Load Conditions

SPECIAL CONDITION. Water Load Conditions. SPECIAL CONDITION Water Load Conditions Doc. No. : SC-CVLA.051-01 Issue : 1d Date : 04-Aug-009 Page : 1 of 13 SUBJECT : CERTIFICATION SPECIFICATION : VLA.51 PRIMARY GROUP / PANEL : 03 (Structure) SECONDARY GROUPE / PANEL : -- NATURE : SCN VLA.51

More information

storage tank, or the hull of a ship at rest, is subjected to fluid pressure distributed over its surface.

storage tank, or the hull of a ship at rest, is subjected to fluid pressure distributed over its surface. Hydrostatic Forces on Submerged Plane Surfaces Hydrostatic forces mean forces exerted by fluid at rest. - A plate exposed to a liquid, such as a gate valve in a dam, the wall of a liquid storage tank,

More information

SAFEHULL-DYNAMIC LOADING APPROACH FOR VESSELS

SAFEHULL-DYNAMIC LOADING APPROACH FOR VESSELS Guide for SafeHull- Dynamic Loading Approach for Vessels GUIDE FOR SAFEHULL-DYNAMIC LOADING APPROACH FOR VESSELS DECEMBER 2006 (Updated February 2014 see next page) American Bureau of Shipping Incorporated

More information

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur. Lecture - 9 Fluid Statics Part VI

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur. Lecture - 9 Fluid Statics Part VI Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 9 Fluid Statics Part VI Good morning, I welcome you all to this session of Fluid

More information

Al-Saudia Virtual Academy Pakistan Online Tuition Online Tutor Pakistan

Al-Saudia Virtual Academy Pakistan Online Tuition Online Tutor Pakistan Al-Saudia Virtual Academy Pakistan Online Tuition Online Tutor Pakistan Statics What do you mean by Resultant Force? Ans: Resultant Force: The sum of all forces acting upon a body is called Resultant Force.

More information

Vessel Name: MC(less than 24m)

Vessel Name: MC(less than 24m) Freeboard Calculation Report Vessel Name: MC(less than 24m) SECTION A: RESULTS SUMMARY Summer Freeboard = 567.41 mm Max. Summer Draft as per freeboard requirements = 941 mm Minimum Bow Height Required

More information

Design, Construction & Operation of LNG/LPG Ships, November, Glasgow, UK

Design, Construction & Operation of LNG/LPG Ships, November, Glasgow, UK Design, Construction & Operation of LNG/LPG Ships, 29-3 November, Glasgow, UK SLOSHING AND SWIRLING IN MEMBRANE LNG TANKS AND THEIR COUPLING EFFECTS WITH SHIP MOTION M Arai and G M Karuka, Yokohama National

More information

Stability and Control

Stability and Control Stability and Control Introduction An important concept that must be considered when designing an aircraft, missile, or other type of vehicle, is that of stability and control. The study of stability is

More information

On an Advanced Shipboard Information and Decision-making System for Safe and Efficient Passage Planning

On an Advanced Shipboard Information and Decision-making System for Safe and Efficient Passage Planning International Journal on Marine Navigation and Safety of Sea Transportation Volume 2 Number 1 March 28 On an Advanced Shipboard Information and Decision-making System for Safe and Efficient Passage Planning

More information

Longitudinal strength standard

Longitudinal strength standard (1989) (Rev. 1 199) (Rev. Nov. 001) Longitudinal strength standard.1 Application This requirement applies only to steel ships of length 90 m and greater in unrestricted service. For ships having one or

More information

Aalto University School of Engineering

Aalto University School of Engineering Aalto University School of Engineering Kul-24.4140 Ship Dynamics (P) Lecture 9 Loads Where is this lecture on the course? Design Framework Lecture 5: Equations of Motion Environment Lecture 6: Strip Theory

More information

Parallel Forces. Forces acting in the same or in opposite directions at different points on an object.

Parallel Forces. Forces acting in the same or in opposite directions at different points on an object. Parallel Forces Forces acting in the same or in opposite directions at different points on an object. Statics refers to the bodies in equilibrium. Equilibrium deals with the absence of a net force. When

More information

The use of a floating quay for container terminals. 1. Introduction

The use of a floating quay for container terminals. 1. Introduction The use of a floating quay for container terminals. M. van der Wel M.vanderWel@student.tudelft.nl Ir. J.G. de Gijt J.G.deGijt@tudelft.nl Public Works Rotterdam/TU Delft Ir. D. Dudok van Heel D.DudokvanHeel@gw.rotterdam.nl

More information

Trajectory Tracking of a Near-Surface Torpedo using Numerical Methods

Trajectory Tracking of a Near-Surface Torpedo using Numerical Methods ISSN (Print) : 2347-671 An ISO 3297: 27 Certified Organization Vol.4, Special Issue 12, September 215 Trajectory Tracking of a Near-Surface Torpedo using Numerical Methods Anties K. Martin, Anubhav C.A.,

More information

IACS Unified Requirements for Polar Ships

IACS Unified Requirements for Polar Ships DRAFT - ISSUED FOR DISCUSSION PURPOSES ONLY IACS Unified Requirements for Polar Ships Background Notes to Longitudinal Strength Prepared for: IACS Ad-hoc Group on Polar Class Ships Transport Canada Prepared

More information

00_006_7 FHR reports. Ship model calibration. Determination of a Ship Model s Moment of Inertia.

00_006_7 FHR reports. Ship model calibration. Determination of a Ship Model s Moment of Inertia. 00_006_7 FHR reports Ship model calibration Determination of a Ship Model s Moment of Inertia www.flandershydraulicsresearch.be Ship model calibration Determination of a Ship Model s Moment of Inertia

More information

2. a) Explain the equilibrium of i) Concurrent force system, and ii) General force system.

2. a) Explain the equilibrium of i) Concurrent force system, and ii) General force system. Code No: R21031 R10 SET - 1 II B. Tech I Semester Supplementary Examinations Dec 2013 ENGINEERING MECHANICS (Com to ME, AE, AME, MM) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions

More information

SIMPLIFICATION BY MATHEMATIC MODEL TO SOLVE THE EXPERIMENTAL OF SLOSHING EFFECT ON THE FPSO VESSEL

SIMPLIFICATION BY MATHEMATIC MODEL TO SOLVE THE EXPERIMENTAL OF SLOSHING EFFECT ON THE FPSO VESSEL European International Journal of Science and Technology Vol. 3 No. 5 June, 2014 SIMPLIFICATION BY MATHEMATIC MODEL TO SOLVE THE EXPERIMENTAL OF SLOSHING EFFECT ON THE FPSO VESSEL LuhutTumpalParulianSinaga

More information

Chapter 9 TORQUE & Rotational Kinematics

Chapter 9 TORQUE & Rotational Kinematics Chapter 9 TORQUE & Rotational Kinematics This motionless person is in static equilibrium. The forces acting on him add up to zero. Both forces are vertical in this case. This car is in dynamic equilibrium

More information

Seakeeping Models in the Frequency Domain

Seakeeping Models in the Frequency Domain Seakeeping Models in the Frequency Domain (Module 6) Dr Tristan Perez Centre for Complex Dynamic Systems and Control (CDSC) Prof. Thor I Fossen Department of Engineering Cybernetics 18/09/2007 One-day

More information

Physics 8 Wednesday, October 28, 2015

Physics 8 Wednesday, October 28, 2015 Physics 8 Wednesday, October 8, 015 HW7 (due this Friday will be quite easy in comparison with HW6, to make up for your having a lot to read this week. For today, you read Chapter 3 (analyzes cables, trusses,

More information

RULES FOR CLASSIFICATION. Ships. Part 3 Hull Chapter 6 Hull local scantling. Edition January 2017 DNV GL AS

RULES FOR CLASSIFICATION. Ships. Part 3 Hull Chapter 6 Hull local scantling. Edition January 2017 DNV GL AS RULES FOR CLASSIFICATION Ships Edition January 2017 Part 3 Hull Chapter 6 The content of this service document is the subject of intellectual property rights reserved by ("DNV GL"). The user accepts that

More information

SPRINGING ASSESSMENT FOR CONTAINER CARRIERS

SPRINGING ASSESSMENT FOR CONTAINER CARRIERS Guidance Notes on Springing Assessment for Container Carriers GUIDANCE NOTES ON SPRINGING ASSESSMENT FOR CONTAINER CARRIERS FEBRUARY 2014 American Bureau of Shipping Incorporated by Act of Legislature

More information

EQUILIBRIUM OBJECTIVES PRE-LECTURE

EQUILIBRIUM OBJECTIVES PRE-LECTURE 27 FE3 EQUILIBRIUM Aims OBJECTIVES In this chapter you will learn the concepts and principles needed to understand mechanical equilibrium. You should be able to demonstrate your understanding by analysing

More information

ITTC Recommended Procedures Testing and Extrapolation Methods Resistance Resistance Test

ITTC Recommended Procedures Testing and Extrapolation Methods Resistance Resistance Test -0- Page 1 of 11 CONTENTS 1. PURPOSE OF PROCEDURE. PARAMETERS.1 Data Reduction Equations. Definition of ariables 3. DESCRIPTION OF PROCEDURE 3.1 Model and Installation 3.1.1 Model 3.1. Test condition 3.1.3

More information

Report of the Committee on Stability in Waves

Report of the Committee on Stability in Waves Report of the Committee on Stability in Waves Committee on Stability in Waves Membership: A M Reed (Chairman), David Taylor Model Basin, USA A Peters (Secretary), QinetiQ, UK W Y Duan, Harbin Engineering

More information

Proceedings of the ASME th International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France

Proceedings of the ASME th International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France Proceedings of the ASME 2011 32th International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France OMAE2013-10124 APPLYING STRIP THEORY BASED LINEAR SEAKEEPING

More information

RULES PUBLICATION NO. 18/P ZONE STRENGTH ANALYSIS OF BULK CARRIER HULL STRUCTURE

RULES PUBLICATION NO. 18/P ZONE STRENGTH ANALYSIS OF BULK CARRIER HULL STRUCTURE RULES PUBLICATION NO. 18/P ZONE STRENGTH ANALYSIS OF BULK CARRIER HULL STRUCTURE 1995 Publications P (Additional Rule Requirements), issued by Polski Rejestr Statków, complete or extend the Rules and are

More information

RULES FOR CLASSIFICATION Ships. Part 3 Hull Chapter 6 Hull local scantling. Edition October 2015 DNV GL AS

RULES FOR CLASSIFICATION Ships. Part 3 Hull Chapter 6 Hull local scantling. Edition October 2015 DNV GL AS RULES FOR CLASSIFICATION Ships Edition October 2015 Part 3 Hull Chapter 6 The content of this service document is the subject of intellectual property rights reserved by ("DNV GL"). The user accepts that

More information

PREDICTION OF THE NATURAL FREQUENCY OF SHIP S ROLL WITH REGARD TO VARIOUS MODELS OF ROLL DAMPING

PREDICTION OF THE NATURAL FREQUENCY OF SHIP S ROLL WITH REGARD TO VARIOUS MODELS OF ROLL DAMPING Journal of KONES Powertrain and Transport, Vol. 23, No. 3 2016 PREDICTION OF THE NATURAL FREQUENCY OF SHIP S ROLL WITH REGARD TO VARIOUS MODELS OF ROLL DAMPING Przemysław Krata, Wojciech Wawrzyński Gdynia

More information

2.6 Force reacts with planar object in fluid

2.6 Force reacts with planar object in fluid 2.6 Force reacts with planar object in fluid Fluid surface Specific weight (γ) => Object sinks in fluid => C is center of gravity or Centroid => P is center of pressure (always under C) => x axis is cross

More information

Hull loads and response, hydroelasticity

Hull loads and response, hydroelasticity Transactions on the Built Environment vol 1, 1993 WIT Press, www.witpress.com, ISSN 1743-3509 Hull loads and response, hydroelasticity effects on fast monohulls E. Jullumstr0 & J.V. Aarsnes Division of

More information

JUSTIFYING THE STABILIZATION OF A MARGINALLY STABLE SHIP

JUSTIFYING THE STABILIZATION OF A MARGINALLY STABLE SHIP Proceedings of ASME 017 Dynamic Systems and Control Conference DSCC017 October 11-13, 017, Tysons, VA, USA DSCC017-5116 JUSTIFYING THE STABILIZATION OF A MARGINALLY STABLE SHIP David Shekhtman Department

More information

Simple Estimation of Wave Added Resistance from Experiments in Transient and Irregular Water Waves

Simple Estimation of Wave Added Resistance from Experiments in Transient and Irregular Water Waves Simple Estimation of Wave Added Resistance from Experiments in Transient and Irregular Water Waves by Tsugukiyo Hirayama*, Member Xuefeng Wang*, Member Summary Experiments in transient water waves are

More information

ADDED RESISTANCE IN WAVES OF INTACT AND DAMAGED SHIP IN THE ADRIATIC SEA

ADDED RESISTANCE IN WAVES OF INTACT AND DAMAGED SHIP IN THE ADRIATIC SEA Brodogradnja/Shipbilding Volume 66 Number, 15 Ivana Martić Nastia Degiuli ISSN 7-15X eissn 1845-5859 ADDED RESISTANCE IN WAVES OF INTACT AND DAMAGED SHIP IN THE ADRIATIC SEA Summary UDC 69.5.15.4(6.3)

More information

l Every object in a state of uniform motion tends to remain in that state of motion unless an

l Every object in a state of uniform motion tends to remain in that state of motion unless an Motion and Machine Unit Notes DO NOT LOSE! Name: Energy Ability to do work To cause something to change move or directions Energy cannot be created or destroyed, but transferred from one form to another.

More information

Research and application of 2-D water entry simulation (constant velocity)

Research and application of 2-D water entry simulation (constant velocity) Research and application of 2-D water entry simulation (constant velocity) College of Shipbuilding and Engineering Harbin Engineering University ------------- Zhu Xin Supervisor: Prof. Duan Wen-yang 1

More information

Compute the lateral force per linear foot with sloping backfill and inclined wall. Use Equation No. 51, page 93. Press ENTER.

Compute the lateral force per linear foot with sloping backfill and inclined wall. Use Equation No. 51, page 93. Press ENTER. Sample Problems Problem 5.1 A gravity retaining wall is supporting a cohesionless soil. The active lateral force per linear foot of the retaining wall is most nearly (A) 5,000 lb/ft (B) 6,000 lb/ft (C)

More information

PREDICTION OF PARAMETRIC ROLL OF SHIPS IN REGULAR AND IRREGULAR SEA. A Thesis HISHAM MOIDEEN

PREDICTION OF PARAMETRIC ROLL OF SHIPS IN REGULAR AND IRREGULAR SEA. A Thesis HISHAM MOIDEEN PREDICTION OF PARAMETRIC ROLL OF SHIPS IN REGULAR AND IRREGULAR SEA A Thesis by HISHAM MOIDEEN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements

More information

Unit 21 Couples and Resultants with Couples

Unit 21 Couples and Resultants with Couples Unit 21 Couples and Resultants with Couples Page 21-1 Couples A couple is defined as (21-5) Moment of Couple The coplanar forces F 1 and F 2 make up a couple and the coordinate axes are chosen so that

More information

INFLUENCE OF DECK PLATING STRENGTH ON SHIP HULL ULTIMATE BENDING MOMENT

INFLUENCE OF DECK PLATING STRENGTH ON SHIP HULL ULTIMATE BENDING MOMENT TECHNICAL REPORT NO. 73 INFLUENCE OF DECK PLATING STRENGTH ON SHIP HULL ULTIMATE BENDING MOMENT Authors: Dr Marian Bogdaniuk Dr Monika Warmowska Gdańsk, 2016 Technical Report No. 73 3 CONTENTS PURPOSE

More information

An accurate model for seaworthy container vessel stowage planning with ballast tanks

An accurate model for seaworthy container vessel stowage planning with ballast tanks Downloaded from orbit.dtu.dk on: Jul 23, 28 An accurate model for seaworthy container vessel stowage planning with ballast tanks Pacino, Dario; Delgado-Ortegon, Alberto; Jensen, Rune Møller; Bebbington,

More information

S19 S19. (1997) (Rev ) (Rev. 2 Feb. 1998) (Rev.3 Jun. 1998) (Rev.4 Sept. 2000) (Rev.5 July 2004) S Application and definitions

S19 S19. (1997) (Rev ) (Rev. 2 Feb. 1998) (Rev.3 Jun. 1998) (Rev.4 Sept. 2000) (Rev.5 July 2004) S Application and definitions (1997) (Rev. 1 1997) (Rev. Feb. 1998) (Rev.3 Jun. 1998) (Rev.4 Sept. 000) (Rev.5 July 004) Evaluation of Scantlings of the Transverse Watertight Corrugated Bulkhead between Cargo Holds Nos. 1 and, with

More information

CE MECHANICS OF FLUIDS

CE MECHANICS OF FLUIDS CE60 - MECHANICS OF FLUIDS (FOR III SEMESTER) UNIT II FLUID STATICS & KINEMATICS PREPARED BY R.SURYA, M.E Assistant Professor DEPARTMENT OF CIVIL ENGINEERING DEPARTMENT OF CIVIL ENGINEERING SRI VIDYA COLLEGE

More information

Nonlinear Time Domain Simulation Technology for Seakeeping and Wave-Load Analysis for Modern Ship Design

Nonlinear Time Domain Simulation Technology for Seakeeping and Wave-Load Analysis for Modern Ship Design ABS TECHNICAL PAPERS 23 Nonlinear Time Domain Simulation Technology for Seakeeping and Wave-Load Analysis for Modern Ship Design Y.S. Shin, Associate Member, American Bureau of Shipping, V.L. Belenky,

More information

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity 2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity Energy 7 4 Kinematics Free fall Collisions 3 5 Dynamics

More information

IMO REVISION OF THE INTACT STABILITY CODE. Report of the Working Group on Intact Stability at SLF 48 (part 2)

IMO REVISION OF THE INTACT STABILITY CODE. Report of the Working Group on Intact Stability at SLF 48 (part 2) INTERNATIONAL MARITIME ORGANIZATION E IMO SUB-COMMITTEE ON STABILITY AND LOAD LINES AND ON FISHING VESSELS SAFETY 49th session Agenda item 5 SLF 49/5/1 23 March 26 Original: ENGLISH REVISION OF THE INTACT

More information

STEEPEST DESCENT METHOD. RESOLVING AN OLD PROBLEM

STEEPEST DESCENT METHOD. RESOLVING AN OLD PROBLEM 1 th International Conference 87 STEEPEST DESCENT METHOD. RESOLVING AN OLD PROBLEM J. Andrew Breuer, ABS, ABreuer@eagle.org Karl-Gustav Sjölund, SeaSafe Marine Software AB, mail@seasafe.se ABSTRACT New

More information

ESTIMATION OF HULL S RESISTANCE AT PRELIMINARY PHASE OF DESIGNING

ESTIMATION OF HULL S RESISTANCE AT PRELIMINARY PHASE OF DESIGNING Journal of KONES Powertrain and Transport, Vol. 24, No. 1 2017 ESTIMATION OF HULL S RESISTANCE AT PRELIMINARY PHASE OF DESIGNING Adam Charchalis Gdynia Maritime University, Faculty of Marine Engineering

More information

Effects of hull form parameters on seakeeping for YTU gulet series with cruiser stern

Effects of hull form parameters on seakeeping for YTU gulet series with cruiser stern csnk, 04 Int. J. Nav. rchit. Ocean Eng. (04) 6:700~74 http://dx.doi.org/0.478/ijnoe-03-006 pissn: 09-678, eissn: 09-6790 Effects of hull form parameters on seakeeping for YTU gulet series with cruiser

More information