Compute the lateral force per linear foot with sloping backfill and inclined wall. Use Equation No. 51, page 93. Press ENTER.

Size: px
Start display at page:

Download "Compute the lateral force per linear foot with sloping backfill and inclined wall. Use Equation No. 51, page 93. Press ENTER."

Transcription

1 Sample Problems Problem 5.1 A gravity retaining wall is supporting a cohesionless soil. The active lateral force per linear foot of the retaining wall is most nearly (A) 5,000 lb/ft (B) 6,000 lb/ft (C) 7,200 lb/ft (D) 8,500 lb/ft Solution Compute the lateral force per linear foot with sloping backfill and inclined wall. Use Equation No. 51, page 93. Press ENTER. S? 110 R/S Density of backfill (lb/ft 3 ) H? 20 R/S Height of wall (ft) A? 30 R/S Angle of internal friction of backfill B? 85 R/S Angle of inclined wall from horizontal C? 20 R/S Angle of friction between the soil and wall face I? 10 R/S Angle of sloping backfill from horizontal 8, Active lateral force per linear foot of the wall (lb/ft) 117

2 The answer is (D). Problem 5.2 A ten-foot-high retaining wall is supporting a sand backfill. The elevation of the sand backfill equals the top elevation of the retaining wall. The angle of internal friction and dry density of the backfill are 31 and 110 lb/ft 3, respectively. The active lateral force per linear foot of the retaining wall is most nearly (A) 1,700 lb/ft (B) 1,800 lb/ft (C) 2,200 lb/ft (D) 3,500 lb/ft Solution The procedure for calculating the active lateral force per linear foot is as follows: Step 1. Calculate the Rankine active earth pressure coefficient. Use Equation No. 47, page 89. Press ENTER. A? 31 R/S Angle of internal friction of backfill K = Rankine active earth pressure coefficient Step 2. Compute the active lateral force per linear foot of the retaining wall. Use Equation No. 50, page 92. Press ENTER. S? 110 R/S Density of backfill (lb/ft 3 ) H? 10 R/S Height of the wall (ft) K? = R/S Rankine active earth pressure coefficient 1, Total active lateral force per unit length of the wall (lb/ft) The answer is (A). Problem 5.3 A retaining wall is supporting an 8-foot-high clayey sand backfill. The angle of internal friction of the backfill is 20, the density is 100 lb/ft 3, and the cohesion is 500 lb/ft 2. The active earth pressure per unit length of wall is most nearly (A) 250 lb/ft 2 (C) 400 lb/ft 2 (B) 300 lb/ft 2 (D) 700 lb/ft 2 118

3 Solution Calculate the active earth pressure per unit length of the wall. Use Equation No. 49, page 91. Press ENTER. S? 100 R/S Density of clayey sand backfill (lb/ft 3 ) H? 8 R/S Height of backfill (ft) K? * K? R/S Rankine active earth pressure coefficient C? 100 R/S Cohesion of clayey sand backfill (lb/ft 2 ) Active earth pressure per unit length of the wall (lb/ft 2 ) * Keys for calculating Rankine active earth pressure coefficient using RPN: 45 ENTER 20 ENTER 2 TAN (HP 35s) 45 ENTER 20 ENTER 2 TAN (HP 33s) The answer is (A). Problem 5.4 The retaining wall shown is supporting a sandy soil with an active equivalent fluid pressure of 38 lb/ft 3 and 31 lb/ft 3 above the water table and below the water table, respectively. The total active lateral force at the retaining wall is most nearly (A) 5,200 lb/ft (B) 6,000 lb/ft (C) 6,200 lb/ft (D) 7,000 lb/ft 119

4 Solution Compute the lateral force with given equivalent fluid pressures. Use Equation No. 46 (P), page 87. Press ENTER. Q? 200 R/S Surcharge load (lb/ft 2 ) X? 6 R/S Distance from top of backfill to water table (ft) A? 38 R/S Equivalent fluid pressure above water table (lb/ft 3 ) Z? 5 R/S Distance from water table to bottom of the wall (ft) B? 31 R/S Equivalent fluid pressure below water table (lb/ft 3 ) W? 62.4 R/S Unit weight of water (lb/ft 3 ) 5, Total active lateral force per unit length of the wall (lb/ft) The answer is (A). Problem 5.5 The retaining wall shown can yield sufficiently to develop an active state. The overturning moment per unit length of wall at point A is most nearly (A) 16,000 ft-lb (B) 22,000 ft-lb (C) 25,000 ft-lb (D) 27,000 ft-lb 120

5 Solution The calculation involves the following steps. Step 1. Calculate the Rankine active force per unit length of the wall. Use Equation No. 52 (P), page 94. Press ENTER. Q? 0 R/S Surcharge load (lb/ft 2 ) X? 8 R/S Distance from top of backfill to water table (ft) A? 30 R/S Angle of internal friction of moist soil D? 110 R/S Density of moist soil (lb/ft 3 ) C? 0 R/S Cohesion of moist soil (lb/ft 2 ) B? 33 R/S Angle of internal friction of saturated soil E? 0 R/S Cohesion of saturated soil (lb/ft 2 ) Z? 7 R/S Distance from water table to bottom of retaining wall (ft) S? 120 R/S Density of saturated soil (lb/ft 3 ) W? 62.4 R/S Unit weight of water (lb/ft 3 ) 4, Rankine active force per unit length of the wall (lb/ft) Step 2. Compute the location of resultant line of action from the bottom of the wall. Use Equation No. 52 (Y), page 94. Press ENTER. Press R/S every time you are prompted. You ll get Y = (ft). 121

6 Step 3. Calculate the overturning moment at point A. Use Equation No. 52 (O), page 94. Press ENTER. Press R/S every time you are prompted. You ll get O = 22, (ft-lb). The answer is (B). 122

UNIT V. The active earth pressure occurs when the wall moves away from the earth and reduces pressure.

UNIT V. The active earth pressure occurs when the wall moves away from the earth and reduces pressure. UNIT V 1. Define Active Earth pressure. The active earth pressure occurs when the wall moves away from the earth and reduces pressure. 2. Define Passive Earth pressure. The passive earth pressure occurs

More information

Chapter (7) Lateral Earth Pressure

Chapter (7) Lateral Earth Pressure Chapter (7) Lateral Earth Pressure Introduction Vertical or near vertical slopes of soil are supported by retaining walls, cantilever sheet-pile walls, sheet-pile bulkheads, braced cuts, and other similar

More information

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai Geosynthetics and Reinforced Soil Structures Reinforced Soil Walls continued Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai e-mail: gopalkr@iitm.ac.inac in Outline of the Lecture

More information

Foundation Analysis LATERAL EARTH PRESSURE

Foundation Analysis LATERAL EARTH PRESSURE Foundation Analysis LATERAL EARTH PRESSURE INTRODUCTION Vertical or near-vertical slopes of soil are supported by retaining walls, cantilever sheet-pile walls, sheet-pile bulkheads, braced cuts, and other

More information

Dr. Mohammed E. Haque, P.E. Lecture Notes

Dr. Mohammed E. Haque, P.E. Lecture Notes nalysis of Selected Determinate Structural Systems Planar Trusses Method of Joints Planar Trusses Method of Sections Pinned Frames with Multi-force Members Retaining Walls OS321Haque 1 Planar Trusses Method

More information

LATERAL EARTH PRESSURE AND RETAINING STRUCTURES

LATERAL EARTH PRESSURE AND RETAINING STRUCTURES Topic Outline LATERAL EARTH PRESSURE AND RETAINING STRUCTURES Types of retaining structures Lateral earth pressure Earth pressure at rest Rankine s Theory Coulomb s Theory Cullman s graphic solution Braced

More information

Objectives. In this section you will learn the following. Rankine s theory. Coulomb s theory. Method of horizontal slices given by Wang (2000)

Objectives. In this section you will learn the following. Rankine s theory. Coulomb s theory. Method of horizontal slices given by Wang (2000) Objectives In this section you will learn the following Rankine s theory Coulomb s theory Method of horizontal slices given by Wang (2000) Distribution of the earth pressure Height of application of the

More information

Objectives. In this section you will learn the following. Development of Bearing Capacity Theory. Terzaghi's Bearing Capacity Theory

Objectives. In this section you will learn the following. Development of Bearing Capacity Theory. Terzaghi's Bearing Capacity Theory Objectives In this section you will learn the following Development of Bearing Capacity Theory Terzaghi's Bearing Capacity Theory Assumptions in Terzaghi s Bearing Capacity Theory. Meyerhof's Bearing Capacity

More information

FOUNDATION ENGINEERING UNIT V

FOUNDATION ENGINEERING UNIT V FOUNDATION ENGINEERING UNIT V RETAINING WALLS Plastic equilibrium in soils active and passive states Rankine s theory cohesion less and cohesive soil - Coloumb s wedge theory condition for critical failure

More information

RETAINING WALL LOADS: Horizontal Equivalent Fluid Pressure = pcf. (Load Case = Soil)

RETAINING WALL LOADS: Horizontal Equivalent Fluid Pressure = pcf. (Load Case = Soil) QuickWall 8.0 - RETAINING WALL ANALYSIS AND DESIGN ================================================================================ Job ID : Job Description : Designed By : ================================================================================

More information

Module 7 (Lecture 27) RETAINING WALLS

Module 7 (Lecture 27) RETAINING WALLS Module 7 (Lecture 27) RETAINING WALLS Topics 1.1 RETAINING WALLS WITH METALLIC STRIP REINFORCEMENT Calculation of Active Horizontal and vertical Pressure Tie Force Factor of Safety Against Tie Failure

More information

Active static and seismic earth pressure for c φ soils

Active static and seismic earth pressure for c φ soils Active static and seismic earth pressure for c φ soils Magued Iskander, PhD, PE, F.ASCE Professor & Head, Civil & Urban Engineering Department Motivation Methods based on Mononobe-Okabe method: Require

More information

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses.

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.2. Some soils show a peak shear strength. Why and what type(s)

More information

AB Engineering Manual

AB Engineering Manual AB Engineering Manual Allan Block Retaining Walls FOREWORD This manual presents the techniques used by Allan Block in our engineering practice to design retaining walls. It is not intended as a textbook

More information

GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE ANALYSIS AND DESIGN OF RETAINING STRUCTURES

GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE ANALYSIS AND DESIGN OF RETAINING STRUCTURES GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE 07 3.0 ANALYSIS AND DESIGN OF RETAINING STRUCTURES LEARNING OUTCOMES Learning outcomes: At the end of this lecture/week the students would be able to: Understand

More information

AB Engineering Manual

AB Engineering Manual AB Engineering Manual Allan Block Retaining Walls This manual presents the techniques used by Allan Block in our engineering practice to design retaining walls. It is not intended as a textbook of soil

More information

Module 6 (Lecture 22) LATERAL EARTH PRESSURE

Module 6 (Lecture 22) LATERAL EARTH PRESSURE Module 6 (Lecture ) LATERAL EARTH PRESSURE 1.1 LATERAL EARTH PRESSURE DUE TO SURCHARGE 1. ACTIVE PRESSURE FOR WALL ROTATION ABOUT TOP- BRACED CUT 1.3 ACTIVE EARTH PRESSURE FOR TRANSLATION OF RETAINING

More information

Earth Pressure Theory

Earth Pressure Theory Lateral Earth Pressure Page 1 Earth Pressure Theory Examples of Retaining Walls Lateral Earth Pressure Page 2 At-Rest, Active and Passive Earth Pressure Wednesday, August 17, 2011 12:45 PM At-rest condition

More information

Chapter 5 Shear Strength of Soil

Chapter 5 Shear Strength of Soil Page 5 Chapter 5 Shear Strength of Soil. The internal resistance per unit area that the soil mass can offer to resist failure and sliding along any plane inside it is called (a) strength (b) shear strength

More information

Design of RC Retaining Walls

Design of RC Retaining Walls Lecture - 09 Design of RC Retaining Walls By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar www.drqaisarali.com 1 Topics Retaining Walls Terms Related to Retaining Walls Types of Retaining

More information

Transmission Line Design Structures & Foundations TADP 549

Transmission Line Design Structures & Foundations TADP 549 Transmission Line Design Structures & Foundations TADP 549 Steel Poles - Direct Embedment Foundations - Point of Fixity Presentation 6.3 Dr. Prasad Yenumula Transmission & Distribution Program Reference

More information

Chapter (3) Ultimate Bearing Capacity of Shallow Foundations

Chapter (3) Ultimate Bearing Capacity of Shallow Foundations Chapter (3) Ultimate Bearing Capacity of Shallow Foundations Introduction To perform satisfactorily, shallow foundations must have two main characteristics: 1. They have to be safe against overall shear

More information

Geotechnical Parameters for Retaining Wall Design

Geotechnical Parameters for Retaining Wall Design 11 th October 2012 Geotechnical Parameters for Retaining Wall Design Tanya Kouzmin 1 Most geotechnical failures are of retaining walls Are failure caused by WRONG calculations? Not usually calculation

More information

file:///d /suhasini/suha/office/html2pdf/ _editable/slides/module%202/lecture%206/6.1/1.html[3/9/2012 4:09:25 PM]

file:///d /suhasini/suha/office/html2pdf/ _editable/slides/module%202/lecture%206/6.1/1.html[3/9/2012 4:09:25 PM] Objectives_template Objectives In this section you will learn the following Introduction Different Theories of Earth Pressure Lateral Earth Pressure For At Rest Condition Movement of the Wall Different

More information

Active Earth Pressure on Retaining Wall Rotating About Top

Active Earth Pressure on Retaining Wall Rotating About Top INTERNATIONAL JOURNAL OF GEOLOGY Volume 9, 05 Active Earth Pressure on Retaining Wall Rotating About Top Ahad Ouria and Sajjad Sepehr Abstract Traditional methods for calculation of lateral earth pressure

More information

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine Don t forget to visit our companion site http://www.vulcanhammer.org Use subject to the terms and conditions of the respective

More information

SHEET PILE WALLS. Mehdi Mokhberi Islamic Azad University

SHEET PILE WALLS. Mehdi Mokhberi Islamic Azad University SHEET PILE WALLS Mehdi Mokhberi Islamic Azad University Lateral Support In geotechnical engineering, it is often necessary to prevent lateral soil movements. Tie rod Anchor Sheet pile Cantilever retaining

More information

EARTH PRESSURES ON RETAINING STRUCTURES

EARTH PRESSURES ON RETAINING STRUCTURES 12-1 12. EARTH PRESSURES ON RETAINING STRUCTURES 12.1 Active Pressure and Passive Pressure When a sudden change in level of the ground surface is to be provided for some purpose a retaining structure is

More information

LATERAL EARTH PRESSURE

LATERAL EARTH PRESSURE . INTRODUCTION Retaining structures commonly used in foundation engineering, such as retaining walls, basement walls and bulkheads to support almost vertical slopes of earth masses. Proper design and construction

More information

Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus E i of the soil

Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus E i of the soil Appendix F Notation a b B C c C k C N C s C u C wt C θ D r D 1 D 2 D 10 D 30 Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus

More information

HURRICANE SANDY LIMITED REEVALUATION REPORT UNION BEACH, NEW JERSEY DRAFT ENGINEERING APPENDIX SUB APPENDIX A PRELIMINARY FLOODWALL DESIGN

HURRICANE SANDY LIMITED REEVALUATION REPORT UNION BEACH, NEW JERSEY DRAFT ENGINEERING APPENDIX SUB APPENDIX A PRELIMINARY FLOODWALL DESIGN HURRICANE SANDY LIMITED REEVALUATION REPORT UNION BEACH, NEW JERSEY DRAFT ENGINEERING APPENDIX SUB APPENDIX A PRELIMINARY FLOODWALL DESIGN March 2014Revised March 2015 UNITED STATES ARMY CORPS OF ENGINEERS

More information

Chapter 12: Lateral Earth Pressure

Chapter 12: Lateral Earth Pressure Part 4: Lateral Earth Pressure and Earth-Retaining Structures Chapter 12: Lateral Earth Pressure Introduction Vertical or near-vertical slopes of soil are supported by retaining walls, cantilever sheetpile

More information

Page 1 of 10. PROFESSIONAL ENGINEERS ONTARIO NATIONAL EXAMINATIONS Mav CIV-A4 GEOTECHNICAL MATERIALS AND ANALYSIS 3 HOURS DURATION

Page 1 of 10. PROFESSIONAL ENGINEERS ONTARIO NATIONAL EXAMINATIONS Mav CIV-A4 GEOTECHNICAL MATERIALS AND ANALYSIS 3 HOURS DURATION Page 1 of 10 PROFESSIONAL ENGINEERS ONTARIO NATIONAL EXAMINATIONS Mav 2015 3 HOURS DURATION NOTES: 1. This is a closed book examination. 2. Read all questions carefully before you answer 3. Should you

More information

Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 51 Earth Pressure Theories II

Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 51 Earth Pressure Theories II Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 51 Earth Pressure Theories II Welcome to lecture number two on earth pressure theories.

More information

Guide to Passing the Civil PE Exam Geotechnical AM Edition 1. Michael Frolov, P.E. Mark F. DeSantis, P.E., PMP

Guide to Passing the Civil PE Exam Geotechnical AM Edition 1. Michael Frolov, P.E. Mark F. DeSantis, P.E., PMP Guide to Passing the Civil PE Exam Geotechnical AM Edition 1 Michael Frolov, P.E. Mark F. DeSantis, P.E., PMP ii TOPICS Topic Page TOPIC III: Soil Mechanics... 1-67 TOPIC IV: Structural Mechanics... 68-88

More information

Module 7 (Lecture 25) RETAINING WALLS

Module 7 (Lecture 25) RETAINING WALLS Module 7 (Lecture 25) RETAINING WALLS Topics Check for Bearing Capacity Failure Example Factor of Safety Against Overturning Factor of Safety Against Sliding Factor of Safety Against Bearing Capacity Failure

More information

This procedure covers the determination of the moment of inertia about the neutral axis.

This procedure covers the determination of the moment of inertia about the neutral axis. 327 Sample Problems Problem 16.1 The moment of inertia about the neutral axis for the T-beam shown is most nearly (A) 36 in 4 (C) 236 in 4 (B) 136 in 4 (D) 736 in 4 This procedure covers the determination

More information

8/11/14. Sheet 1. Colonial Flag 9390 So 300 West Sandy, UT

8/11/14. Sheet 1. Colonial Flag 9390 So 300 West Sandy, UT 8/11/14 Sheet 1 990 So 00 West Sandy, UT 84070 800 78-0500 Street Banner Sign Cloth Tension Calculations for Simple Span with Uniform Loads. Sign Cloth Span Sign Cloth Length Stretched Sign Cloth Sag Sign

More information

AB Engineering Manual

AB Engineering Manual AB Engineering Manual Allan Block Retaining Walls Excerptfrom theabengineeringmanualforretainingwals CHAPTER FIVE Seismic Analysis Introduction In seismic design we take a dynamic force and analyze it

More information

Topics. Module 3 Lecture 10 SHALLOW FOUNDATIONS: ULTIMATE BEARING CAPACITY NPTEL ADVANCED FOUNDATION ENGINEERING-I

Topics. Module 3 Lecture 10 SHALLOW FOUNDATIONS: ULTIMATE BEARING CAPACITY NPTEL ADVANCED FOUNDATION ENGINEERING-I Topics Module 3 Lecture 10 SHALLOW FOUNDATIONS: ULTIMATE BEARING CAPACITY 1.1 THE GENERAL BEARING CAPACITY EQUATION Bearing Capacity Factors General Comments 1.2 EFFECT OF SOIL COMPRESSIBILITY 1.3 ECCENTRICALLY

More information

Restraining Thrust Forces. DIPRA Member Companies. DIPRA Website (www.dipra.org) DIPRA Computer Programs. AWWA Standards

Restraining Thrust Forces. DIPRA Member Companies. DIPRA Website (www.dipra.org) DIPRA Computer Programs. AWWA Standards DIPRA Member Companies 1915 DIPRA Website (www.dipra.org) DIPRA Computer Programs Thickness Design of Ductile Iron PIpe Hydraulic Analysis of Ductile Iron Pipe Thrust Restraint Design for Ductile Iron

More information

Design of Reinforced Soil Walls By Lrfd Approach

Design of Reinforced Soil Walls By Lrfd Approach IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) ISSN: 2278-1684, PP: 16-26 www.iosrjournals.org Design of Reinforced Soil Walls By Lrfd Approach A.D. Maskar 1, N.T. Suryawanshi 2 1 Assistant

More information

SHEAR STRENGTH OF SOIL

SHEAR STRENGTH OF SOIL Soil Failure Criteria SHEAR STRENGTH OF SOIL Knowledge about the shear strength of soil important for the analysis of: Bearing capacity of foundations, Slope stability, Lateral pressure on retaining structures,

More information

Ch 4a Stress, Strain and Shearing

Ch 4a Stress, Strain and Shearing Ch. 4a - Stress, Strain, Shearing Page 1 Ch 4a Stress, Strain and Shearing Reading Assignment Ch. 4a Lecture Notes Sections 4.1-4.3 (Salgado) Other Materials Handout 4 Homework Assignment 3 Problems 4-13,

More information

SHEAR STRENGTH OF SOIL. Chapter 10: Sections Chapter 12: All sections except

SHEAR STRENGTH OF SOIL. Chapter 10: Sections Chapter 12: All sections except SHEAR STRENGTH OF SOIL Chapter 10: Sections 10. 10.3 Chapter 1: All sections ecept 1.13 1.14 1.15 1.17 1.18 TOPICS Introduction Components of Shear Strength of Soils Normal and Shear Stresses on a Plane

More information

Verification Manual. of GEO5 Gravity Wall program. Written by: Ing. Veronika Vaněčková, Ph.D. Verze: 1.0-en Fine Ltd.

Verification Manual. of GEO5 Gravity Wall program. Written by: Ing. Veronika Vaněčková, Ph.D. Verze: 1.0-en Fine Ltd. of program Written by: Ing. Veronika Vaněčková, Ph.D. Edited by: Ing. Jiří Laurin Verze: 1.0-en 1989-2009 Fine Ltd. www.finesotware.eu INTRODUCTION This Gravity Wall program Verification Manual contains

More information

Introduction to Soil Mechanics

Introduction to Soil Mechanics Introduction to Soil Mechanics Sela Sode and Colin Jones WILEY Blackwell Contents Preface Dedication and Acknowledgments List of Symbols Soil Structure 1.1 Volume relationships 1.1.1 Voids ratio (e) 1.1.2

More information

(Refer Slide Time: 01:15)

(Refer Slide Time: 01:15) Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 56 Stability analysis of slopes II Welcome to lecture two on stability analysis of

More information

SHEAR STRENGTH OF SOIL

SHEAR STRENGTH OF SOIL SHEAR STRENGTH OF SOIL Necessity of studying Shear Strength of soils : Soil failure usually occurs in the form of shearing along internal surface within the soil. Shear Strength: Thus, structural strength

More information

2017 Soil Mechanics II and Exercises Final Exam. 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room

2017 Soil Mechanics II and Exercises Final Exam. 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room 2017 Soil Mechanics II and Exercises Final Exam 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room Attention: The exam consists of five questions for which you are provided with five answer sheets. Write

More information

GG 454 March 19, EFFECTIVE STRESS AND MOHR-COULOMB FAILURE (26)

GG 454 March 19, EFFECTIVE STRESS AND MOHR-COULOMB FAILURE (26) GG 454 March 19, 2002 1 EFFECTIVE STRESS AND MOHR-COULOMB FAILURE (26) I Main Topics A Driving and resisting stresses at the base of an inclined block B Factor of safety C Effective stress D Mohr-Coulomb

More information

ALUMINUM STRUCTURAL PLATE HEADWALLS AASHTO LRFD BASIS OF DESIGN

ALUMINUM STRUCTURAL PLATE HEADWALLS AASHTO LRFD BASIS OF DESIGN ALUMINUM STRUCTURAL PLATE EADWALLS AASTO LRFD BASIS OF DESIGN LANE ENTERPRISES, INC. www.lane-enterprises.com Required Backfill and Load Cases: ALUMINUM STRUCTURAL PLATE EADWALLS BASIS OF DESIGN Backfill

More information

INTI COLLEGE MALAYSIA

INTI COLLEGE MALAYSIA EGC373 (F) / Page 1 of 5 INTI COLLEGE MALAYSIA UK DEGREE TRANSFER PROGRAMME INTI ADELAIDE TRANSFER PROGRAMME EGC 373: FOUNDATION ENGINEERING FINAL EXAMINATION : AUGUST 00 SESSION This paper consists of

More information

PRINCIPLES OF GEOTECHNICAL ENGINEERING

PRINCIPLES OF GEOTECHNICAL ENGINEERING PRINCIPLES OF GEOTECHNICAL ENGINEERING Fourth Edition BRAJA M. DAS California State University, Sacramento I(T)P Boston Albany Bonn Cincinnati London Madrid Melbourne Mexico City New York Paris San Francisco

More information

Passive Force on Retaining Wall Supporting Φ Backfill Considering Curvilinear Rupture Surface

Passive Force on Retaining Wall Supporting Φ Backfill Considering Curvilinear Rupture Surface International Journal of Engineering Inventions ISSN: 2278-7461, ISBN: 2319-6491, www.ijeijournal.com Volume 1, Issue 10 (November2012) PP: 35-42 Passive Force on Retaining Wall Supporting Φ Backfill Considering

More information

A. V T = 1 B. Ms = 1 C. Vs = 1 D. Vv = 1

A. V T = 1 B. Ms = 1 C. Vs = 1 D. Vv = 1 Geology and Soil Mechanics 55401 /1A (2002-2003) Mark the best answer on the multiple choice answer sheet. 1. Soil mechanics is the application of hydraulics, geology and mechanics to problems relating

More information

Geology and Soil Mechanics /1A ( ) Mark the best answer on the multiple choice answer sheet.

Geology and Soil Mechanics /1A ( ) Mark the best answer on the multiple choice answer sheet. Geology and Soil Mechanics 55401 /1A (2003-2004) Mark the best answer on the multiple choice answer sheet. 1. Soil mechanics is the application of hydraulics, geology and mechanics to problems relating

More information

VIII. Sample Design Calculation... Page 2. Copyright 2011 Blaise J. Fitzpatrick, P.E. Page 1 of 24

VIII. Sample Design Calculation... Page 2.  Copyright 2011 Blaise J. Fitzpatrick, P.E. Page 1 of 24 Mechanically Stabilized Earth Structures Part 3 By Blaise J. Fitzpatrick, P.E. Fitzpatrick Engineering Associates, P.C. VIII. Sample Design Calculation... Page www.suncam.com Copyright 0 Blaise J. Fitzpatrick,

More information

D1. A normally consolidated clay has the following void ratio e versus effective stress σ relationship obtained in an oedometer test.

D1. A normally consolidated clay has the following void ratio e versus effective stress σ relationship obtained in an oedometer test. (d) COMPRESSIBILITY AND CONSOLIDATION D1. A normally consolidated clay has the following void ratio e versus effective stress σ relationship obtained in an oedometer test. (a) Plot the e - σ curve. (b)

More information

Lateral Earth Pressure

Lateral Earth Pressure 1 of 11 6/2/2012 4:28 AM Lateral Earth Pressure The magnitude of lateral earth pressure depends on: 1. Shear strength characteristics of soil 2. Lateral strain condition 3. Pore water pressure 4. State

More information

Seismic stability analysis of quay walls: Effect of vertical motion

Seismic stability analysis of quay walls: Effect of vertical motion Proc. 18 th NZGS Geotechnical Symposium on Soil-Structure Interaction. Ed. CY Chin, Auckland J. Yang Department of Civil Engineering, The University of Hong Kong, Hong Kong. Keywords: earthquakes; earth

More information

5.2 Rigid Bodies and Two-Dimensional Force Systems

5.2 Rigid Bodies and Two-Dimensional Force Systems 5.2 Rigid odies and Two-Dimensional Force Systems 5.2 Rigid odies and Two-Dimensional Force Systems Procedures and Strategies, page 1 of 1 Procedures and Strategies for Solving Problems Involving Equilibrium

More information

Seismic Analysis of Retaining Structures. Nanjundaswamy P. Department of Civil Engineering S J College of Engineering, Mysore

Seismic Analysis of Retaining Structures. Nanjundaswamy P. Department of Civil Engineering S J College of Engineering, Mysore Seismic Analysis of Retaining Structures Nanjundaswamy P. Department of Civil Engineering S J College of Engineering, Mysore pnswamy@yahoo.com Retaining Walls Retaining Walls. Where? Retaining Walls. Road

More information

In-class Exercise. Problem: Select load factors for the Strength I and Service I Limit States for the. Loading Diagram for Student Exercise

In-class Exercise. Problem: Select load factors for the Strength I and Service I Limit States for the. Loading Diagram for Student Exercise In-class Exercise Problem: Select load factors for the Strength I and Service I Limit States for the problem illustrated below. Loading Diagram for Student Exercise For this exercise, complete the following

More information

Active Force on Retaining Wall Supporting Φ Backfill Considering Curvilinear Rupture Surface

Active Force on Retaining Wall Supporting Φ Backfill Considering Curvilinear Rupture Surface Cloud Publications International Journal of Advanced Civil Engineering and Architecture Research 2012, Volume 1, Issue 1, pp. 6-15, Article ID Tech-30 Research Article Open Access Active Force on Retaining

More information

An analytical expression for the dynamic active thrust from c-φ soil backfill on retaining walls with wall friction and adhesion

An analytical expression for the dynamic active thrust from c-φ soil backfill on retaining walls with wall friction and adhesion Geomechanics and Engineering, Vol. 4, No. 3 (2012) 209-218 209 Technical Note An analytical expression for the dynamic active thrust from c-φ soil backfill on retaining walls with wall friction and adhesion

More information

Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 25 mm

Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 25 mm 444 Chapter : Shear Strength of Soil Example. Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 5 mm Normal Shear force

More information

Theory of Shear Strength

Theory of Shear Strength MAJ 1013 ADVANCED SOIL MECHANICS Theory of Shear Strength Prepared by, Dr. Hetty 1 Strength of different materials Steel Concrete Soil Tensile strength Compressive strength Shear strength Complex behavior

More information

Active Thrust on an Inclined Wall under the Combined Effect of Surcharge and Self- Weight

Active Thrust on an Inclined Wall under the Combined Effect of Surcharge and Self- Weight IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) ISSN: 2278-1684, PP: 01-15 www.iosrjournals.org Active Thrust on an Inclined Wall under the Combined Effect of Surcharge and Self- Weight D.

More information

Project: Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free Earth Support In accordance Eurocode 7.

Project: Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free Earth Support In accordance Eurocode 7. App'd by Construction Stages Name Term Objects present in this stage Stage 1 Long Wall 1 (Generated) (Generated) On retained side: Ground 1 (Generated), Borehole 1 (Generated), On excavated side: Excavation

More information

Foundations with D f equal to 3 to 4 times the width may be defined as shallow foundations. TWO MAIN CHARACTERISTICS ULTIMATE BEARING CAPACITY

Foundations with D f equal to 3 to 4 times the width may be defined as shallow foundations. TWO MAIN CHARACTERISTICS ULTIMATE BEARING CAPACITY oundation Analysis oundations with D f eual to 3 to 4 times the width may be defined as shallow foundations. TWO MAI CHARACTERISTICS o Safe against overall shear failure o Cannot undergo excessive displacement,

More information

Jaky s formula was often used to calculate the earth pressure at-rest behind a

Jaky s formula was often used to calculate the earth pressure at-rest behind a Chapter 2 LITERATURE REVIEW Jaky s formula was often used to calculate the earth pressure at-rest behind a retaining wall. However, the theory to estimate the lateral earth pressure on retaining wall near

More information

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine Don t forget to visit our companion site http://www.vulcanhammer.org Use subject to the terms and conditions of the respective

More information

SHEAR STRENGTH I YULVI ZAIKA

SHEAR STRENGTH I YULVI ZAIKA SHEAR STRENGTH I YULVI ZAIKA MATERI Keruntuhan mohr coulomb, stress paths, kuat geser tanah non kohesif dan kohesif, evaluasi kuat geser di lapangan, tegangan normal dan tegangan geser pada sebuah bidang

More information

Sample Chapter HELICAL ANCHORS IN SAND 6.1 INTRODUCTION

Sample Chapter HELICAL ANCHORS IN SAND 6.1 INTRODUCTION 6 ELICAL ANCORS IN SAN At the present time, limited studies on helical anchors are available, the results of which can be used to estimate their ultimate uplift capacity. In many instances, the ultimate

More information

vulcanhammer.net This document downloaded from

vulcanhammer.net This document downloaded from This document downloaded from vulcanhammer.net since 1997, your source for engineering information for the deep foundation and marine construction industries, and the historical site for Vulcan Iron Works

More information

BACKFILL AND INTERFACE CHARACTERISTICS

BACKFILL AND INTERFACE CHARACTERISTICS Chapter 5 BACKFILL AND INTERFACE CHARACTERISTICS This chapter introduces the properties of backfill and the distribution of soil density in the soil bin. The interface characteristics between the backfill

More information

Foundation Engineering Prof. Dr N.K. Samadhiya Department of Civil Engineering Indian Institute of Technology Roorkee

Foundation Engineering Prof. Dr N.K. Samadhiya Department of Civil Engineering Indian Institute of Technology Roorkee Foundation Engineering Prof. Dr N.K. Samadhiya Department of Civil Engineering Indian Institute of Technology Roorkee Module 01 Lecture - 03 Shallow Foundation So, in the last lecture, we discussed the

More information

3-BEARING CAPACITY OF SOILS

3-BEARING CAPACITY OF SOILS 3-BEARING CAPACITY OF SOILS INTRODUCTION The soil must be capable of carrying the loads from any engineered structure placed upon it without a shear failure and with the resulting settlements being tolerable

More information

The theories to estimate lateral earth pressure due to a strip surcharge loading will

The theories to estimate lateral earth pressure due to a strip surcharge loading will Chapter LITERATURE REVIEW The theories to estimate lateral earth pressure due to a strip surcharge loading will be introduced in this chapter. Commonly geotechnical engineers apply the equations suggested

More information

RAMWALL DESIGN METHODOLOGY

RAMWALL DESIGN METHODOLOGY RAMWALL DESIGN METHODOLOGY Submitted by:. June 005 CONTENTS 1. INTRODUCTION 1 Page. REFERENCED DOCUMENTS & ABBREVIATIONS 1 3 DESIGN METHODOLOGY / THEORY 3.1 General 3. Internal Analysis 4 3.3 External

More information

Module 1 GEOTECHNICAL PROPERTIES OF SOIL AND OF REINFORCED SOIL (Lectures 1 to 4)

Module 1 GEOTECHNICAL PROPERTIES OF SOIL AND OF REINFORCED SOIL (Lectures 1 to 4) Module 1 GEOTECHNICAL PROPERTIES OF SOIL AND OF REINFORCED SOIL (Lectures 1 to 4) Topics 1.1 INTRODUCTION 1.2 GRAIN-SIZE DISTRIBUTION Sieve Analysis Hydrometer Analysis 1.3 SIZE LIMITS FOR SOILS 1.4 WEIGHT-VOLUME

More information

pcf REQUIRED: Determine the shear strength parameters for use in a preliminary shallow foundation design. SOLUTION:

pcf REQUIRED: Determine the shear strength parameters for use in a preliminary shallow foundation design. SOLUTION: 14.330 SOIL MECHANICS Assignment #8: Shear Strength Solution. PROBLEM #1: GIVEN: A regional residential building contractor is planning on building a custom 4,100 ft² home on Martha s Vineyard, MA. The

More information

A Study on Reliability Analysis for Reinforced Earth Retaining Walls

A Study on Reliability Analysis for Reinforced Earth Retaining Walls A Study on Reliability Analysis for Reinforced Earth Retaining Walls Byung Sik, Chun Department of Civil Engineering, Hanyang University, Seoul, Korea(Rep.) hengdang@unitel.co.kr Kyung Min, Kim Department

More information

NUMERICAL STUDY OF THE DYNAMIC ACTIVE LATERAL EARTH PRESSURE COEFFI- CIENT OF COHESIVE SOILS

NUMERICAL STUDY OF THE DYNAMIC ACTIVE LATERAL EARTH PRESSURE COEFFI- CIENT OF COHESIVE SOILS NUMERICAL STUDY OF THE DYNAMIC ACTIVE LATERAL EARTH PRESSURE COEFFI- CIENT OF COHESIVE SOILS Mehrab Jesmani P.E., Koury Engineering & Testing Inc. Chino, CA, USA E-mail: mehrabjesmani@gmail.com Hossein

More information

Chapter (4) Ultimate Bearing Capacity of Shallow Foundations (Special Cases)

Chapter (4) Ultimate Bearing Capacity of Shallow Foundations (Special Cases) Chapter (4) Ultimate earing Capacity of Shallow Foundations (Special Cases) Ultimate.C. of Shallow Foundations (Special Cases) Introduction The ultimate bearing capacity theories discussed in Chapter 3

More information

B-1 SURFACE ELEVATION

B-1 SURFACE ELEVATION 5A 5B LOGGED BY El. S. Bhangoo DRILLING CONTRACTOR Pitcher Drilling DRILLING METHOD Rotary Wash BEGIN DATE 12-14-12 SAMPLER TYPE(S) AND SIZE(S) (ID) SPT, MC BOREHOLE BACKFILL AND COMPLETION COMPLETION

More information

BEARING CAPACITY SHALLOW AND DEEP FOUNDATIONS

BEARING CAPACITY SHALLOW AND DEEP FOUNDATIONS BEARING CAPACITY SHALLOW AND DEEP FOUNDATIONS CONTENTS: 1.0 INTRODUCTION 2.0 SHALLOW FOUNDATIONS 2.1 Design criteria 2.2 Spreading load 2.3 Types of foundations 2.4 Ground failure modes 2.5 Definitions

More information

EAS 664/4 Principle Structural Design

EAS 664/4 Principle Structural Design UNIVERSITI SAINS MALAYSIA 1 st. Semester Examination 2004/2005 Academic Session October 2004 EAS 664/4 Principle Structural Design Time : 3 hours Instruction to candidates: 1. Ensure that this paper contains

More information

Chapter 4. Ultimate Bearing Capacity of Shallow Foundations. Omitted parts: Sections 4.7, 4.8, 4.13 Examples 4.8, 4.9, 4.

Chapter 4. Ultimate Bearing Capacity of Shallow Foundations. Omitted parts: Sections 4.7, 4.8, 4.13 Examples 4.8, 4.9, 4. Chapter 4 Ultimate Bearing Capacity of Shallow Foundations Omitted parts: Sections 4.7, 4.8, 4.13 Examples 4.8, 4.9, 4.12 Pages 191-194 Ultimate Bearing Capacity of Shallow Foundations To perform satisfactorily,

More information

Theory of Shear Strength

Theory of Shear Strength SKAA 1713 SOIL MECHANICS Theory of Shear Strength Prepared by, Dr. Hetty 1 SOIL STRENGTH DEFINITION Shear strength of a soil is the maximum internal resistance to applied shearing forces The maximum or

More information

In depth study of lateral earth pressure

In depth study of lateral earth pressure In depth study of lateral earth pressure A comparison between hand calculations and PLAXIS Master of Science Thesis in the Master s Programme Geo and Water Engineering MATTIAS PETERSSON MATHIAS PETTERSSON

More information

Calculations. Conceptual Cofferdam. Prepared for. LAN - Austin. August Briarpark Drive Suite 400 Houston, Texas 77042

Calculations. Conceptual Cofferdam. Prepared for. LAN - Austin. August Briarpark Drive Suite 400 Houston, Texas 77042 Calculations Conceptual Cofferdam Prepared for - Austin August 0 9 Briarpark Drive Suite 00 Houston, Texas 770 Contents Cofferdam Design Report. Cofferdam Conceptual Design Summary.... Analysis Drawings...

More information

6.5 Cables: Concentrated Loads

6.5 Cables: Concentrated Loads 6.5 ables: oncentrated Loads 6.5 ables: oncentrated Loads Procedures and Strategies, page 1 of 3 Procedures and Strategies for Solving Problems Involving ables With oncentrated Loads 1. Pass sections through

More information

IGC. 50 th INDIAN GEOTECHNICAL CONFERENCE PSEUDOSTATIC SEISMIC ASSESMENT OF SLOPES AND ITS REMEDIATION

IGC. 50 th INDIAN GEOTECHNICAL CONFERENCE PSEUDOSTATIC SEISMIC ASSESMENT OF SLOPES AND ITS REMEDIATION 50 th IGC 50 th INDIAN GEOTECHNICAL CONFERENCE 17 th 19 th DECEMBER 2015, Pune, Maharashtra, India Venue: College of Engineering (Estd. 1854), Pune, India PSEUDOSTATIC SEISMIC ASSESMENT OF SLOPES AND ITS

More information

ME 201 Engineering Mechanics: Statics

ME 201 Engineering Mechanics: Statics ME 01 Engineering Mechanics: Statics Unit 5.3 Reduction of a Simple Distributed Loading Distributed Loads Thus far we ve been working with loads that are concentrated at a point: Many times in engineering

More information

DESIGN AND ANALYSIS OF RETAINING WALLS

DESIGN AND ANALYSIS OF RETAINING WALLS CHAPTER 8 DESIGN AND ANALYSIS OF RETAINING WALLS 8. INTRODUCTION Retaining walls are structures used to provide stability for earth or other materials at their natural slopes. In general, they are used

More information

Shear Strength of Soils

Shear Strength of Soils Shear Strength of Soils STRESSES IN A SOIL ELEMENT t s v Analyze Effective Stresses (s ) Load carried by Soil t Where: s H t t s H s = t f = s v = s H = t = s v Stresses in a Soil Element after Figure

More information

Analytical Study of Laterally Loaded Cast-in-Drilled-Hole Piles

Analytical Study of Laterally Loaded Cast-in-Drilled-Hole Piles TRANSPORTATION RESEARCH RECORD 1219 33 Analytical Study of Laterally Loaded Cast-in-Drilled-Hole Piles SANGCHUL BANG AND c. K. SHEN This paper summarizes the results of an analytical study of laterally

More information

Design of a Balanced-Cantilever Bridge

Design of a Balanced-Cantilever Bridge Design of a Balanced-Cantilever Bridge CL (Bridge is symmetric about CL) 0.8 L 0.2 L 0.6 L 0.2 L 0.8 L L = 80 ft Bridge Span = 2.6 L = 2.6 80 = 208 Bridge Width = 30 No. of girders = 6, Width of each girder

More information