SHEET PILE WALLS. Mehdi Mokhberi Islamic Azad University

Size: px
Start display at page:

Download "SHEET PILE WALLS. Mehdi Mokhberi Islamic Azad University"

Transcription

1 SHEET PILE WALLS Mehdi Mokhberi Islamic Azad University

2 Lateral Support In geotechnical engineering, it is often necessary to prevent lateral soil movements. Tie rod Anchor Sheet pile Cantilever retaining wall Braced excavation Anchored sheet pile 2

3 Lateral Support We have to estimate the lateral soil pressures acting on these structures, to be able to design them. Gravity Retaining wall Soil nailing Reinforced earth wall 3

4 Soil Nailing 4

5 Sheet Pile Sheet piles marked for driving 5

6 Sheet Pile Sheet pile wall 6

7 Sheet Pile During installation Sheet pile wall 7

8 Lateral Support Reinforced earth walls are increasingly becoming popular. geosynthetics 8

9 Lateral Support Crib walls have been used in Queensland. Good drainage & allow plant growth. Looks good. Interlocking stretchers and headers filled with soil 9

10 Active/Passive Earth Pressures - in granular soils Wall moves towards soil A Wall moves away from soil B smooth wall Let s look at the soil elements A and B during the wall movement. 10

11 Active Earth Pressure - in granular soils v = z z h A v z Initially, there is no lateral movement. h = K 0 v = K 0 z As the wall moves away from the soil, v remains the same; and h decreases till failure occurs. Active state 11

12 Active Earth Pressure - in granular soils As the wall moves away from the soil, Initially (K 0 state) Failure (Active state) active earth pressure Decreasing h v 12

13 Active Earth Pressure - in granular soils [ h ] active v WJM Rankine ( ) [ h' ] active KA v' K A sin tan 1 sin 1 2 (45 / 2) Rankine s coefficient of active earth pressure 13

14 Active Earth Pressure - in granular soils Failure plane is at 45 + /2 to horizontal v 45 + /2 h A [ h ] active 90+ v 14

15 Active Earth Pressure - in granular soils h A v z As the wall moves away from the soil, h decreases till failure occurs. h K 0 state Active state wall movement 15

16 Active Earth Pressure - in cohesive soils Follow the same steps as for granular soils. Only difference is that c 0. [ '] K ' 2c h active A v K A Everything else the same as for granular soils. 16

17 Passive Earth Pressure - in granular soils h B v Initially, soil is in K 0 state. As the wall moves towards the soil, v remains the same, and h increases till failure occurs. Passive state 17

18 Passive Earth Pressure - in granular soils As the wall moves towards the soil, Initially (K 0 state) Failure (Active state) passive earth pressure v increasing h 18

19 Passive Earth Pressure - in granular soils v [ h ] passive [ h' ] passive KP v' K P sin tan 1 sin 1 2 (45 / 2) Rankine s coefficient of passive earth pressure 19

20 Passive Earth Pressure - in granular soils Failure plane is at 45 - /2 to horizontal 45 - /2 h A v v 90+ [ h ] passive 20

21 Passive Earth Pressure - in granular soils h B v As the wall moves towards the soil, h increases till failure occurs. h K 0 state Passive state wall movement 21

22 Passive Earth Pressure - in cohesive soils Follow the same steps as for granular soils. Only difference is that c 0. [ '] K ' 2c h passive P v K P Everything else the same as for granular soils. 22

23 Earth Pressure Distribution - in granular soils [ h ] active P A and P P are the resultant active and passive thrusts on the wall [ h ] passive H P A =0.5 K A H 2 h P P =0.5 K P h 2 K P h K A H 23

24 h Passive state Active state K 0 state Wall movement (not to scale)

25 Rankine s Earth Pressure Theory [ '] K ' 2c [ '] K ' 2c h h active passive A P v v K K A P Assumes smooth wall Applicable only on vertical walls 25

26 Retaining Walls - Applications Road Train 26

27 Retaining Walls - Applications highway 27

28 Retaining Walls - Applications High-rise building basement wall 28

29 Gravity Retaining Walls cement mortar cobbles plain concrete or stone masonry They rely on their self weight to support the backfill 29

30 Cantilever Retaining Walls Reinforced; smaller section than gravity walls They act like vertical cantilever, fixed to the ground 30

31 Design of Retaining Wall - in granular soils Block no toe toe Analyse the stability of this rigid body with vertical walls ( Rankine theory valid) W i = weight of block i x i = horizontal distance of centroid of block i from toe 31

32 Safety against sliding along the base F sliding P P { W P A i }. tan soil-concrete friction angle to be greater than P A 2 H P P toe y 1 S 3 R h P P 1 toe P P = 0.5 K P h 2 P A = 0.5 K A H 2 y S 3 R PA

33 Safety against overturning about toe F overturning P P h / 3 P A H/3 { W x i i } to be greater than P A H P P toe y 1 S 3 R h P P 1 toe y S 3 R PA

34 Points to Ponder How does the key help in improving the stability against sliding? Shouldn t we design retaining walls to resist atrest (than active) earth pressures since the thrust on the wall is greater in K 0 state (K 0 > K A )? 34

35 SHEET PILE WALLS generally used for retaining shallow heights of soil wharfs, key walls temporary structures for excavation (eg. dredging)

36 From McCarthy, 6 th Edition

37 Cantilever Sheet Pile Walls stability depends on passive resistance developed below the lower soil surface failure is by rotation about a point O near bottom of wall Depth of embedment, d Active E.P. d O Passive E.P. fixity

38 a fixing moment is provided by the extra depth below point O to prevent rotation Generally, design is based on a simplified but equivalent approach: the fixity provided previously is replaced by a resisting force, R at point C which is just below point O Passive E.P. Active E.P. d C R

39 Danish Rules a factor of safety, F P is applied to the passive resistance in front of the wall take moments about C to calculate d then, increase d by 20% (empirical) finally, check that the passive resistance provided by the extra 20% is > R, where R = SP H

40 Free Earth Support Passive E.P. A T 45 - /2 tie rod b d a d 45 + /2 Active E.P. anchor wall no fixity Determine the depth of embedment, d by taking moments about A (SM A = 0, apply F P ) Find tension, T from SF H = 0 (don t apply F P ) Constraints: failure wedges must not overlap b > ½d a

41 Standards: AASHTO LRFD Section 11 Abutments, Piers, and Walls

42 AASHTO Section 11 Design specifications for: Conventional gravity/semigravity walls Non-gravity cantilevered walls Anchored walls Mechanically Stabilized Earth (MSE) walls Prefabricated modular walls

43 Common Load Groups for Walls Group DC EV EH (Active) ES LS Strength Ia Strength Ib Service I

44 Load Definitions DC dead load of structural components and attachments EV vertical pressure from dead load of earth fill EH horizontal earth pressure load ES earth surcharge load LS live load surcharge (transient load)

45 Surcharge Loads Earth surcharge AASHTO Section and Live load surcharge AASHTO

46 Conventional Retaining Walls Strength Limit States Sliding Bearing resistance Eccentricity Service Limit States Vertical settlement Lateral wall movement Overall stability

47 External Failure Mechanisms Sliding Failure Overturning Failure Bearing Failure Deep-Seated Sliding Failure

48 1.25 DC 0.90 DC 1.35 EV 1.00 EV Load Factors for Conventional Walls b b 1.50 EHsin(b ) 1.50 EHsin(b ) 1.50 EH 1.50 EH b b 1.00 WA V 1.50 EHcos(b ) 1.00 WA V 1.50 EHcos(b ) 1.00 WA H 1.00 WA H Load Factors for Bearing Resistance Load Factors for Sliding and Eccentricity

49 Conventional Walls - Summary Use resistance factors for spread footings or deep foundations, as appropriate (Section 10.5) Eccentricity limited to: e/b < 0.25 for soil (compare to ASD 0.167) e/b < for rock (compare to ASD 0.25)

50 Non-gravity Cantilevered Walls Strength Limit States Bearing resistance of embedded portion of wall Passive resistance of embedded portion of wall Flexural resistance of wall/facing elements Service Limit States Vertical wall movement Lateral wall movement Overall stability

51 Resistance Factors Bearing Resistance Passive Resistance Flexural Resistance Section Code allows increase in Resistance Factors for temporary walls but specific guidance is not provided

52 ASD Pressure Diagrams Discrete Elements LRFD

53 Non-gravity Cantilevered Walls Below excavation line, multiply by 3b on passive side of wall and 1b on active side of wall for discrete elements Look at forces separately below excavation line on passive side and active side (because different load factors)

54 Non-gravity Cantilevered Walls Factor embedment by 1.2 for continuous wall elements Do not factor embedment for discrete wall elements (conservatism of 3b assumption)

55 Example Cantilevered sheet pile wall retaining a 10- ft deep cut in granular soils Assume 36 ksi yield stress for sheet pile Compare required embedment depth and structural section for ASD and LRFD Load Factor of 1.5 used for EH (active)

56 Example Geometry 10' 125 pcf K a = 0.33 p = 1.5 L L p P p K p = 3 p = 1 A L a P a Factored P a = p * 0.5 * (L+10) 2 * K a * Factored P p = p * 0.5 * L 2 * K p *

57 Example Results Method M max (k-ft) Embedment (ft) Section Modulus (in 3 /ft) ASD (S) (elastic) LRFD (Z) (plastic) Since Z is about 1.15 to 1.20 times S, similar section would be acceptable

58 Anchored Walls Strength Limit States Bearing resistance of embedded portion of wall Passive resistance of embedded portion of wall Flexural resistance of wall/facing elements Ground anchor pullout Tensile resistance of anchor tendon Service Limit States

59 Apparent Earth Pressure Diagrams Based on FHWA-sponsored research Builds upon well-known Terzaghi-Peck envelopes Appropriate for walls built in competent ground where maximum wall height is critical design case Same diagram shape for single or multileveled anchored walls

60 H Recommended AEP for Sands H 1 2 /3 H 1 H 1 2 /3 H 1 T h1 p 2 /3 (H-H 1 ) 1 /3 H T h1 T h2 T hn H n+1 H n H 2 p 2 /3 H n+1 R R p TOTAL 2 3 LOAD H K A γh TOTALLOAD p H H1 3Hn 1 (a) Walls with one level of ground anchors (b) Walls with multiple levels of ground anchors

61 LRFD Check on Tensile Breakage Guaranteed Ultimate Tensile Strength (GUTS) Select tendon with: GUTS T n GUTS ΣγiQi

62 Resistance Factors for Ground Anchors Tensile Rupture Mild Steel 0.90 High Strength Steel 0.80 Resistance factors are applied to maximum proof test load For high strength steel, apply resistance factor to GUTS

63 ASD Comparison to ASD Tensile Rupture 0.8 GUTS > 1.33 Design Load (DL = EH + LS) 0.8 GUTS > 1.33 EH LS LRFD GUTS > p EH LS 0.8 GUTS > 1.5 EH LS Maximum proof test load must be at least equal to the factored load

64 Anchor Bond Length L b(min) T n Q a L b = anchor bond length T n = factored anchor load Q a = nominal anchor pullout resistance

65 Nominal Anchor Pullout Resistance Q a d a L b Q a = nominal anchor pullout capacity d = anchor hole diameter a = nominal anchor bond stress L b = anchor bond length

66 Preliminary Evaluation Only Bond stress values in AASHTO should be used for FEASIBILITY evaluation AASHTO values for cohesionless and cohesive soil and rock

67 Presumptive Nominal Bond Stress in Cohesionless Soils Anchor/Soil Type (Grout Pressure) Soil Compactness or SPT Resistance Presumptive Ultimate Bond Stress, n (ksf) Gravity Grouted Anchors (<50 psi) Sand or Sand-Gravel Mixtures Medium Dense to Dense to 2.9 Pressure Grouted Anchors (50 to 400 psi) Fine to Medium Sand Medium to Coarse Sand w/gravel Silty Sands Sandy Gravel Glacial Till Medium Dense to Dense Medium Dense Dense to Very Dense Medium Dense to Dense Dense to Very Dense Dense to to to to to to to 11

68 Resistance Factors Anchor Pullout Cohesionless (Granular) Soils 0.65 (1) Cohesive Soils 0.70 (1) Rock 0.50 (1) Where Proof Tests Preformed 1.00 (2) 1) Using presumptive values for preliminary design only 2) Where proof tests conducted to at least 1.0 times the factored anchor load

69 LRFD/ASD 1.1 Comparison to ASD Anchor Pullout Rock (FS = 3.0, = 0.50) Sand (FS = 2.5, = 0.65) Clay (FS = 2.5, = 0.70) (ASD) L b(min) EH LS 1 FS Dead Load / Live Load L b(min) (LRFD) EH LS

70 Final Anchor Design Section Anchor Pullout Capacity For final design, the contract documents shall require that verification tests or pullout tests on sacrificial anchors in each soil unit be conducted Different than current ASD practice, but intent is not to require, in general, pullout testing

71 Bearing Resistance of Wall Element Assume all vertical loads carried by portion of wall below excavation level Code refers designer to section on spread or deep foundations for analysis methods Resistance factors used are for static capacity evaluation of piles or shafts (i.e., = 0.3 to 0.5 FS ~ 3.0 to 4.5) Resistance factors should be modified to correlate to FS = 2.0 to 2.5 for bearing resistance evaluation

72 MSE Walls Strength Limit States Same external stability checks as for conventional gravity walls Tensile resistance of reinforcement Pullout resistance of reinforcement Structural resistance of face elements and face element connection Service Limits States Same as for conventional gravity walls

73 MSE Walls External Stability

74 MSE Walls Internal Stability Check pullout and tensile resistance at each reinforcement level and compare to maximum factored load, T max

75 Maximum Factored Load Apply factored load to the reinforcements T σ max H = factored horizontal soil stress at reinforcement (ksf) H S S v = vertical spacing of reinforcement v AASHTO

76 AASHTO Factored Horizontal Stresses Factored Horizontal Stress σ H P σ P = load factor (=1.35 for EV) k r = pressure coefficient V k V = pressure due to resultant of gravity forces from soil self weight D H = horizontal stress r Δσ H

77 Reinforcement Tensile Resistance T max T al R c T al = Nominal long-term reinforcement design strength = Resistance factor for tensile resistance AASHTO

78 Resistance Factors for Tensile Resistance Metallic Reinforcement Strip Reinforcement Static loading Combined static/earthquake loading Grid Reinforcement Static loading Combined static/earthquake loading Geosynthetic Reinforcement Static loading Combined static/earthquake loading

79 ASD/LRFD Tensile Breakage Example of Steel Strip Reinforcement T max = h S v ASD T max = p h S v LRFD T max = ( v k r + D h ) S v T al = (0.55 F y A c ) / b T al / T max = 0.55 / 1 = 0.55 T max = 1.35 ( v k r + D h ) S v T al = ( F y A c ) / b with = 0.75 T al / T max = 0.75 / 1.35 = 0.55

80 Other Developments LRFD for Soil Nails NCHRP Draft LRFD Design and Construction Specification for Micropiles

81 ? The End

GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE ANALYSIS AND DESIGN OF RETAINING STRUCTURES

GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE ANALYSIS AND DESIGN OF RETAINING STRUCTURES GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE 07 3.0 ANALYSIS AND DESIGN OF RETAINING STRUCTURES LEARNING OUTCOMES Learning outcomes: At the end of this lecture/week the students would be able to: Understand

More information

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai Geosynthetics and Reinforced Soil Structures Reinforced Soil Walls continued Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai e-mail: gopalkr@iitm.ac.inac in Outline of the Lecture

More information

In-class Exercise. Problem: Select load factors for the Strength I and Service I Limit States for the. Loading Diagram for Student Exercise

In-class Exercise. Problem: Select load factors for the Strength I and Service I Limit States for the. Loading Diagram for Student Exercise In-class Exercise Problem: Select load factors for the Strength I and Service I Limit States for the problem illustrated below. Loading Diagram for Student Exercise For this exercise, complete the following

More information

AB Engineering Manual

AB Engineering Manual AB Engineering Manual Allan Block Retaining Walls This manual presents the techniques used by Allan Block in our engineering practice to design retaining walls. It is not intended as a textbook of soil

More information

AB Engineering Manual

AB Engineering Manual AB Engineering Manual Allan Block Retaining Walls FOREWORD This manual presents the techniques used by Allan Block in our engineering practice to design retaining walls. It is not intended as a textbook

More information

LATERAL EARTH PRESSURE AND RETAINING STRUCTURES

LATERAL EARTH PRESSURE AND RETAINING STRUCTURES Topic Outline LATERAL EARTH PRESSURE AND RETAINING STRUCTURES Types of retaining structures Lateral earth pressure Earth pressure at rest Rankine s Theory Coulomb s Theory Cullman s graphic solution Braced

More information

INTRODUCTION TO STATIC ANALYSIS PDPI 2013

INTRODUCTION TO STATIC ANALYSIS PDPI 2013 INTRODUCTION TO STATIC ANALYSIS PDPI 2013 What is Pile Capacity? When we load a pile until IT Fails what is IT Strength Considerations Two Failure Modes 1. Pile structural failure controlled by allowable

More information

Seismic Analysis of Retaining Structures. Nanjundaswamy P. Department of Civil Engineering S J College of Engineering, Mysore

Seismic Analysis of Retaining Structures. Nanjundaswamy P. Department of Civil Engineering S J College of Engineering, Mysore Seismic Analysis of Retaining Structures Nanjundaswamy P. Department of Civil Engineering S J College of Engineering, Mysore pnswamy@yahoo.com Retaining Walls Retaining Walls. Where? Retaining Walls. Road

More information

Reliability Analysis of Anchored and Cantilevered Flexible Retaining Structures

Reliability Analysis of Anchored and Cantilevered Flexible Retaining Structures LSD2003: International Workshop on Limit State Design in Geotechnical Engineering Practice Phoon, Honjo & Gilbert (eds) 2003 World Scientific Publishing Company Reliability Analysis of Anchored and Cantilevered

More information

Chapter (7) Lateral Earth Pressure

Chapter (7) Lateral Earth Pressure Chapter (7) Lateral Earth Pressure Introduction Vertical or near vertical slopes of soil are supported by retaining walls, cantilever sheet-pile walls, sheet-pile bulkheads, braced cuts, and other similar

More information

Design of Reinforced Soil Walls By Lrfd Approach

Design of Reinforced Soil Walls By Lrfd Approach IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) ISSN: 2278-1684, PP: 16-26 www.iosrjournals.org Design of Reinforced Soil Walls By Lrfd Approach A.D. Maskar 1, N.T. Suryawanshi 2 1 Assistant

More information

ALUMINUM STRUCTURAL PLATE HEADWALLS AASHTO LRFD BASIS OF DESIGN

ALUMINUM STRUCTURAL PLATE HEADWALLS AASHTO LRFD BASIS OF DESIGN ALUMINUM STRUCTURAL PLATE EADWALLS AASTO LRFD BASIS OF DESIGN LANE ENTERPRISES, INC. www.lane-enterprises.com Required Backfill and Load Cases: ALUMINUM STRUCTURAL PLATE EADWALLS BASIS OF DESIGN Backfill

More information

OVERVIEW REVIEW OF FOUNDATIONS & SOILS ENG.

OVERVIEW REVIEW OF FOUNDATIONS & SOILS ENG. Soil Borings. 14.485 CAPSTONE DESIGN OVERVIEW REVIEW OF 14.431 FOUNDATIONS & SOILS ENG. Geotechnical Report (not covered). Bearing Pressure Calculations. Settlement Calculations. Lateral Earth Pressure

More information

Foundation Analysis LATERAL EARTH PRESSURE

Foundation Analysis LATERAL EARTH PRESSURE Foundation Analysis LATERAL EARTH PRESSURE INTRODUCTION Vertical or near-vertical slopes of soil are supported by retaining walls, cantilever sheet-pile walls, sheet-pile bulkheads, braced cuts, and other

More information

9.13 Fixed Earth-Support Method for Penetration into Sandy Soil

9.13 Fixed Earth-Support Method for Penetration into Sandy Soil 476 Chapter 9: Sheet Pile Walls 9.13 Fixed Earth-Support Method for Penetration into y Soil When using the fixed earth support method, we assume that the toe of the pile is restrained from rotating, as

More information

Transmission Line Design Structures & Foundations TADP 549

Transmission Line Design Structures & Foundations TADP 549 Transmission Line Design Structures & Foundations TADP 549 Steel Poles - Direct Embedment Foundations - Point of Fixity Presentation 6.3 Dr. Prasad Yenumula Transmission & Distribution Program Reference

More information

RAMWALL DESIGN METHODOLOGY

RAMWALL DESIGN METHODOLOGY RAMWALL DESIGN METHODOLOGY Submitted by:. June 005 CONTENTS 1. INTRODUCTION 1 Page. REFERENCED DOCUMENTS & ABBREVIATIONS 1 3 DESIGN METHODOLOGY / THEORY 3.1 General 3. Internal Analysis 4 3.3 External

More information

file:///d /suhasini/suha/office/html2pdf/ _editable/slides/module%202/lecture%206/6.1/1.html[3/9/2012 4:09:25 PM]

file:///d /suhasini/suha/office/html2pdf/ _editable/slides/module%202/lecture%206/6.1/1.html[3/9/2012 4:09:25 PM] Objectives_template Objectives In this section you will learn the following Introduction Different Theories of Earth Pressure Lateral Earth Pressure For At Rest Condition Movement of the Wall Different

More information

Restraining Thrust Forces. DIPRA Member Companies. DIPRA Website (www.dipra.org) DIPRA Computer Programs. AWWA Standards

Restraining Thrust Forces. DIPRA Member Companies. DIPRA Website (www.dipra.org) DIPRA Computer Programs. AWWA Standards DIPRA Member Companies 1915 DIPRA Website (www.dipra.org) DIPRA Computer Programs Thickness Design of Ductile Iron PIpe Hydraulic Analysis of Ductile Iron Pipe Thrust Restraint Design for Ductile Iron

More information

Design of RC Retaining Walls

Design of RC Retaining Walls Lecture - 09 Design of RC Retaining Walls By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar www.drqaisarali.com 1 Topics Retaining Walls Terms Related to Retaining Walls Types of Retaining

More information

Compute the lateral force per linear foot with sloping backfill and inclined wall. Use Equation No. 51, page 93. Press ENTER.

Compute the lateral force per linear foot with sloping backfill and inclined wall. Use Equation No. 51, page 93. Press ENTER. Sample Problems Problem 5.1 A gravity retaining wall is supporting a cohesionless soil. The active lateral force per linear foot of the retaining wall is most nearly (A) 5,000 lb/ft (B) 6,000 lb/ft (C)

More information

Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 51 Earth Pressure Theories II

Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 51 Earth Pressure Theories II Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 51 Earth Pressure Theories II Welcome to lecture number two on earth pressure theories.

More information

Drilled Shaft Foundations in Limestone. Dan Brown, P.E., Ph.D. Dan Brown and Associates

Drilled Shaft Foundations in Limestone. Dan Brown, P.E., Ph.D. Dan Brown and Associates Drilled Shaft Foundations in Limestone Dan Brown, P.E., Ph.D. Dan Brown and Associates Foundation Engineering How we teach our students Fundamental understanding of soil and rock behavior (good!) Focus

More information

INTI COLLEGE MALAYSIA

INTI COLLEGE MALAYSIA EGC373 (F) / Page 1 of 5 INTI COLLEGE MALAYSIA UK DEGREE TRANSFER PROGRAMME INTI ADELAIDE TRANSFER PROGRAMME EGC 373: FOUNDATION ENGINEERING FINAL EXAMINATION : AUGUST 00 SESSION This paper consists of

More information

Chapter (3) Ultimate Bearing Capacity of Shallow Foundations

Chapter (3) Ultimate Bearing Capacity of Shallow Foundations Chapter (3) Ultimate Bearing Capacity of Shallow Foundations Introduction To perform satisfactorily, shallow foundations must have two main characteristics: 1. They have to be safe against overall shear

More information

Geotechnical Parameters for Retaining Wall Design

Geotechnical Parameters for Retaining Wall Design 11 th October 2012 Geotechnical Parameters for Retaining Wall Design Tanya Kouzmin 1 Most geotechnical failures are of retaining walls Are failure caused by WRONG calculations? Not usually calculation

More information

Transactions on Information and Communications Technologies vol 20, 1998 WIT Press, ISSN

Transactions on Information and Communications Technologies vol 20, 1998 WIT Press,   ISSN Design Of Retaining Walls : System Uncertainty & Fuzzy Safety Measures J. Oliphant *, P. W. Jowitt * and K. Ohno + * Department of Civil & Offshore Engineering, Heriot-Watt University, Riccarton, Edinburgh.

More information

Design of a Balanced-Cantilever Bridge

Design of a Balanced-Cantilever Bridge Design of a Balanced-Cantilever Bridge CL (Bridge is symmetric about CL) 0.8 L 0.2 L 0.6 L 0.2 L 0.8 L L = 80 ft Bridge Span = 2.6 L = 2.6 80 = 208 Bridge Width = 30 No. of girders = 6, Width of each girder

More information

BEARING CAPACITY SHALLOW AND DEEP FOUNDATIONS

BEARING CAPACITY SHALLOW AND DEEP FOUNDATIONS BEARING CAPACITY SHALLOW AND DEEP FOUNDATIONS CONTENTS: 1.0 INTRODUCTION 2.0 SHALLOW FOUNDATIONS 2.1 Design criteria 2.2 Spreading load 2.3 Types of foundations 2.4 Ground failure modes 2.5 Definitions

More information

Appraisal of Soil Nailing Design

Appraisal of Soil Nailing Design Indian Geotechnical Journal, 39(1), 2009, 81-95 Appraisal of Soil Nailing Design G. L. Sivakumar Babu * and Vikas Pratap Singh ** Introduction Geotechnical engineers largely prefer soil nailing as an efficient

More information

Chapter 6 Bearing Capacity

Chapter 6 Bearing Capacity Chapter 6 Bearing Capacity 6-1. Scope This chapter provides guidance for the determination of the ultimate and allowable bearing stress values for foundations on rock. The chapter is subdivided into four

More information

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine Don t forget to visit our companion site http://www.vulcanhammer.org Use subject to the terms and conditions of the respective

More information

CHAPTER 8 CALCULATION THEORY

CHAPTER 8 CALCULATION THEORY CHAPTER 8 CALCULATION THEORY. Volume 2 CHAPTER 8 CALCULATION THEORY Detailed in this chapter: the theories behind the program the equations and methods that are use to perform the analyses. CONTENTS CHAPTER

More information

RETAINING WALL LOADS: Horizontal Equivalent Fluid Pressure = pcf. (Load Case = Soil)

RETAINING WALL LOADS: Horizontal Equivalent Fluid Pressure = pcf. (Load Case = Soil) QuickWall 8.0 - RETAINING WALL ANALYSIS AND DESIGN ================================================================================ Job ID : Job Description : Designed By : ================================================================================

More information

UNIT V. The active earth pressure occurs when the wall moves away from the earth and reduces pressure.

UNIT V. The active earth pressure occurs when the wall moves away from the earth and reduces pressure. UNIT V 1. Define Active Earth pressure. The active earth pressure occurs when the wall moves away from the earth and reduces pressure. 2. Define Passive Earth pressure. The passive earth pressure occurs

More information

Introduction to Soil Mechanics

Introduction to Soil Mechanics Introduction to Soil Mechanics Sela Sode and Colin Jones WILEY Blackwell Contents Preface Dedication and Acknowledgments List of Symbols Soil Structure 1.1 Volume relationships 1.1.1 Voids ratio (e) 1.1.2

More information

FOUNDATION ENGINEERING UNIT V

FOUNDATION ENGINEERING UNIT V FOUNDATION ENGINEERING UNIT V RETAINING WALLS Plastic equilibrium in soils active and passive states Rankine s theory cohesion less and cohesive soil - Coloumb s wedge theory condition for critical failure

More information

EN Eurocode 7. Section 3 Geotechnical Data Section 6 Spread Foundations. Trevor L.L. Orr Trinity College Dublin Ireland.

EN Eurocode 7. Section 3 Geotechnical Data Section 6 Spread Foundations. Trevor L.L. Orr Trinity College Dublin Ireland. EN 1997 1: Sections 3 and 6 Your logo Brussels, 18-20 February 2008 Dissemination of information workshop 1 EN 1997-1 Eurocode 7 Section 3 Geotechnical Data Section 6 Spread Foundations Trevor L.L. Orr

More information

DESIGN AND DETAILING OF COUNTERFORT RETAINING WALL

DESIGN AND DETAILING OF COUNTERFORT RETAINING WALL DESIGN AND DETAILING OF COUNTERFORT RETAINING WALL When the height of the retaining wall exceeds about 6 m, the thickness of the stem and heel slab works out to be sufficiently large and the design becomes

More information

S E C T I O N 1 2 P R O D U C T S E L E C T I O N G U I D E - H E L I C A L S C R E W P I L E F O U N D A T I O N S

S E C T I O N 1 2 P R O D U C T S E L E C T I O N G U I D E - H E L I C A L S C R E W P I L E F O U N D A T I O N S 1. P R O D U C T S E L E C T I O N G U I D E - H E L I C A L S C R E W P I L E F O U N D A T I O N S Helical foundation pile includes a lead and extension(s). The lead section is made of a central steel

More information

AB Engineering Manual

AB Engineering Manual AB Engineering Manual Allan Block Retaining Walls Excerptfrom theabengineeringmanualforretainingwals CHAPTER FIVE Seismic Analysis Introduction In seismic design we take a dynamic force and analyze it

More information

2017 Soil Mechanics II and Exercises Final Exam. 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room

2017 Soil Mechanics II and Exercises Final Exam. 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room 2017 Soil Mechanics II and Exercises Final Exam 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room Attention: The exam consists of five questions for which you are provided with five answer sheets. Write

More information

SOIL MECHANICS: palgrave. Principles and Practice. Graham Barnes. macmiiian THIRD EDITION

SOIL MECHANICS: palgrave. Principles and Practice. Graham Barnes. macmiiian THIRD EDITION SOIL MECHANICS: Principles and Practice THIRD EDITION Graham Barnes palgrave macmiiian 'running Contents Preface xii Fine soil 19 List of symbols xiv Mass structure 21 Note on units xix Degree of weathering

More information

Sample Chapter HELICAL ANCHORS IN SAND 6.1 INTRODUCTION

Sample Chapter HELICAL ANCHORS IN SAND 6.1 INTRODUCTION 6 ELICAL ANCORS IN SAN At the present time, limited studies on helical anchors are available, the results of which can be used to estimate their ultimate uplift capacity. In many instances, the ultimate

More information

LRFD GEOTECHNICAL IMPLEMENTATION

LRFD GEOTECHNICAL IMPLEMENTATION LRFD GEOTECHNICAL IMPLEMENTATION Ching-Nien Tsai, P.E. LADOTD Pavement and Geotechnical Services In Conjunction with LTRC WHY LRFD FHWA deadline - October 2007 LRFD is a better method Risk is quantified

More information

DESIGN AND ANALYSIS OF RETAINING WALLS

DESIGN AND ANALYSIS OF RETAINING WALLS CHAPTER 8 DESIGN AND ANALYSIS OF RETAINING WALLS 8. INTRODUCTION Retaining walls are structures used to provide stability for earth or other materials at their natural slopes. In general, they are used

More information

CIVE.4850 CAPSTONE DESIGN Module 3 Geotechnical Engineering 2016 F.E. EXAM. Slide 1 of 59. Revised 02/2016

CIVE.4850 CAPSTONE DESIGN Module 3 Geotechnical Engineering 2016 F.E. EXAM. Slide 1 of 59. Revised 02/2016 2016 F.E. EXAM Slide 1 of 59 2016 F.E. EXAM 8-13% GEOL.3250 (optional) CIVE.3300 & CIVE.3330 CIVE.4310 Slide 2 of 59 CIVE.4850 CAPSTONE DESIGN 2016 FUNDAMENTALS OF ENGINEERING (FE) EXAM CALCULATOR POLICY

More information

Lesson 25. Static Pile Load Testing, O-cell, and Statnamic. Reference Manual Chapter 18

Lesson 25. Static Pile Load Testing, O-cell, and Statnamic. Reference Manual Chapter 18 Lesson 25 Static Pile Load Testing, O-cell, and Statnamic Reference Manual Chapter 18 STATIC LOAD TESTING Most accurate method to determine static pile capacity Perform at design or construction stage

More information

PRINCIPLES OF GEOTECHNICAL ENGINEERING

PRINCIPLES OF GEOTECHNICAL ENGINEERING PRINCIPLES OF GEOTECHNICAL ENGINEERING Fourth Edition BRAJA M. DAS California State University, Sacramento I(T)P Boston Albany Bonn Cincinnati London Madrid Melbourne Mexico City New York Paris San Francisco

More information

Chapter 12: Lateral Earth Pressure

Chapter 12: Lateral Earth Pressure Part 4: Lateral Earth Pressure and Earth-Retaining Structures Chapter 12: Lateral Earth Pressure Introduction Vertical or near-vertical slopes of soil are supported by retaining walls, cantilever sheetpile

More information

Earth Pressure Theory

Earth Pressure Theory Lateral Earth Pressure Page 1 Earth Pressure Theory Examples of Retaining Walls Lateral Earth Pressure Page 2 At-Rest, Active and Passive Earth Pressure Wednesday, August 17, 2011 12:45 PM At-rest condition

More information

9/23/ S. Kenny, Ph.D., P.Eng. Lecture Goals. Reading List. Students will be able to: Lecture 09 Soil Retaining Structures

9/23/ S. Kenny, Ph.D., P.Eng. Lecture Goals. Reading List. Students will be able to: Lecture 09 Soil Retaining Structures Lecture 09 Soil Retaining Structures Shawn Kenny, Ph.D., P.Eng. Assistant Professor Faculty of Engineering and Applied Science Memorial University of Newfoundland spkenny@mun.ca Lecture Goals Students

More information

Liquefaction and Foundations

Liquefaction and Foundations Liquefaction and Foundations Amit Prashant Indian Institute of Technology Gandhinagar Short Course on Seismic Design of Reinforced Concrete Buildings 26 30 November, 2012 What is Liquefaction? Liquefaction

More information

Evaluation of short piles bearing capacity subjected to lateral loading in sandy soil

Evaluation of short piles bearing capacity subjected to lateral loading in sandy soil Evaluation of short piles bearing capacity subjected to lateral loading in sandy soil [Jafar Bolouri Bazaz, Javad Keshavarz] Abstract Almost all types of piles are subjected to lateral loads. In many cases,

More information

VIII. Sample Design Calculation... Page 2. Copyright 2011 Blaise J. Fitzpatrick, P.E. Page 1 of 24

VIII. Sample Design Calculation... Page 2.  Copyright 2011 Blaise J. Fitzpatrick, P.E. Page 1 of 24 Mechanically Stabilized Earth Structures Part 3 By Blaise J. Fitzpatrick, P.E. Fitzpatrick Engineering Associates, P.C. VIII. Sample Design Calculation... Page www.suncam.com Copyright 0 Blaise J. Fitzpatrick,

More information

NCHRP LRFD Design Specifications for Shallow Foundations TRB AFS30 Committee Meeting January 26, 2011

NCHRP LRFD Design Specifications for Shallow Foundations TRB AFS30 Committee Meeting January 26, 2011 Geotechnical Engineering Research Laboratory Dept. of Civil and Environmental Engineering University of Massachusetts Lowell. NCHRP 24-31 LRFD Design Specifications for Shallow Foundations TRB AFS3 Committee

More information

Dr. Mohammed E. Haque, P.E. Lecture Notes

Dr. Mohammed E. Haque, P.E. Lecture Notes nalysis of Selected Determinate Structural Systems Planar Trusses Method of Joints Planar Trusses Method of Sections Pinned Frames with Multi-force Members Retaining Walls OS321Haque 1 Planar Trusses Method

More information

Entrance exam Master Course

Entrance exam Master Course - 1 - Guidelines for completion of test: On each page, fill in your name and your application code Each question has four answers while only one answer is correct. o Marked correct answer means 4 points

More information

Chapter 4 Seismic Design Requirements for Building Structures

Chapter 4 Seismic Design Requirements for Building Structures Chapter 4 Seismic Design Requirements for Building Structures where: F a = 1.0 for rock sites which may be assumed if there is 10 feet of soil between the rock surface and the bottom of spread footings

More information

FHWA/IN/JTRP-2008/5. Final Report. Dongwook Kim Rodrigo Salgado

FHWA/IN/JTRP-2008/5. Final Report. Dongwook Kim Rodrigo Salgado FHWA/IN/JTRP-2008/5 Final Report LIMIT STATES AND LOAD AND RESISTANCE DESIGN OF SLOPES AND RETAINING STRUCTURES Dongwook Kim Rodrigo Salgado January 2009 INDOT Research TECHNICAL Summary Technology Transfer

More information

Lateral Strength and Stiffness of Post and Pier Foundations

Lateral Strength and Stiffness of Post and Pier Foundations An ASABE Meeting Presentation Paper Number: 152190408 Lateral Strength and Stiffness of Post and Pier Foundations David Roy Bohnhoff Professor, Biological Systems Engineering Department University of Wisconsin-Madison,

More information

Theory of Shear Strength

Theory of Shear Strength SKAA 1713 SOIL MECHANICS Theory of Shear Strength Prepared by, Dr. Hetty 1 SOIL STRENGTH DEFINITION Shear strength of a soil is the maximum internal resistance to applied shearing forces The maximum or

More information

vulcanhammer.net This document downloaded from

vulcanhammer.net This document downloaded from This document downloaded from vulcanhammer.net since 1997, your source for engineering information for the deep foundation and marine construction industries, and the historical site for Vulcan Iron Works

More information

Introduction to Geotechnical Engineering. ground

Introduction to Geotechnical Engineering. ground Introduction to Geotechnical Engineering ground 1 Typical Geotechnical Project Geo-Laboratory ~ for testing soil properties Design Office ~ for design & analysis construction site 2 Shallow Foundations

More information

OP-13. PROCEDURES FOR DESIGN OF EMBANKMENT

OP-13. PROCEDURES FOR DESIGN OF EMBANKMENT Page 1 of 8 WORK INSTRUCTIONS FOR ENGINEERS TYC Compiled by : LSS Checked by : GSS Approved by : OP-13. PROCEDURES FOR DESIGN OF EMBANKMENT Page of 8 13.0 13.1. OVERALL PROCEDURES This section will briefly

More information

LATERAL EARTH PRESSURE

LATERAL EARTH PRESSURE . INTRODUCTION Retaining structures commonly used in foundation engineering, such as retaining walls, basement walls and bulkheads to support almost vertical slopes of earth masses. Proper design and construction

More information

Module 7 (Lecture 27) RETAINING WALLS

Module 7 (Lecture 27) RETAINING WALLS Module 7 (Lecture 27) RETAINING WALLS Topics 1.1 RETAINING WALLS WITH METALLIC STRIP REINFORCEMENT Calculation of Active Horizontal and vertical Pressure Tie Force Factor of Safety Against Tie Failure

More information

KDOT Geotechnical Manual Edition. Table of Contents

KDOT Geotechnical Manual Edition. Table of Contents KDOT Geotechnical Manual 2007 Edition The KDOT Geotechnical Manual is available two volumes. Both volumes are very large electronic (pdf) files which may take several minutes to download. The table of

More information

CHAPTER 6: ULTIMATE LIMIT STATE

CHAPTER 6: ULTIMATE LIMIT STATE CHAPTER 6: ULTIMATE LIMIT STATE 6.1 GENERAL It shall be in accordance with JSCE Standard Specification (Design), 6.1. The collapse mechanism in statically indeterminate structures shall not be considered.

More information

Seismic design of bridges

Seismic design of bridges NATIONAL TECHNICAL UNIVERSITY OF ATHENS LABORATORY FOR EARTHQUAKE ENGINEERING Seismic design of bridges Lecture 3 Ioannis N. Psycharis Capacity design Purpose To design structures of ductile behaviour

More information

Objectives. In this section you will learn the following. Rankine s theory. Coulomb s theory. Method of horizontal slices given by Wang (2000)

Objectives. In this section you will learn the following. Rankine s theory. Coulomb s theory. Method of horizontal slices given by Wang (2000) Objectives In this section you will learn the following Rankine s theory Coulomb s theory Method of horizontal slices given by Wang (2000) Distribution of the earth pressure Height of application of the

More information

DETERMINATION OF UPPER BOUND LIMIT ANALYSIS OF THE COEFFICIENT OF LATERAL PASSIVE EARTH PRESSURE IN THE CONDITION OF LINEAR MC CRITERIA

DETERMINATION OF UPPER BOUND LIMIT ANALYSIS OF THE COEFFICIENT OF LATERAL PASSIVE EARTH PRESSURE IN THE CONDITION OF LINEAR MC CRITERIA DETERMINATION OF UPPER BOUND LIMIT ANALYSIS OF THE COEFFICIENT OF LATERAL PASSIVE EARTH PRESSURE IN THE CONDITION OF LINEAR MC CRITERIA Ghasemloy Takantapeh Sasan, *Akhlaghi Tohid and Bahadori Hadi Department

More information

Calibration of Resistance Factors for Drilled Shafts for the 2010 FHWA Design Method

Calibration of Resistance Factors for Drilled Shafts for the 2010 FHWA Design Method Calibration of Resistance Factors for Drilled Shafts for the 21 FHWA Design Method Murad Y. Abu-Farsakh, Ph.D., P.E. Qiming Chen, Ph.D., P.E. Md Nafiul Haque, MS Feb 2, 213 213 Louisiana Transportation

More information

Design of Geo-Synthetic Retaining Walls as an Alternative to the Reinforced Concrete Walls in Jordan

Design of Geo-Synthetic Retaining Walls as an Alternative to the Reinforced Concrete Walls in Jordan American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-6, Issue-12, pp-301-312 www.ajer.org Research Paper Open Access Design of Geo-Synthetic Retaining Walls as an

More information

A COMPARISON OF PREDICTED BRACE LOADS IN TEMPORARY RETAINING STRUCTURES AND OBSERVED BRACE LOADS IN TWO FULL SCALE TEST SECTIONS.

A COMPARISON OF PREDICTED BRACE LOADS IN TEMPORARY RETAINING STRUCTURES AND OBSERVED BRACE LOADS IN TWO FULL SCALE TEST SECTIONS. A COMPARISON OF PREDICTED BRACE LOADS IN TEMPORARY RETAINING STRUCTURES AND OBSERVED BRACE LOADS IN TWO FULL SCALE TEST SECTIONS A Thesis Submitted to the Graduate Faculty of the University of New Orleans

More information

IAEA SAFETY STANDARDS Geotechnical Aspects of Site Evaluation and Foundations in NPPs, NS-G-3.6

IAEA SAFETY STANDARDS Geotechnical Aspects of Site Evaluation and Foundations in NPPs, NS-G-3.6 IAEA SAFETY STANDARDS Geotechnical Aspects of Site Evaluation and Foundations in NPPs, NS-G-3.6 Regional Workshop on Volcanic, Seismic, and Tsunami Hazard Assessment Related to NPP Siting Activities and

More information

Calculations. Conceptual Cofferdam. Prepared for. LAN - Austin. August Briarpark Drive Suite 400 Houston, Texas 77042

Calculations. Conceptual Cofferdam. Prepared for. LAN - Austin. August Briarpark Drive Suite 400 Houston, Texas 77042 Calculations Conceptual Cofferdam Prepared for - Austin August 0 9 Briarpark Drive Suite 00 Houston, Texas 770 Contents Cofferdam Design Report. Cofferdam Conceptual Design Summary.... Analysis Drawings...

More information

UNIT II SHALLOW FOUNDATION

UNIT II SHALLOW FOUNDATION Introduction UNIT II SHALLOW FOUNDATION A foundation is a integral part of the structure which transfer the load of the superstructure to the soil. A foundation is that member which provides support for

More information

EARTH PRESSURES ON RETAINING STRUCTURES

EARTH PRESSURES ON RETAINING STRUCTURES 12-1 12. EARTH PRESSURES ON RETAINING STRUCTURES 12.1 Active Pressure and Passive Pressure When a sudden change in level of the ground surface is to be provided for some purpose a retaining structure is

More information

Theory of Shear Strength

Theory of Shear Strength MAJ 1013 ADVANCED SOIL MECHANICS Theory of Shear Strength Prepared by, Dr. Hetty 1 Strength of different materials Steel Concrete Soil Tensile strength Compressive strength Shear strength Complex behavior

More information

Chapter (6) Geometric Design of Shallow Foundations

Chapter (6) Geometric Design of Shallow Foundations Chapter (6) Geometric Design of Shallow Foundations Introduction As we stated in Chapter 3, foundations are considered to be shallow if if [D (3 4)B]. Shallow foundations have several advantages: minimum

More information

Internal C Unit Dilatanc y

Internal C Unit Dilatanc y 2 Grimsby Sub was not at any time definitively established. The preliminary analysis provided by Thurber Engineering Ltd indicates the slope should be stable with a factor of safety of 1.23 for a deep

More information

Deep Foundations 2. Load Capacity of a Single Pile

Deep Foundations 2. Load Capacity of a Single Pile Deep Foundations 2 Load Capacity of a Single Pile All calculations of pile capacity are approximate because it is almost impossible to account for the variability of soil types and the differences in the

More information

Engineeringmanuals. Part2

Engineeringmanuals. Part2 Engineeringmanuals Part2 Engineering manuals for GEO5 programs Part 2 Chapter 1-12, refer to Engineering Manual Part 1 Chapter 13. Pile Foundations Introduction... 2 Chapter 14. Analysis of vertical load-bearing

More information

Introduction to Soil Mechanics Geotechnical Engineering

Introduction to Soil Mechanics Geotechnical Engineering Introduction to Soil Mechanics Geotechnical Engineering Dr. Attaullah Shah ground SIVA 1 Soil Mechanics= Soil+Mechanics Branch of Science dealing with the structure, Engineering properties and reactions

More information

Module 7 (Lecture 25) RETAINING WALLS

Module 7 (Lecture 25) RETAINING WALLS Module 7 (Lecture 25) RETAINING WALLS Topics Check for Bearing Capacity Failure Example Factor of Safety Against Overturning Factor of Safety Against Sliding Factor of Safety Against Bearing Capacity Failure

More information

Project: Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free Earth Support In accordance Eurocode 7.

Project: Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free Earth Support In accordance Eurocode 7. App'd by Construction Stages Name Term Objects present in this stage Stage 1 Long Wall 1 (Generated) (Generated) On retained side: Ground 1 (Generated), Borehole 1 (Generated), On excavated side: Excavation

More information

8/11/14. Sheet 1. Colonial Flag 9390 So 300 West Sandy, UT

8/11/14. Sheet 1. Colonial Flag 9390 So 300 West Sandy, UT 8/11/14 Sheet 1 990 So 00 West Sandy, UT 84070 800 78-0500 Street Banner Sign Cloth Tension Calculations for Simple Span with Uniform Loads. Sign Cloth Span Sign Cloth Length Stretched Sign Cloth Sag Sign

More information

3-BEARING CAPACITY OF SOILS

3-BEARING CAPACITY OF SOILS 3-BEARING CAPACITY OF SOILS INTRODUCTION The soil must be capable of carrying the loads from any engineered structure placed upon it without a shear failure and with the resulting settlements being tolerable

More information

Why are We Here? AASHTO LRFD Bridge Design Specifications Metal Pipe Section 12.7 Concrete Pipe Section Plastic Pipe Section 12.12

Why are We Here? AASHTO LRFD Bridge Design Specifications Metal Pipe Section 12.7 Concrete Pipe Section Plastic Pipe Section 12.12 Direct Design and Indirect Design of Concrete Pipe Part 1 Josh Beakley March 2011 Why are We Here? AASHTO LRFD Bridge Design Specifications Metal Pipe Section 12.7 Concrete Pipe Section 12.10 Plastic Pipe

More information

The theories to estimate lateral earth pressure due to a strip surcharge loading will

The theories to estimate lateral earth pressure due to a strip surcharge loading will Chapter LITERATURE REVIEW The theories to estimate lateral earth pressure due to a strip surcharge loading will be introduced in this chapter. Commonly geotechnical engineers apply the equations suggested

More information

A Study on Reliability Analysis for Reinforced Earth Retaining Walls

A Study on Reliability Analysis for Reinforced Earth Retaining Walls A Study on Reliability Analysis for Reinforced Earth Retaining Walls Byung Sik, Chun Department of Civil Engineering, Hanyang University, Seoul, Korea(Rep.) hengdang@unitel.co.kr Kyung Min, Kim Department

More information

PECivilExam.com. Copyright 2015 Pecivilexam.com all rights reserved- E-Book Geotechnical Depth Exam: 80 problems

PECivilExam.com. Copyright 2015 Pecivilexam.com all rights reserved- E-Book Geotechnical Depth Exam: 80 problems PECivilExam.com PE Civil Exam 80- Geotechnical Questions & Answers (pdf Format) For Depth Exam (Evening Session) PE Civil Depth Exam (Evening Session): This practice exam contains 80- Geotechnical questions,

More information

HKIE-GD Workshop on Foundation Engineering 7 May Shallow Foundations. Dr Limin Zhang Hong Kong University of Science and Technology

HKIE-GD Workshop on Foundation Engineering 7 May Shallow Foundations. Dr Limin Zhang Hong Kong University of Science and Technology HKIE-GD Workshop on Foundation Engineering 7 May 2011 Shallow Foundations Dr Limin Zhang Hong Kong University of Science and Technology 1 Outline Summary of design requirements Load eccentricity Bearing

More information

African Meetinghouse ACCESSING HISTORY. Richard Pizzi, P.E. Special Thanks to Rick Wilhelmsen GEOTECHNICAL CONSULTANTS, INC

African Meetinghouse ACCESSING HISTORY. Richard Pizzi, P.E. Special Thanks to Rick Wilhelmsen GEOTECHNICAL CONSULTANTS, INC African Meetinghouse ACCESSING HISTORY Richard Pizzi, P.E. Special Thanks to Rick Wilhelmsen GEOTECHNICAL CONSULTANTS, INC SOIL NAIL WALL CONSTRUCTION SOIL NAIL WALL CONSTRUCTION SOIL NAIL WALL CONSTRUCTION

More information

Chapter 4. Ultimate Bearing Capacity of Shallow Foundations. Omitted parts: Sections 4.7, 4.8, 4.13 Examples 4.8, 4.9, 4.

Chapter 4. Ultimate Bearing Capacity of Shallow Foundations. Omitted parts: Sections 4.7, 4.8, 4.13 Examples 4.8, 4.9, 4. Chapter 4 Ultimate Bearing Capacity of Shallow Foundations Omitted parts: Sections 4.7, 4.8, 4.13 Examples 4.8, 4.9, 4.12 Pages 191-194 Ultimate Bearing Capacity of Shallow Foundations To perform satisfactorily,

More information

Annex - R C Design Formulae and Data

Annex - R C Design Formulae and Data The design formulae and data provided in this Annex are for education, training and assessment purposes only. They are based on the Hong Kong Code of Practice for Structural Use of Concrete 2013 (HKCP-2013).

More information

(Refer Slide Time: 01:15)

(Refer Slide Time: 01:15) Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 56 Stability analysis of slopes II Welcome to lecture two on stability analysis of

More information

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, Alaska Department of Transportation and Public Facilities Michael Keever, California Department

More information

Influence of Relative Compaction on Passive Resistance of Abutments with Mechanically Stabilized Earth (MSE) Wingwalls

Influence of Relative Compaction on Passive Resistance of Abutments with Mechanically Stabilized Earth (MSE) Wingwalls Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2010-08-11 Influence of Relative Compaction on Passive Resistance of Abutments with Mechanically Stabilized Earth (MSE) Wingwalls

More information