Module 6 (Lecture 22) LATERAL EARTH PRESSURE

Size: px
Start display at page:

Download "Module 6 (Lecture 22) LATERAL EARTH PRESSURE"

Transcription

1 Module 6 (Lecture ) LATERAL EARTH PRESSURE 1.1 LATERAL EARTH PRESSURE DUE TO SURCHARGE 1. ACTIVE PRESSURE FOR WALL ROTATION ABOUT TOP- BRACED CUT 1.3 ACTIVE EARTH PRESSURE FOR TRANSLATION OF RETAINING WALL-GRANULAR BACKFILL

2 LATERAL EARTH PRESSURE DUE TO SURCHARGE In several instances, the theory of elasticity is used to determine the lateral earth pressure on retaining structures caused by various types of surcharge loading, such as line loading (figure 6.18a) and strip loading (figure 6.18b). Figure 6.18 Lateral earth pressure caused by (a) line load and (b) strip load According to the theory of elasticity, the stress at any depth, z, on a retaining structure caused by a line load of intensity q/ unit length (figure 6.18a) may be given as σσ = qq aa bb [6.36] ππππ (aa +bb ) Where σσ = horizontal stress at depth zz = bbbb (See figure 6.18a for explanations of the terms a and b). However, because soil is not a perfectly elastic medium, some deviations from equation (36) may be expected. The modified forms of this equation generally accepted for use with soils are as follows:

3 σσ = 4qq ππππ And σσ = qq HH aa bb (aa +bb ) 0.03bb (0.16+bb ) for aa > 0.4 [6.37] for aa 0.4 [6.38] Figure 6.18b shows a strip load with an intensity of qq/unit area located at a distance bb from a wall of height H. based on the theory of elasticity, the horizontal stress, σσ, at any depth z on a retaining structure is σσ = qq (ββ sin ββ cos αα) [6.39] ππ (The angles αα and ββ are defied in figure 6.18b). However, in the case of soils, the right-hand side of equation (39) is doubled to account for the yielding soil continuum, or σσ = qq ππ (ββ sin ββ cos αα) [6.40] The total force per unit length (P) due to the strip loading only (Jarquio, 1981) may be expressed as PP = qq 90 [HH(θθ θθ 1 )] [6.41] Where θθ 1 = tan 1 bb (deg) [6.4] HH θθ = tan 1 aa +bb (deg) [6.43] HH Example 8 Refer to figure 6.18b. Here, aa = m, bb = 1 m, qq = 40 kn/m, and HH = 6 m. Determine the total pressure on the wall caused by the strip loading only. Solution From equations (4 and 43), θθ 1 = tan 1 1 = θθ = tan = 6.7 6

4 From equation (41), PP = qq 90 [HH(θθ θθ 1 )] = 40 [6( )] = 4.63 kn/m 90 ACTIVE PRESSURE FOR WALL ROTATION ABOUT TOP-BRACED CUT In the preceding sections, we have seen that a retaining wall rotates about its bottom (figure 6.19a). With sufficient yielding of the wall, the lateral earth pressure is approximately equal to the obtained by Rankine theory of Coulomb s theory. In contrast to retaining walls, braced cuts show a different type of wall yielding (see figure 6.19b). in this case, deformation of the wall gradually increases with the depth of excavation. The variation of the amount of deformation depends on several factors, such as the type of soil, the depth of excavation, and the workmanship. However, with very little wall yielding at the top of the cut, the lateral earth pressure will be lose to the at-rest pressure. At the bottom of the wall, with a much larger degree of yielding, the lateral earth pressure will be substantially lower than the Rankine active earth pressure. As a result, the distribution of lateral earth pressure will vary substantially in comparison to the linear distribution assumed in the case of retaining walls. Figure 6.19 Nature of yielding of walls: (a) retaining wall; (b) braced cut The total lateral force per unit length of the wall, PP aa, imposed on a wall may be evaluated theoretically by using Terzaghi (1943) general wedge theory (figure 6.0). The failure surface is assumed to be the arc of a logarithmic spiral, defined as

5 Figure 6.0 Braced cut analysis by general wedge theory-wall rotation about top rr = rr oo ee θθ tan φφ [6.44] Where φφ = angle of friction of soil In figure 6.0, H is the height of the cut. The unit weight, angle of friction, and cohesion of the soil are equal to γγ, φφ, and cc, respectively. Following are the forces per unit length of the cut acting on the trial failure wedge: 1. weight of the wedge, W. resultant of the normal and shear forces along aaaa, RR 3. cohesive force along aaaa, CC 4. adhesive force along aaaa, CC aa. PP aa,which is the active force acting a distance nn aa HH from the bottom of the wall and is inclined at an angle δδ to the horizontal The adhesive force is CC aa = cc aa HH [6.4] Where cc aa = unit adhesion A detailed outline for the evaluation of PP aa is beyond the scope of this text; those interested should check a soil mechanics text for more information (for example, Das, 1998), Kim and Preber (1969) provided tabulated values of PP aa / 1 γγhh determined by using the principles of general wedge theory, and these values are given in table 8. In developing the theoretical values in table 8, it was assumed that

6 cc aa cc = tan δδ tan φφ [6.46] ACTIVE EARTH PRESSURE FOR TRANSLATION OF RETAINING WALL- GRANULAR BACKFILL Under certain circumstances, retaining walls may undergo lateral translation, as shown in figure 6.1. A solution to the distribution of active pressure for this case was provided by Dubrova (1963) and was also described by Harr (1966). The solution of Dubrova assumes the validity of Coulomb s solution [equations and 6)]. In order to understand this procedure, let us consider a vertical wall with a horizontal granular backfill (figure 6.). For rotation about the top of the wall, the resultant R of the normal and shear forces along the rupture line AAAA is inclined at an angle φφ to the normal drawn to AAAA. According to Dubrova there exists infinite number of quasi-rupture lines such as AA CC, AAC, for which the resultant force R is inclined an angle ψψ, where ψψ = φφφφ HH [6.47 Figure 6.1 Lateral translation of retaining wall

7 Figure 6. Quasi-rupture lines behind retaining wall Table 8 PP aa / 11 γγhh ] vvvvvvvvvvvv φφ, δδ, nn aa, aaaaaa cc/γγhh nn aa = 0.3 cc/γγγγ nn aa = 0.4 cc/γγγγ nn aa = 0. cc/γγγγ nn aa = 0.6 cc/γγγγ φφ, in degrees (1) δδ, in degrees () 0 (3) 0.1 (4) 0. () 0 (6) 0.1 (7) 0. (8) 0 (9) 0.1 () 0. (11) 0 (1) 0.1 (13) 0. (14)

8

9 After Kim and Preber (1969) Now, refer to equation ( and 6) for Coulomb s active pressure. For ββ = 90 and αα = 0, the relationship for Coulomb s active force can also be rewritten as PP aa = γγ HH 1 cos δδ cos ψψ +(tan ψ+tan ψψ tan δδ) 0. [6.48] The force against the wall at any z is then given as PP aa = γγ zz 1 cos δδ cos ψψ +(tan ψψ+tan ψψ tan δδ) 0. [6.49] The active pressure at any depth z for wall rotation about the top is

10 σσ aa (zz) = ddpp aa dddd γγ cos δδ zzcos ψψ 1+mm sin ψψ) zz φφ cos ψψ HH(1 mm sin ψψ) (sinψψ + mm) [6.0] Where mm = 1 + tan δδ tan ψψ 0. [6.1] For frictionless walls, δδ = 0 and equation (0) simplifies to σσ aa (zz) = γγ tan 4 ψψ zz φφzz HH cos ψψ [] For wall rotation about the bottom, a similar expression can be found in the form σσ aa (zz) = γγγγ cos φφ cos δδ 1+mm sin φφ [6.3] For translation of the wall, the active pressure can then be taken as σσ aa (zz) translation = 1 [σσ aa(zz) motion about top + σσ aa (zz) motion about bottom ] [6.4] An experimental verification of this procedure was provided by Matsuzawa and Hazarika (1996). The results were obtained from large-scale model tests and are shown in figure 6.3. The theory and experimental results show go agreement. Figure 6.3 Experimental verification of Dubrova s theory for lateral wall translation by large-scale model tests Example 9 Consider a frictionless wall 16 ft high. For the granular backfill, γγ = 1 lb/ft 3 and φφ = 36. Calculate the plot the variation of σσ aa (zz) for a translation mode of the wall movement.

11 Solution For a frictionless wall, δδ = 0. Hence, m is equal to one [equation (1)]. So for rotation about the top, from equation (), σσ aa (zz) = σσ aa(zz) = γγ tan 4 φφφφ HH zz φφzz For rotation about the bottom, from equation (3), HH cos φφφφ HH σσ aa (zz) = σσ cos φφ aa(zz) = γγγγ 1 + sin φφ σσ aa (zz) translation = σσ aa(zz) + σσ aa(zz) The following table can now be prepared with γγ = 1 lb/ft 3, φφ = 36, and HH = 16 ft. zz(ft) σσ aa(zz)(lb/ft ) σσ aa (zz)(lb/ ft ) σσ aa (zz) translation (lb /ft The plot of σσ aa (zz) versus z is shown in figure 6.4.

12 Figure.6.4

Module 6 (Lecture 23) LATERAL EARTH PRESSURE

Module 6 (Lecture 23) LATERAL EARTH PRESSURE Module 6 (Lecture 23) LATERAL EARTH PRESSURE Topics 1.1 PASSIVE PRESSURE 1.2 RANKINE PASSIVE EARTH PRESSURE 1.3 RANKINE PASSIVE EARTH PRESSURE-INCLINED BACKFILL 1.4 COULOMB S PASSIVE EARTH PRESSURE 1.5

More information

Module 7 (Lecture 25) RETAINING WALLS

Module 7 (Lecture 25) RETAINING WALLS Module 7 (Lecture 25) RETAINING WALLS Topics Check for Bearing Capacity Failure Example Factor of Safety Against Overturning Factor of Safety Against Sliding Factor of Safety Against Bearing Capacity Failure

More information

Module 7 (Lecture 27) RETAINING WALLS

Module 7 (Lecture 27) RETAINING WALLS Module 7 (Lecture 27) RETAINING WALLS Topics 1.1 RETAINING WALLS WITH METALLIC STRIP REINFORCEMENT Calculation of Active Horizontal and vertical Pressure Tie Force Factor of Safety Against Tie Failure

More information

Module 4 (Lecture 16) SHALLOW FOUNDATIONS: ALLOWABLE BEARING CAPACITY AND SETTLEMENT

Module 4 (Lecture 16) SHALLOW FOUNDATIONS: ALLOWABLE BEARING CAPACITY AND SETTLEMENT Topics Module 4 (Lecture 16) SHALLOW FOUNDATIONS: ALLOWABLE BEARING CAPACITY AND SETTLEMENT 1.1 STRIP FOUNDATION ON GRANULAR SOIL REINFORCED BY METALLIC STRIPS Mode of Failure Location of Failure Surface

More information

Topics. Module 3 Lecture 10 SHALLOW FOUNDATIONS: ULTIMATE BEARING CAPACITY NPTEL ADVANCED FOUNDATION ENGINEERING-I

Topics. Module 3 Lecture 10 SHALLOW FOUNDATIONS: ULTIMATE BEARING CAPACITY NPTEL ADVANCED FOUNDATION ENGINEERING-I Topics Module 3 Lecture 10 SHALLOW FOUNDATIONS: ULTIMATE BEARING CAPACITY 1.1 THE GENERAL BEARING CAPACITY EQUATION Bearing Capacity Factors General Comments 1.2 EFFECT OF SOIL COMPRESSIBILITY 1.3 ECCENTRICALLY

More information

Foundation Analysis LATERAL EARTH PRESSURE

Foundation Analysis LATERAL EARTH PRESSURE Foundation Analysis LATERAL EARTH PRESSURE INTRODUCTION Vertical or near-vertical slopes of soil are supported by retaining walls, cantilever sheet-pile walls, sheet-pile bulkheads, braced cuts, and other

More information

Compute the lateral force per linear foot with sloping backfill and inclined wall. Use Equation No. 51, page 93. Press ENTER.

Compute the lateral force per linear foot with sloping backfill and inclined wall. Use Equation No. 51, page 93. Press ENTER. Sample Problems Problem 5.1 A gravity retaining wall is supporting a cohesionless soil. The active lateral force per linear foot of the retaining wall is most nearly (A) 5,000 lb/ft (B) 6,000 lb/ft (C)

More information

LATERAL EARTH PRESSURE AND RETAINING STRUCTURES

LATERAL EARTH PRESSURE AND RETAINING STRUCTURES Topic Outline LATERAL EARTH PRESSURE AND RETAINING STRUCTURES Types of retaining structures Lateral earth pressure Earth pressure at rest Rankine s Theory Coulomb s Theory Cullman s graphic solution Braced

More information

Chapter 12: Lateral Earth Pressure

Chapter 12: Lateral Earth Pressure Part 4: Lateral Earth Pressure and Earth-Retaining Structures Chapter 12: Lateral Earth Pressure Introduction Vertical or near-vertical slopes of soil are supported by retaining walls, cantilever sheetpile

More information

file:///d /suhasini/suha/office/html2pdf/ _editable/slides/module%202/lecture%206/6.1/1.html[3/9/2012 4:09:25 PM]

file:///d /suhasini/suha/office/html2pdf/ _editable/slides/module%202/lecture%206/6.1/1.html[3/9/2012 4:09:25 PM] Objectives_template Objectives In this section you will learn the following Introduction Different Theories of Earth Pressure Lateral Earth Pressure For At Rest Condition Movement of the Wall Different

More information

Objectives. In this section you will learn the following. Rankine s theory. Coulomb s theory. Method of horizontal slices given by Wang (2000)

Objectives. In this section you will learn the following. Rankine s theory. Coulomb s theory. Method of horizontal slices given by Wang (2000) Objectives In this section you will learn the following Rankine s theory Coulomb s theory Method of horizontal slices given by Wang (2000) Distribution of the earth pressure Height of application of the

More information

Objectives. In this section you will learn the following. Development of Bearing Capacity Theory. Terzaghi's Bearing Capacity Theory

Objectives. In this section you will learn the following. Development of Bearing Capacity Theory. Terzaghi's Bearing Capacity Theory Objectives In this section you will learn the following Development of Bearing Capacity Theory Terzaghi's Bearing Capacity Theory Assumptions in Terzaghi s Bearing Capacity Theory. Meyerhof's Bearing Capacity

More information

UNIT V. The active earth pressure occurs when the wall moves away from the earth and reduces pressure.

UNIT V. The active earth pressure occurs when the wall moves away from the earth and reduces pressure. UNIT V 1. Define Active Earth pressure. The active earth pressure occurs when the wall moves away from the earth and reduces pressure. 2. Define Passive Earth pressure. The passive earth pressure occurs

More information

Geotechnical Parameters for Retaining Wall Design

Geotechnical Parameters for Retaining Wall Design 11 th October 2012 Geotechnical Parameters for Retaining Wall Design Tanya Kouzmin 1 Most geotechnical failures are of retaining walls Are failure caused by WRONG calculations? Not usually calculation

More information

(Lecture 18) MAT FOUNDATIONS

(Lecture 18) MAT FOUNDATIONS Module 5 (Lecture 18) MAT FOUNDATIONS Topics 1.1 FIELD SETTLEMENT OBSERVATIONS FOR MAT FOUNDATIONS 1.2 COMPENSATED FOUNDATIONS 1.3 Example FIELD SETTLEMENT OBSERVATIONS FOR MAT FOUNDATIONS Several field

More information

LATERAL EARTH PRESSURE

LATERAL EARTH PRESSURE . INTRODUCTION Retaining structures commonly used in foundation engineering, such as retaining walls, basement walls and bulkheads to support almost vertical slopes of earth masses. Proper design and construction

More information

GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE ANALYSIS AND DESIGN OF RETAINING STRUCTURES

GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE ANALYSIS AND DESIGN OF RETAINING STRUCTURES GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE 07 3.0 ANALYSIS AND DESIGN OF RETAINING STRUCTURES LEARNING OUTCOMES Learning outcomes: At the end of this lecture/week the students would be able to: Understand

More information

Earth Pressure Theory

Earth Pressure Theory Lateral Earth Pressure Page 1 Earth Pressure Theory Examples of Retaining Walls Lateral Earth Pressure Page 2 At-Rest, Active and Passive Earth Pressure Wednesday, August 17, 2011 12:45 PM At-rest condition

More information

Review for Exam Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa

Review for Exam Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa Review for Exam2 11. 13. 2015 Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa Assistant Research Scientist IIHR-Hydroscience & Engineering, University

More information

Chapter (7) Lateral Earth Pressure

Chapter (7) Lateral Earth Pressure Chapter (7) Lateral Earth Pressure Introduction Vertical or near vertical slopes of soil are supported by retaining walls, cantilever sheet-pile walls, sheet-pile bulkheads, braced cuts, and other similar

More information

Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 51 Earth Pressure Theories II

Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 51 Earth Pressure Theories II Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 51 Earth Pressure Theories II Welcome to lecture number two on earth pressure theories.

More information

FOUNDATION ENGINEERING UNIT V

FOUNDATION ENGINEERING UNIT V FOUNDATION ENGINEERING UNIT V RETAINING WALLS Plastic equilibrium in soils active and passive states Rankine s theory cohesion less and cohesive soil - Coloumb s wedge theory condition for critical failure

More information

Chapter (3) Ultimate Bearing Capacity of Shallow Foundations

Chapter (3) Ultimate Bearing Capacity of Shallow Foundations Chapter (3) Ultimate Bearing Capacity of Shallow Foundations Introduction To perform satisfactorily, shallow foundations must have two main characteristics: 1. They have to be safe against overall shear

More information

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai Geosynthetics and Reinforced Soil Structures Reinforced Soil Walls continued Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai e-mail: gopalkr@iitm.ac.inac in Outline of the Lecture

More information

EARTH PRESSURES ON RETAINING STRUCTURES

EARTH PRESSURES ON RETAINING STRUCTURES 12-1 12. EARTH PRESSURES ON RETAINING STRUCTURES 12.1 Active Pressure and Passive Pressure When a sudden change in level of the ground surface is to be provided for some purpose a retaining structure is

More information

Comparative study on earth pressure distribution behind retaining walls subjected to line loads

Comparative study on earth pressure distribution behind retaining walls subjected to line loads Scientific Research and Essays Vol. 6(11), pp. 2251-2267, 4 June, 2011 Available online at http://www.academicjournals.org/sre DOI: 1897/SRE1173 ISSN 1992-2248 2011 Academic Journals Full Length Research

More information

Active Earth Pressure on Retaining Wall Rotating About Top

Active Earth Pressure on Retaining Wall Rotating About Top INTERNATIONAL JOURNAL OF GEOLOGY Volume 9, 05 Active Earth Pressure on Retaining Wall Rotating About Top Ahad Ouria and Sajjad Sepehr Abstract Traditional methods for calculation of lateral earth pressure

More information

TECHNICAL NOTE AUTOMATIC GENERATION OF POINT SPRING SUPPORTS BASED ON DEFINED SOIL PROFILES AND COLUMN-FOOTING PROPERTIES

TECHNICAL NOTE AUTOMATIC GENERATION OF POINT SPRING SUPPORTS BASED ON DEFINED SOIL PROFILES AND COLUMN-FOOTING PROPERTIES COMPUTERS AND STRUCTURES, INC., FEBRUARY 2016 TECHNICAL NOTE AUTOMATIC GENERATION OF POINT SPRING SUPPORTS BASED ON DEFINED SOIL PROFILES AND COLUMN-FOOTING PROPERTIES Introduction This technical note

More information

Chapter 4. Ultimate Bearing Capacity of Shallow Foundations. Omitted parts: Sections 4.7, 4.8, 4.13 Examples 4.8, 4.9, 4.

Chapter 4. Ultimate Bearing Capacity of Shallow Foundations. Omitted parts: Sections 4.7, 4.8, 4.13 Examples 4.8, 4.9, 4. Chapter 4 Ultimate Bearing Capacity of Shallow Foundations Omitted parts: Sections 4.7, 4.8, 4.13 Examples 4.8, 4.9, 4.12 Pages 191-194 Ultimate Bearing Capacity of Shallow Foundations To perform satisfactorily,

More information

Module 6: Stresses around underground openings. 6.2 STRESSES AROUND UNDERGROUND OPENING contd.

Module 6: Stresses around underground openings. 6.2 STRESSES AROUND UNDERGROUND OPENING contd. LECTURE 0 6. STRESSES AROUND UNDERGROUND OPENING contd. CASE : When σ x = 0 For σ x = 0, the maximum tangential stress is three times the applied stress and occurs at the boundary on the X-axis that is

More information

Variations. ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra

Variations. ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra Variations ECE 6540, Lecture 02 Multivariate Random Variables & Linear Algebra Last Time Probability Density Functions Normal Distribution Expectation / Expectation of a function Independence Uncorrelated

More information

Foundations with D f equal to 3 to 4 times the width may be defined as shallow foundations. TWO MAIN CHARACTERISTICS ULTIMATE BEARING CAPACITY

Foundations with D f equal to 3 to 4 times the width may be defined as shallow foundations. TWO MAIN CHARACTERISTICS ULTIMATE BEARING CAPACITY oundation Analysis oundations with D f eual to 3 to 4 times the width may be defined as shallow foundations. TWO MAI CHARACTERISTICS o Safe against overall shear failure o Cannot undergo excessive displacement,

More information

(2) Orbital angular momentum

(2) Orbital angular momentum (2) Orbital angular momentum Consider SS = 0 and LL = rr pp, where pp is the canonical momentum Note: SS and LL are generators for different parts of the wave function. Note: from AA BB ii = εε iiiiii

More information

Chapter (4) Ultimate Bearing Capacity of Shallow Foundations (Special Cases)

Chapter (4) Ultimate Bearing Capacity of Shallow Foundations (Special Cases) Chapter (4) Ultimate earing Capacity of Shallow Foundations (Special Cases) Ultimate.C. of Shallow Foundations (Special Cases) Introduction The ultimate bearing capacity theories discussed in Chapter 3

More information

Passive Force on Retaining Wall Supporting Φ Backfill Considering Curvilinear Rupture Surface

Passive Force on Retaining Wall Supporting Φ Backfill Considering Curvilinear Rupture Surface International Journal of Engineering Inventions ISSN: 2278-7461, ISBN: 2319-6491, www.ijeijournal.com Volume 1, Issue 10 (November2012) PP: 35-42 Passive Force on Retaining Wall Supporting Φ Backfill Considering

More information

Transient Analysis on Infiltration and Stability for Unsaturated Soils in Busan Landslide Area

Transient Analysis on Infiltration and Stability for Unsaturated Soils in Busan Landslide Area Transient Analysis on Infiltration and Stability for Unsaturated Soils in Busan Landslide Area FAUZI ACHMAD ZAKY, SEBOONG OH Department of Civil Engineering Yeungnam University 8 Daehak-Ro, Gyeongsan,

More information

ANCHORED WALL DESIGN: COMPARING THE GLOBAL AND PARTIAL FACTORS OF SAFETY INCORPORATING THE AUSTRALIAN STANDARDS.

ANCHORED WALL DESIGN: COMPARING THE GLOBAL AND PARTIAL FACTORS OF SAFETY INCORPORATING THE AUSTRALIAN STANDARDS. Discussion on ANCHORED WALL DESIGN: COMPARING THE GLOBAL AND PARTIAL FACTORS OF SAFETY INCORPORATING THE AUSTRALIAN STANDARDS. Int. J. of GEOMATE, Sept., 2015, Vol 9, No. 1 (S1. No. 17), pp. 1395-1402.

More information

Mathematics Ext 2. HSC 2014 Solutions. Suite 403, 410 Elizabeth St, Surry Hills NSW 2010 keystoneeducation.com.

Mathematics Ext 2. HSC 2014 Solutions. Suite 403, 410 Elizabeth St, Surry Hills NSW 2010 keystoneeducation.com. Mathematics Ext HSC 4 Solutions Suite 43, 4 Elizabeth St, Surry Hills NSW info@keystoneeducation.com.au keystoneeducation.com.au Mathematics Extension : HSC 4 Solutions Contents Multiple Choice... 3 Question...

More information

Active Force on Retaining Wall Supporting Φ Backfill Considering Curvilinear Rupture Surface

Active Force on Retaining Wall Supporting Φ Backfill Considering Curvilinear Rupture Surface Cloud Publications International Journal of Advanced Civil Engineering and Architecture Research 2012, Volume 1, Issue 1, pp. 6-15, Article ID Tech-30 Research Article Open Access Active Force on Retaining

More information

Heat, Work, and the First Law of Thermodynamics. Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition

Heat, Work, and the First Law of Thermodynamics. Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition Heat, Work, and the First Law of Thermodynamics Chapter 18 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 Different ways to increase the internal energy of system: 2 Joule s apparatus

More information

CHAPTER 4 Structure of the Atom

CHAPTER 4 Structure of the Atom CHAPTER 4 Structure of the Atom Fall 2018 Prof. Sergio B. Mendes 1 Topics 4.1 The Atomic Models of Thomson and Rutherford 4.2 Rutherford Scattering 4.3 The Classic Atomic Model 4.4 The Bohr Model of the

More information

Angular Momentum, Electromagnetic Waves

Angular Momentum, Electromagnetic Waves Angular Momentum, Electromagnetic Waves Lecture33: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay As before, we keep in view the four Maxwell s equations for all our discussions.

More information

Laterally Loaded Piles. Rocscience 2018

Laterally Loaded Piles. Rocscience 2018 Laterally Loaded Piles Rocscience 2018 Contents 1 Soil Response Modelled by p-y Curves... 3 2 Governing Differential Equation... 4 3 Finite Element Method... 5 4 Pile Bending Stiffness... 5 5 Soil Models...

More information

1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION 1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION

1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION 1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION Module 6 Lecture 40 Evaluation of Soil Settlement - 6 Topics 1.5 STRESS-PATH METHOD OF SETTLEMENT CALCULATION 1.5.1 Definition of Stress Path 1.5. Stress and Strain Path for Consolidated Undrained Undrained

More information

Integrating Rational functions by the Method of Partial fraction Decomposition. Antony L. Foster

Integrating Rational functions by the Method of Partial fraction Decomposition. Antony L. Foster Integrating Rational functions by the Method of Partial fraction Decomposition By Antony L. Foster At times, especially in calculus, it is necessary, it is necessary to express a fraction as the sum of

More information

Sample Chapter HELICAL ANCHORS IN SAND 6.1 INTRODUCTION

Sample Chapter HELICAL ANCHORS IN SAND 6.1 INTRODUCTION 6 ELICAL ANCORS IN SAN At the present time, limited studies on helical anchors are available, the results of which can be used to estimate their ultimate uplift capacity. In many instances, the ultimate

More information

LECTURE 28. Module 8 : Rock slope stability 8.3 WEDGE FAILURE

LECTURE 28. Module 8 : Rock slope stability 8.3 WEDGE FAILURE LECTURE 28 8.3 WEDGE FAILURE When two or more weak planes in the slope intersect to from a wedge, the slope may fail as wedge failure. The basic condition at which wedge mode of slope failure happens are

More information

Module 9 : Foundation on rocks

Module 9 : Foundation on rocks LECTURE 32 9.3 BEARING CAPCITY contd... 9.3.2 Safe bearing pressure There are different methods are available to determine the safe bearing pressure on rocks. However, the applicability of different methods

More information

Foundation Engineering Prof. Dr. N. K. Samadhiya Department of Civil Engineering Indian Institute of Technology Roorkee

Foundation Engineering Prof. Dr. N. K. Samadhiya Department of Civil Engineering Indian Institute of Technology Roorkee Foundation Engineering Prof. Dr. N. K. Samadhiya Department of Civil Engineering Indian Institute of Technology Roorkee Module - 01 Lecture - 01 Shallow Foundation (Refer Slide Time: 00:19) Good morning.

More information

SHEET PILE WALLS. Mehdi Mokhberi Islamic Azad University

SHEET PILE WALLS. Mehdi Mokhberi Islamic Azad University SHEET PILE WALLS Mehdi Mokhberi Islamic Azad University Lateral Support In geotechnical engineering, it is often necessary to prevent lateral soil movements. Tie rod Anchor Sheet pile Cantilever retaining

More information

PRINCIPLES OF GEOTECHNICAL ENGINEERING

PRINCIPLES OF GEOTECHNICAL ENGINEERING PRINCIPLES OF GEOTECHNICAL ENGINEERING Fourth Edition BRAJA M. DAS California State University, Sacramento I(T)P Boston Albany Bonn Cincinnati London Madrid Melbourne Mexico City New York Paris San Francisco

More information

D1. A normally consolidated clay has the following void ratio e versus effective stress σ relationship obtained in an oedometer test.

D1. A normally consolidated clay has the following void ratio e versus effective stress σ relationship obtained in an oedometer test. (d) COMPRESSIBILITY AND CONSOLIDATION D1. A normally consolidated clay has the following void ratio e versus effective stress σ relationship obtained in an oedometer test. (a) Plot the e - σ curve. (b)

More information

The Elasticity of Quantum Spacetime Fabric. Viorel Laurentiu Cartas

The Elasticity of Quantum Spacetime Fabric. Viorel Laurentiu Cartas The Elasticity of Quantum Spacetime Fabric Viorel Laurentiu Cartas The notion of gravitational force is replaced by the curvature of the spacetime fabric. The mass tells to spacetime how to curve and the

More information

Review for Exam Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa

Review for Exam Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa Review for Exam3 12. 9. 2015 Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa Assistant Research Scientist IIHR-Hydroscience & Engineering, University

More information

Recent Research on EPS Geofoam Seismic Buffers. Richard J. Bathurst and Saman Zarnani GeoEngineering Centre at Queen s-rmc Canada

Recent Research on EPS Geofoam Seismic Buffers. Richard J. Bathurst and Saman Zarnani GeoEngineering Centre at Queen s-rmc Canada Recent Research on EPS Geofoam Seismic Buffers Richard J. Bathurst and Saman Zarnani GeoEngineering Centre at Queen s-rmc Canada What is a wall (SEISMIC) buffer? A compressible inclusion placed between

More information

Quantitative Understanding in Biology Module III: Linear Difference Equations Lecture II: Complex Eigenvalues

Quantitative Understanding in Biology Module III: Linear Difference Equations Lecture II: Complex Eigenvalues Quantitative Understanding in Biology Module III: Linear Difference Equations Lecture II: Complex Eigenvalues Introduction In the previous section, we considered the generalized twovariable system of linear

More information

PHY103A: Lecture # 9

PHY103A: Lecture # 9 Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 9 (Text Book: Intro to Electrodynamics by Griffiths, 3 rd Ed.) Anand Kumar Jha 20-Jan-2018 Summary of Lecture # 8: Force per unit

More information

Case Study Number 2: Pressure of Strip Load on Retaining Wall - Verifying Jarquio s Solution

Case Study Number 2: Pressure of Strip Load on Retaining Wall - Verifying Jarquio s Solution nesse@mindspring.com pg. 1 of 8 Case Study Number : Pressure of Strip Load on Retaining Wall - Verifying Jarquio s Solution Introduction At a retaining wall site along new construction on Highway 1 in

More information

ON A CONTINUED FRACTION IDENTITY FROM RAMANUJAN S NOTEBOOK

ON A CONTINUED FRACTION IDENTITY FROM RAMANUJAN S NOTEBOOK Asian Journal of Current Engineering and Maths 3: (04) 39-399. Contents lists available at www.innovativejournal.in ASIAN JOURNAL OF CURRENT ENGINEERING AND MATHS Journal homepage: http://www.innovativejournal.in/index.php/ajcem

More information

BHASVIC MαTHS. Skills 1

BHASVIC MαTHS. Skills 1 PART A: Integrate the following functions with respect to x: (a) cos 2 2xx (b) tan 2 xx (c) (d) 2 PART B: Find: (a) (b) (c) xx 1 2 cosec 2 2xx 2 cot 2xx (d) 2cccccccccc2 2xx 2 ccccccccc 5 dddd Skills 1

More information

The theories to estimate lateral earth pressure due to a strip surcharge loading will

The theories to estimate lateral earth pressure due to a strip surcharge loading will Chapter LITERATURE REVIEW The theories to estimate lateral earth pressure due to a strip surcharge loading will be introduced in this chapter. Commonly geotechnical engineers apply the equations suggested

More information

NUMERICAL ANALYSIS OF PASSIVE EARTH PRESSURES WITH INTERFACES

NUMERICAL ANALYSIS OF PASSIVE EARTH PRESSURES WITH INTERFACES III European Conference on Computational Mechanics Solids, Structures and Coupled Problems in Engineering C.A. Mota Soares et.al. (eds.) Lisbon, Portugal, 5-8 June 2006 NUMERICAL ANALYSIS OF PASSIVE EARTH

More information

2017 Soil Mechanics II and Exercises Final Exam. 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room

2017 Soil Mechanics II and Exercises Final Exam. 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room 2017 Soil Mechanics II and Exercises Final Exam 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room Attention: The exam consists of five questions for which you are provided with five answer sheets. Write

More information

(1) Introduction: a new basis set

(1) Introduction: a new basis set () Introduction: a new basis set In scattering, we are solving the S eq. for arbitrary VV in integral form We look for solutions to unbound states: certain boundary conditions (EE > 0, plane and spherical

More information

Chapter 10: Adapting Graphical Coulomb Methods to Numerical Solutions By Karl Hanson, S.E., P.E.* August 2012

Chapter 10: Adapting Graphical Coulomb Methods to Numerical Solutions By Karl Hanson, S.E., P.E.* August 2012 Chapter 10: Adapting Graphical Coulomb Methods to Numerical Solutions By Karl Hanson, S.E., P.E.* August 2012 10.1 Introduction: Many of the design approaches that we use today to design walls, foundations

More information

Elastic light scattering

Elastic light scattering Elastic light scattering 1. Introduction Elastic light scattering in quantum mechanics Elastic scattering is described in quantum mechanics by the Kramers Heisenberg formula for the differential cross

More information

Estimation of the Passive Earth Pressure with Inclined Cohesive Backfills: the Effect of Intermediate Principal Stress is Considered

Estimation of the Passive Earth Pressure with Inclined Cohesive Backfills: the Effect of Intermediate Principal Stress is Considered 108 The Open Mechanical Engineering Journal, 011, 5, 108-116 Open Access Estimation of the Passive Earth Pressure with Inclined Cohesive Backfills: the Effect of Intermediate Principal Stress is Considered

More information

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses.

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.2. Some soils show a peak shear strength. Why and what type(s)

More information

Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 25 mm

Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 25 mm 444 Chapter : Shear Strength of Soil Example. Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 5 mm Normal Shear force

More information

DETERMINATION OF UPPER BOUND LIMIT ANALYSIS OF THE COEFFICIENT OF LATERAL PASSIVE EARTH PRESSURE IN THE CONDITION OF LINEAR MC CRITERIA

DETERMINATION OF UPPER BOUND LIMIT ANALYSIS OF THE COEFFICIENT OF LATERAL PASSIVE EARTH PRESSURE IN THE CONDITION OF LINEAR MC CRITERIA DETERMINATION OF UPPER BOUND LIMIT ANALYSIS OF THE COEFFICIENT OF LATERAL PASSIVE EARTH PRESSURE IN THE CONDITION OF LINEAR MC CRITERIA Ghasemloy Takantapeh Sasan, *Akhlaghi Tohid and Bahadori Hadi Department

More information

International Journal of Mathematical Archive-5(3), 2014, Available online through ISSN

International Journal of Mathematical Archive-5(3), 2014, Available online through   ISSN International Journal of Mathematical Archive-5(3), 214, 189-195 Available online through www.ijma.info ISSN 2229 546 COMMON FIXED POINT THEOREMS FOR OCCASIONALLY WEAKLY COMPATIBLE MAPPINGS IN INTUITIONISTIC

More information

Photon Interactions in Matter

Photon Interactions in Matter Radiation Dosimetry Attix 7 Photon Interactions in Matter Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University References F. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry,

More information

Quantum Mechanics. An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc.

Quantum Mechanics. An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc. Quantum Mechanics An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc. Fall 2018 Prof. Sergio B. Mendes 1 CHAPTER 3 Experimental Basis of

More information

At-Rest to Active Earth Pressure Transition

At-Rest to Active Earth Pressure Transition TRANSPORTATION RESEARCH RECORD 115 41 At-Rest to Active Earth Pressure Transition S. BANG AND H. T. KIM An approximate analytical procedure Is described to estimate the developed lateral earth pressures

More information

10.4 The Cross Product

10.4 The Cross Product Math 172 Chapter 10B notes Page 1 of 9 10.4 The Cross Product The cross product, or vector product, is defined in 3 dimensions only. Let aa = aa 1, aa 2, aa 3 bb = bb 1, bb 2, bb 3 then aa bb = aa 2 bb

More information

SHEAR STRENGTH OF SOIL. Chapter 10: Sections Chapter 12: All sections except

SHEAR STRENGTH OF SOIL. Chapter 10: Sections Chapter 12: All sections except SHEAR STRENGTH OF SOIL Chapter 10: Sections 10. 10.3 Chapter 1: All sections ecept 1.13 1.14 1.15 1.17 1.18 TOPICS Introduction Components of Shear Strength of Soils Normal and Shear Stresses on a Plane

More information

A SHEAR-LAG ANALYSIS OF STRESS TRANSFER THROUGH A COHESIVE FIBRE-MATRIX INTERFACE

A SHEAR-LAG ANALYSIS OF STRESS TRANSFER THROUGH A COHESIVE FIBRE-MATRIX INTERFACE 2 st International Conference on Composite Materials Xi an, 20-25 th August 207 A SHEAR-LAG ANALYSIS OF STRESS TRANSFER THROUGH A COHESIVE FIBRE-MATRIX INTERFACE Zuorong Chen and Wenyi Yan 2 CSIRO Energy

More information

Estimate by the L 2 Norm of a Parameter Poisson Intensity Discontinuous

Estimate by the L 2 Norm of a Parameter Poisson Intensity Discontinuous Research Journal of Mathematics and Statistics 6: -5, 24 ISSN: 242-224, e-issn: 24-755 Maxwell Scientific Organization, 24 Submied: September 8, 23 Accepted: November 23, 23 Published: February 25, 24

More information

Ch 4a Stress, Strain and Shearing

Ch 4a Stress, Strain and Shearing Ch. 4a - Stress, Strain, Shearing Page 1 Ch 4a Stress, Strain and Shearing Reading Assignment Ch. 4a Lecture Notes Sections 4.1-4.3 (Salgado) Other Materials Handout 4 Homework Assignment 3 Problems 4-13,

More information

Mechanical Behaviors of Cylindrical Retaining Structures in Ultra-deep Excavation

Mechanical Behaviors of Cylindrical Retaining Structures in Ultra-deep Excavation Mechanical Behaviors of Cylindrical Retaining Structures in Ultra-deep Excavation Pengfei Xu Tongji University August 4, 2015 Outline Introduction Two circular excavations for anchorage foundations 3D

More information

Lecture No. 5. For all weighted residual methods. For all (Bubnov) Galerkin methods. Summary of Conventional Galerkin Method

Lecture No. 5. For all weighted residual methods. For all (Bubnov) Galerkin methods. Summary of Conventional Galerkin Method Lecture No. 5 LL(uu) pp(xx) = 0 in ΩΩ SS EE (uu) = gg EE on ΓΓ EE SS NN (uu) = gg NN on ΓΓ NN For all weighted residual methods NN uu aaaaaa = uu BB + αα ii φφ ii For all (Bubnov) Galerkin methods ii=1

More information

Seismic Analysis of Retaining Structures. Nanjundaswamy P. Department of Civil Engineering S J College of Engineering, Mysore

Seismic Analysis of Retaining Structures. Nanjundaswamy P. Department of Civil Engineering S J College of Engineering, Mysore Seismic Analysis of Retaining Structures Nanjundaswamy P. Department of Civil Engineering S J College of Engineering, Mysore pnswamy@yahoo.com Retaining Walls Retaining Walls. Where? Retaining Walls. Road

More information

Quantum state measurement

Quantum state measurement Quantum state measurement Introduction The rotation properties of light fields of spin are described by the 3 3 representation of the 0 0 SO(3) group, with the generators JJ ii we found in class, for instance

More information

vulcanhammer.net This document downloaded from

vulcanhammer.net This document downloaded from This document downloaded from vulcanhammer.net since 1997, your source for engineering information for the deep foundation and marine construction industries, and the historical site for Vulcan Iron Works

More information

AB Engineering Manual

AB Engineering Manual AB Engineering Manual Allan Block Retaining Walls This manual presents the techniques used by Allan Block in our engineering practice to design retaining walls. It is not intended as a textbook of soil

More information

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I 1 5.1 X-Ray Scattering 5.2 De Broglie Waves 5.3 Electron Scattering 5.4 Wave Motion 5.5 Waves or Particles 5.6 Uncertainty Principle Topics 5.7

More information

Dressing up for length gauge: Aspects of a debate in quantum optics

Dressing up for length gauge: Aspects of a debate in quantum optics Dressing up for length gauge: Aspects of a debate in quantum optics Rainer Dick Department of Physics & Engineering Physics University of Saskatchewan rainer.dick@usask.ca 1 Agenda: Attosecond spectroscopy

More information

Lateral Earth Pressure

Lateral Earth Pressure 1 of 11 6/2/2012 4:28 AM Lateral Earth Pressure The magnitude of lateral earth pressure depends on: 1. Shear strength characteristics of soil 2. Lateral strain condition 3. Pore water pressure 4. State

More information

14- Hardening Soil Model with Small Strain Stiffness - PLAXIS

14- Hardening Soil Model with Small Strain Stiffness - PLAXIS 14- Hardening Soil Model with Small Strain Stiffness - PLAXIS This model is the Hardening Soil Model with Small Strain Stiffness as presented in PLAXIS. The model is developed using the user-defined material

More information

SECTION 7: FAULT ANALYSIS. ESE 470 Energy Distribution Systems

SECTION 7: FAULT ANALYSIS. ESE 470 Energy Distribution Systems SECTION 7: FAULT ANALYSIS ESE 470 Energy Distribution Systems 2 Introduction Power System Faults 3 Faults in three-phase power systems are short circuits Line-to-ground Line-to-line Result in the flow

More information

MATHEMATICAL MODEL OF ULTRASOUND TRANSMISSION IN GRADIENT MATERIALS SYNTHESIZED IN ARC SURFACING UNDER CONTACT LOADING

MATHEMATICAL MODEL OF ULTRASOUND TRANSMISSION IN GRADIENT MATERIALS SYNTHESIZED IN ARC SURFACING UNDER CONTACT LOADING Materials Physics and Mechanics 32 (207) 86-93 Received: May 7, 207 MATHEMATICAL MODEL OF ULTRASOUND TRANSMISSION IN GRADIENT MATERIALS SYNTHESIZED IN ARC SURFACING UNDER CONTACT LOADING V.D. Sarychev,

More information

ECE 6540, Lecture 06 Sufficient Statistics & Complete Statistics Variations

ECE 6540, Lecture 06 Sufficient Statistics & Complete Statistics Variations ECE 6540, Lecture 06 Sufficient Statistics & Complete Statistics Variations Last Time Minimum Variance Unbiased Estimators Sufficient Statistics Proving t = T(x) is sufficient Neyman-Fischer Factorization

More information

9.13 Fixed Earth-Support Method for Penetration into Sandy Soil

9.13 Fixed Earth-Support Method for Penetration into Sandy Soil 476 Chapter 9: Sheet Pile Walls 9.13 Fixed Earth-Support Method for Penetration into y Soil When using the fixed earth support method, we assume that the toe of the pile is restrained from rotating, as

More information

(Refer Slide Time: 01:15)

(Refer Slide Time: 01:15) Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 56 Stability analysis of slopes II Welcome to lecture two on stability analysis of

More information

EAS 664/4 Principle Structural Design

EAS 664/4 Principle Structural Design UNIVERSITI SAINS MALAYSIA 1 st. Semester Examination 2004/2005 Academic Session October 2004 EAS 664/4 Principle Structural Design Time : 3 hours Instruction to candidates: 1. Ensure that this paper contains

More information

Acceleration due to Gravity

Acceleration due to Gravity 1. Object Acceleration due to Gravity To determine the acceleration due to gravity by different methods. 2. Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

More information

Specialist Mathematics 2019 v1.2

Specialist Mathematics 2019 v1.2 Examination (15%) This sample has been compiled by the QCAA to assist and support teachers in planning and developing assessment instruments for individual school settings. The examination must ensure

More information

SECTION 8: ROOT-LOCUS ANALYSIS. ESE 499 Feedback Control Systems

SECTION 8: ROOT-LOCUS ANALYSIS. ESE 499 Feedback Control Systems SECTION 8: ROOT-LOCUS ANALYSIS ESE 499 Feedback Control Systems 2 Introduction Introduction 3 Consider a general feedback system: Closed-loop transfer function is KKKK ss TT ss = 1 + KKKK ss HH ss GG ss

More information

Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto, Japan.

Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto, Japan. On relationship between contact surface rigidity and harmonic generation behavior in composite materials with mechanical nonlinearity at fiber-matrix interface (Singapore November 2017) N. Matsuda, K.

More information

Fermi Surfaces and their Geometries

Fermi Surfaces and their Geometries Fermi Surfaces and their Geometries Didier Ndengeyintwali Physics Department, Drexel University, Philadelphia, Pennsylvania 19104, USA (Dated: May 17, 2010) 1. Introduction The Pauli exclusion principle

More information