CAPACITY ESTIMATES AND GENERAL ARRANGEMENT

Size: px
Start display at page:

Download "CAPACITY ESTIMATES AND GENERAL ARRANGEMENT"

Transcription

1 CAPACITY ESTIMATES AND GENERAL ARRANGEMENT This will verify that sufficient space is available for the amount of cargo to be carried. For capacity ships, it is a primary factor and may be a starting point in the design. It also determines the distribution of weight and hence the LCG and KG. Before detailed capacity estimate can be performed, a preliminary general arrangement (G.A) must be prepared. Preliminary Volume Coefficient This coefficient could be used to check volume, given main dimensions of a dead weight carrier, or as a starting point to estimate main dimensions on a capacity ship. PVC CARGO VOLUME L x Bx D x (CB 0.09) Assumes similar basis ship and also same stowage factor. The coefficient will vary with size and speed in a similar way to the DWT/ ratio. A slightly improved estimate can be made if the gross volume of the basis is known, measured between the peak bulkheads and from inner bottom to uppermost continuous deck. This can be adjusted for differences in fullness, sheer, camber, double bottom depth, engine room length. Fullness should be compared at 0.8D to relate it to depth rather than draught. This can be estimated from CB as will be described later, or a figure of (CB ) can be used. Double bottom depth, sheer and camber are allowed for by calculating a mean cargo depth, which is: Moulded depth to upper deck, D - depth of double bottom, d DB + half maximum deck camber, camber/ + mean sheer The mean sheer is given by: Sa = sheer aft ; Sa 6 Sf 4.5 x 5.0 Sf = sheer forward and the last factor allows for sheer only between stations and 9 Mean shear = 0.35 (Sa + Sf) Week 7-

2 Corrected depth, Dc = D ddb + Camber (Sa + Sf) Length and breadth can be allowed for directly and a volume correction factor can be calculated as: Vol vactor = * * * L x B x Dc x( C L x B x D x( C c * B B 0.09) 0.09) This factor is applied to the basis ship gross volume to give an estimate of that for the proposed. From this, deduct all spaces, not available for cargo, i) Main machinery spaces ii) Shaft tunnel iii) Fuel tanks iv) Ballast only spaces v) Machinery casings vi) Store rooms etc. An approximation to the total volume of machinery spaces (engine room, tunnel, casings, fuel tanks) is given by:- Vm = CxSP 0.77 Where C is obtained from basis ship. From the total, about 70% will represent the machinery space proper (between machinery bulkheads and under nd deck) so that the distance between machinery bulkheads for midship machinery will be approximately: LER = 0.7xCxSP B D d 0.77 DB ( m) Example: Basis ship: Carries 790 m 3 of general cargo storage factor.56 L = 0.0m B = 7.50m T = 7.4m Du = 0.50m CB = Vm 0.7 = LER x Bx(D ddb) and Vm 0.7 = 0.7 x C x SP 0.77 Week 7-

3 New ship: L = 6.3m B = 7.0m Du = 0.00m (depth to upper deck) Cb = Overall volume coeff. is given by :- Vc = C x L x B x D x [CB ] C = 790/(0 x 7.5 x 0.5 x 0.77) = *Vc = x 6.3 x 7.0 x 0.00 x (0.783) = 633 m 3 Additional information Basis New Length between peaks, LBP Shaft Power (kw) Engine room length, LER Depth of Double Bottom, ddb Sheer aft.6. Sheer ford.5.44 Camber at upper deck Second estimate: Vc = K x L x B x Dc x (CB ) Where: L is length of cargo spaces Dc is mean cargo depth L = Length LBP between peaks - LER Dc = D ddb (Sa + Sf) + (camber/) For basis, 790 = K x ( ) x 7.5 x ( (.6 +.5) / ) x 0.77 K =.378 For New Design, *Vc =.378 x (03.5.9) x 7.0 x (0.35(. +.44) )x0.783 = 664 m 3 Week 7-3

4 The Use of General Arrangement in Capacity Estimates The method of estimating cargo volume has already been given. Now an estimation of volume for each cargo compartment has to be found. To do so, an early GA has to be made available. The G.A. should show the following:- Main bulkheads Decks Machinery space Shear Extent of superstructure Etc. The G.A is important for the following purposes:- a) First graphical description for discussion b) Allows estimates of all volumes to ensure they are adequate c) Allows estimated of KG d) Allows estimates of LCG can find LCB for powering The estimates should include a number of conditions:- a) Full load departure b) Full load arrival c) Ballast departure d) Ballast arrival e) Special conditions [eg. At half load] For each condition trim, stability and strength has to be estimated. Considerations in determining the G.A: a) Position of machinery usually either aft or amidships. Aft machinery allows efficient cargo stowage for cargo ships, containers etc. b) Height of double bottom Determines by classification society regulations and requirement of greater storage of water ballast and fuel. c) Cargo accesses Depends on type of ship This is in terms of positioning hatches, cargo handling gears and hold capacity or shape. d) Bulkhead location define by classification society. Consideration for damage stability which depends on ship length. e) No. of decks determine by variety of cargoes or types and freeboard regulations. Week 7-4

5 f) Wing tanks for ballast and stability. g) Framing system transverse or longitudinal system of framing Affect cargo stowage. h) Accommodation depending on number of officers and crew members required. Estimating Cargo Hold Capacities and Centres If a basis ship G.A. is available, an estimate of cargo hold capacities and centres can be found provided the G.A. is similar to basis ship G.A. The following procedure can be adopted: a) Identify the positions of bulkheads, cargo holds with respect to length of the ship. b) Relate the positions on curve of cross section area of cargo sections and kg of cargo sections. For G.A. of new ship:- a) Transform values read from curve to appropriate positions on new ship. The positions of bulkheads and cargo holds between basis and new ship is found by graphical manner [Linear]. AP,AP* Posn. Of bulkhead x Basis Ship FP X * New Ship FP* Relationship : L * x* x. length from AP L Week 7-5

6 b) Do numerical integrations Ord. Area sm f(v) kg f(mt) lever f(ma) a b c d Cargo space length = 5.40m Volume* = x7.86 x x73.58x x8.35 = 4.5m 3 kg* = x m LCG* = x 6.87m Week 7-6

7 Basis (m) New (m) Length Breadth D c d DB Week 7-7

Longitudinal strength standard

Longitudinal strength standard (1989) (Rev. 1 199) (Rev. Nov. 001) Longitudinal strength standard.1 Application This requirement applies only to steel ships of length 90 m and greater in unrestricted service. For ships having one or

More information

RULES FOR THE CONSTRUCTION AND CLASSIFICATION OF SHIPS IDENTIFIED BY THEIR MISSIONS DREDGERS AND MUD BARGES CHAPTERS CHAPTERS SCOPE

RULES FOR THE CONSTRUCTION AND CLASSIFICATION OF SHIPS IDENTIFIED BY THEIR MISSIONS DREDGERS AND MUD BARGES CHAPTERS CHAPTERS SCOPE PARTE II RULES FOR THE CONSTRUCTION AND CLASSIFICATION OF SHIPS IDENTIFIED BY THEIR MISSIONS TÍTULO 43 DREDGERS AND MUD BARGES SECTION 2 STRUCTURE CHAPTERS SECTION 2 STRUCTURE CHAPTERS A B C SCOPE DOCUMENTS,

More information

Corrigenda 1 to 01 January 2017 version

Corrigenda 1 to 01 January 2017 version Common Structural Rules for Bulk Carriers and Oil Tankers Corrigenda 1 to 01 January 2017 version Note: This Corrigenda enters into force on 1 st July 2017. Copyright in these Common Structural Rules is

More information

DRAFT REGULATIONS TONNAGE MEASUREMENT OF SHIPS ORGANISATION FOR COMMUNICATIONS AND TRANSIT LEAGUE OF NATIONS

DRAFT REGULATIONS TONNAGE MEASUREMENT OF SHIPS ORGANISATION FOR COMMUNICATIONS AND TRANSIT LEAGUE OF NATIONS [Distributedto the Council and the Members of the League.] Official No.: C. 176. M. 65. I9 3 1. V III. Geneva, October 1931. LEAGUE OF NATIONS ORGANISATION FOR COMMUNICATIONS AND TRANSIT DRAFT REGULATIONS

More information

HULL STRUCTURAL DESIGN SHIPS WITH LENGTH LESS THAN 100 METRES

HULL STRUCTURAL DESIGN SHIPS WITH LENGTH LESS THAN 100 METRES RULES FOR CLASSIFICATION OF SHIPS NEWBUILDINGS HULL AND EQUIPMENT MAIN CLASS PART 3 CHAPTER 2 HULL STRUCTURAL DESIGN SHIPS WITH LENGTH LESS THAN 100 METRES JANUARY 2003 This booklet includes the relevant

More information

INTERNATIONAL ASSOCIATION OF CLASSIFICATION SOCIETIES. Requirements concerning STRENGTH OF SHIPS

INTERNATIONAL ASSOCIATION OF CLASSIFICATION SOCIETIES. Requirements concerning STRENGTH OF SHIPS INTERNATIONAL ASSOCIATION OF CLASSIFICATION SOCIETIES Requirements concerning STRENGTH OF SHIPS IACS Req. 007 CONTENTS Contents, Page 1 S1 Requirements for Loading Conditions, Loading Manuals and Loading

More information

Structural Rules for Container Ships

Structural Rules for Container Ships Structural Rules for Container Ships NR 625 Consolidated edition for documentation only July 2016 with amendments November 2017 This document is an electronic consolidated edition of the Structural Rules

More information

Hull Structural Design, Ships with Length Less than 100 metres

Hull Structural Design, Ships with Length Less than 100 metres RULES FOR CLASSIFICATION OF Ships PART 3 CHAPTER 2 NEWBUILDINGS HULL AND EQUIPMENT MAIN CLASS Hull Structural Design, Ships with Length Less than 100 metres JULY 2012 The electronic pdf version of this

More information

RULES PUBLICATION NO. 18/P ZONE STRENGTH ANALYSIS OF BULK CARRIER HULL STRUCTURE

RULES PUBLICATION NO. 18/P ZONE STRENGTH ANALYSIS OF BULK CARRIER HULL STRUCTURE RULES PUBLICATION NO. 18/P ZONE STRENGTH ANALYSIS OF BULK CARRIER HULL STRUCTURE 1995 Publications P (Additional Rule Requirements), issued by Polski Rejestr Statków, complete or extend the Rules and are

More information

HULL STRUCTURAL DESIGN SHIPS WITH LENGTH LESS THAN 100 METRES

HULL STRUCTURAL DESIGN SHIPS WITH LENGTH LESS THAN 100 METRES RULES FOR CLASSIFICATION OF SHIPS NEWBUILDINGS HULL AND EQUIPMENT MAIN CLASS PART 3 CHAPTER 2 HULL STRUCTURAL DESIGN SHIPS WITH LENGTH LESS THAN 100 METRES JANUARY 2003 CONTENTS PAGE Sec. 1 General Requirements...

More information

HULL STRUCTURAL DESIGN, SHIPS WITH LENGTH 100 METRES AND ABOVE

HULL STRUCTURAL DESIGN, SHIPS WITH LENGTH 100 METRES AND ABOVE RULES FOR CLASSIFICATION OF SHIPS NEWBUILDINGS HULL AND EQUIPMENT MAIN CLASS PART 3 CHAPTER 1 HULL STRUCTURAL DESIGN, SHIPS WITH LENGTH 100 METRES AND ABOVE JANUARY 2011 CONTENTS PAGE Sec. 1 General Requirements...

More information

INFLUENCE OF DECK PLATING STRENGTH ON SHIP HULL ULTIMATE BENDING MOMENT

INFLUENCE OF DECK PLATING STRENGTH ON SHIP HULL ULTIMATE BENDING MOMENT TECHNICAL REPORT NO. 73 INFLUENCE OF DECK PLATING STRENGTH ON SHIP HULL ULTIMATE BENDING MOMENT Authors: Dr Marian Bogdaniuk Dr Monika Warmowska Gdańsk, 2016 Technical Report No. 73 3 CONTENTS PURPOSE

More information

RULES FOR THE CLASSIFICATION AND CONSTRUCTION OF NAVAL SHIPS

RULES FOR THE CLASSIFICATION AND CONSTRUCTION OF NAVAL SHIPS RULES FOR THE CLASSIFICATION AND CONSTRUCTION OF NAVAL SHIPS PART II HULL 2008 GDAŃSK RULES FOR THE CLASSIFICATION AND CONSTRUCTION OF NAVAL SHIPS prepared and issued by Polski Rejestr Statków S.A., hereinafter

More information

Hull Structural Design, Ships with Length 100 metres and above

Hull Structural Design, Ships with Length 100 metres and above RULES FOR CLASSIFICATION OF Ships PART 3 CHAPTER 1 NEWBUILDINGS HULL AND EQUIPMENT MAIN CLASS Hull Structural Design, Ships with Length 100 metres and above JULY 2011 The content of this service document

More information

HULL STRUCTURAL DESIGN SHIPS WITH LENGTH 100 METRES AND ABOVE

HULL STRUCTURAL DESIGN SHIPS WITH LENGTH 100 METRES AND ABOVE RULES FOR CLASSIFICATION OF SHIPS NEWBUILDINGS HULL AND EQUIPMENT MAIN CLASS PART 3 CHAPTER 1 HULL STRUCTURAL DESIGN SHIPS WITH LENGTH 100 METRES AND ABOVE JANUARY 2009 CONTENTS Sec. 1 General Requirements...

More information

RULES FOR CLASSIFICATION Inland navigation vessels. Part 3 Structures, equipment Chapter 2 Design load principles. Edition December 2015 DNV GL AS

RULES FOR CLASSIFICATION Inland navigation vessels. Part 3 Structures, equipment Chapter 2 Design load principles. Edition December 2015 DNV GL AS RULES FOR CLASSIFICATION Inland navigation vessels Edition December 2015 Part 3 Structures, equipment Chapter 2 s The content of this service document is the subject of intellectual property rights reserved

More information

HULL STRUCTURAL DESIGN SHIPS WITH LENGTH 100 METRES AND ABOVE

HULL STRUCTURAL DESIGN SHIPS WITH LENGTH 100 METRES AND ABOVE RULES FOR CLASSIFICATION OF SHIPS NEWBUILDINGS HULL AND EQUIPMENT MAIN CLASS PART 3 CHAPTER 1 HULL STRUCTURAL DESIGN SHIPS WITH LENGTH 100 METRES AND ABOVE JANUARY 2008 CONTENTS Sec. 1 General Requirements...

More information

RULES FOR CLASSIFICATION. Ships. Part 3 Hull Chapter 6 Hull local scantling. Edition January 2017 DNV GL AS

RULES FOR CLASSIFICATION. Ships. Part 3 Hull Chapter 6 Hull local scantling. Edition January 2017 DNV GL AS RULES FOR CLASSIFICATION Ships Edition January 2017 Part 3 Hull Chapter 6 The content of this service document is the subject of intellectual property rights reserved by ("DNV GL"). The user accepts that

More information

PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS

PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS 1 Macchiavello, Sergio *, 2 Tonelli, Angelo 1 D Appolonia S.p.A., Italy, 2 Rina Services S.p.A., Italy KEYWORDS pleasure vessel, vibration analysis,

More information

PAGE Ⅰ. INTENT 3 Ⅱ. PRINCIPAL PARTICULARS 4 Ⅳ. HOLD & TANK CAPACITY TABLE 6 Ⅴ. CURVES OF HEELING MOMENT, VOLUME AND KG 12

PAGE Ⅰ. INTENT 3 Ⅱ. PRINCIPAL PARTICULARS 4 Ⅳ. HOLD & TANK CAPACITY TABLE 6 Ⅴ. CURVES OF HEELING MOMENT, VOLUME AND KG 12 1 GRAIN LOADING INDEX PAGE Ⅰ. INTENT 3 Ⅱ. PRINCIPAL PARTICULARS 4 Ⅲ. SYMBOLS 5 Ⅳ. HOLD & TANK CAPACITY TABLE 6 Ⅴ. CURVES OF HEELING MOMENT, VOLUME AND KG 12 Ⅵ. ALLOWABLE HEELING MOMENT EXPLANATION OF ALLOWABLE

More information

Hull structural design - Ships with length 100 metres and above

Hull structural design - Ships with length 100 metres and above RULES FOR CLASSIFICATION OF Ships PART 3 CHAPTER 1 NEWBUILDINGS HULL AND EQUIPMENT MAIN CLASS Hull structural design - Ships with length 100 metres and above JANUARY 2015 The electronic pdf version of

More information

RULES FOR CLASSIFICATION Ships. Part 3 Hull Chapter 6 Hull local scantling. Edition October 2015 DNV GL AS

RULES FOR CLASSIFICATION Ships. Part 3 Hull Chapter 6 Hull local scantling. Edition October 2015 DNV GL AS RULES FOR CLASSIFICATION Ships Edition October 2015 Part 3 Hull Chapter 6 The content of this service document is the subject of intellectual property rights reserved by ("DNV GL"). The user accepts that

More information

FATIGUE STRENGTH ANALYSIS OF STEEL HULL STRUCTURE

FATIGUE STRENGTH ANALYSIS OF STEEL HULL STRUCTURE RULES PUBLICATION NO. 45/P FATIGUE STRENGTH ANALYSIS OF STEEL HULL STRUCTURE 1998 Publications P (Additional Rule Requirements) issued by Polski Rejestr Statków complete or extend the Rules and are mandatory

More information

Ice Class Regulations and the Application Thereof

Ice Class Regulations and the Application Thereof 1 (65) Date of issue: 14 Nov. 2017 Entry into force: 1 Dec. 2017 Validity: indefinitely Legal basis: Act on the Ice Classes of Ships and Icebreaker Assistance (1121/2005), section 4.1 Implemented EU legislation:

More information

Ship structure dynamic analysis - effects of made assumptions on computation results

Ship structure dynamic analysis - effects of made assumptions on computation results Ship structure dynamic analysis - effects of made assumptions on computation results Lech Murawski Centrum Techniki Okrętowej S. A. (Ship Design and Research Centre) ABSTRACT The paper presents identification

More information

RULES FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS

RULES FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS 15-393 RULES FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS Part CSR-B&T Common Structural Rules for Bulk Carriers and Oil Tankers Rules for the Survey and Construction of Steel Ships Part CSR-B&T 015

More information

THE LEVEL OF CONFIDENCE FOR A SHIP HULL GIRDER

THE LEVEL OF CONFIDENCE FOR A SHIP HULL GIRDER 94 Paper present at International Conference on Diagnosis and Prediction in Mechanical Engineering Systems (DIPRE 07) 26-27 October 2007, Galati, Romania THE LEVEL OF CONFIDENCE FOR A SHIP HULL GIRDER

More information

Department of Aerospace and Ocean Engineering Graduate Study Specialization in Ocean Engineering. Written Preliminary Examination Information

Department of Aerospace and Ocean Engineering Graduate Study Specialization in Ocean Engineering. Written Preliminary Examination Information Department of Aerospace and Ocean Engineering Graduate Study Specialization in Ocean Engineering Written Preliminary Examination Information Faculty: Professors W. Neu, O. Hughes, A. Brown, M. Allen Test

More information

IACS COMMON STRUCTURAL RULES FOR BULK CARRIERS

IACS COMMON STRUCTURAL RULES FOR BULK CARRIERS INTERNATIONAL ASSOCIATION OF CLASSIFICATION SOCIETIES IACS COMMON STRUCTURAL RULES FOR BULK CARRIERS JULY 004 Draft for Comments Common Structural Rules for Bulk Carriers Foreword In recent years expectations

More information

Vessel Name: MC(less than 24m)

Vessel Name: MC(less than 24m) Freeboard Calculation Report Vessel Name: MC(less than 24m) SECTION A: RESULTS SUMMARY Summer Freeboard = 567.41 mm Max. Summer Draft as per freeboard requirements = 941 mm Minimum Bow Height Required

More information

SHIPS FOR NAVIGATION IN ICE

SHIPS FOR NAVIGATION IN ICE RULES FOR CLASSIFICATION OF SHIPS NEWBUILDINGS SPECIAL SERVICE AND TYPE ADDITIONAL CLASS PART 5 CHAPTER 1 SHIPS FOR NAVIGATION IN ICE JULY 2010 CONTENTS PAGE Sec. 1 General Requirements... 7 Sec. 2 Basic

More information

Seminar Container Securing on Container Vessels Part 1. May 11, 2012 Portoroz

Seminar Container Securing on Container Vessels Part 1. May 11, 2012 Portoroz Seminar Container Securing on Container Vessels Part 1 University of Ljubljana May 11, 2012 Portoroz Why pay keen attention to container securing? Forces acting on container stack Wind load (only for wind

More information

Wuchang Shipbuilding Industry Co., Ltd. China Shipbuilding Industry Corporation

Wuchang Shipbuilding Industry Co., Ltd. China Shipbuilding Industry Corporation Safety Assessments for Anchor Handling Conditions of Multi-purpose Platform Work Vessels Reporter:Yu Wang Wuchang Shipbuilding Industry Co., Ltd. China Shipbuilding Industry Corporation 2009.12.04 0 Outline

More information

MEMBRANE TANK LNG VESSELS

MEMBRANE TANK LNG VESSELS Guide for Building and Classing Membrane Tank LNG Vessels GUIDE FOR BUILDING AND CLASSING MEMBRANE TANK LNG VESSELS (HULL STRUCTURAL DESIGN AND ANALYSIS BASED ON THE ABS SAFEHULL APPROACH) OCTOBER 2002

More information

Transport Analysis Report Full Stability Analysis. Project EXAMPLE PROJECT DEMO RUN FOR REVIEW. Client ORCA OFFSHORE

Transport Analysis Report Full Stability Analysis. Project EXAMPLE PROJECT DEMO RUN FOR REVIEW. Client ORCA OFFSHORE ONLINE MARINE ENGINEERING Transport Analysis Report Full Stability Analysis Project EXAMPLE PROJECT DEMO RUN FOR REVIEW Client ORCA OFFSHORE Issue Date 18/11/2010 Report reference number: Herm-18-Nov-10-47718

More information

Chapter IV. (Ship Hydro-Statics & Dynamics) Floatation & Stability

Chapter IV. (Ship Hydro-Statics & Dynamics) Floatation & Stability Chapter V (Ship Hydro-Statics & Dynamics) Floatation & Stability 4.1 mportant Hydro-Static Curves or Relations (see Fig. 4.11 at p44 & handout) Displacement Curves (displacement [molded, total] vs. draft,

More information

Corrigenda 2 Rule Editorials

Corrigenda 2 Rule Editorials CORRIGENDA COMMON STRUCTURAL RULES FOR BULK CARRIERS Common Structural Rules for Bulk Carriers, January 006 Corrigenda Rule Editorials Notes: (1) These Rule Corrigenda enter into force on 1 April 006.

More information

RULES PUBLICATION NO. 17/P ZONE STRENGTH ANALYSIS OF HULL STRUCTURE OF ROLL ON/ROLL OFF SHIP

RULES PUBLICATION NO. 17/P ZONE STRENGTH ANALYSIS OF HULL STRUCTURE OF ROLL ON/ROLL OFF SHIP RULES PUBLICATION NO. 17/P ZONE STRENGTH ANALYSIS OF HULL STRUCTURE OF ROLL ON/ROLL OFF SHIP 1995 Publications P (Additional Rule Requirements), issued by Polski Rejestr Statków, complete or extend the

More information

Optimal Design of FPSO Vessels

Optimal Design of FPSO Vessels November 2, 201 Optimal Design of FPSO Vessels Ezebuchi Akandu PhD, MTech, BTech, COREN, RINA, MNSE Department of Marine Engineering, Rivers State University, Port Harcourt, Nigeria akandu.ezebuchi@ust.edu.ng

More information

RULES FOR CLASSIFICATION. Ships. Part 3 Hull Chapter 10 Special requirements. Edition January 2017 DNV GL AS

RULES FOR CLASSIFICATION. Ships. Part 3 Hull Chapter 10 Special requirements. Edition January 2017 DNV GL AS RULES FOR CLASSIFICATION Ships Edition January 2017 Part 3 Hull Chapter 10 The content of this service document is the subject of intellectual property rights reserved by ("DNV GL"). The user accepts that

More information

Hit 24 5-inch Mount No. 5

Hit 24 5-inch Mount No. 5 Hit 24 5-inch Mount No. 5 From the BuShips damage report: 34. Five-inch mount No. 5 was hit a glancing blow by an estimated 6-inch projectile. The 2- inch STS was sprung but not penetrated and minor structural

More information

Optimisation of the container ship hull structure

Optimisation of the container ship hull structure Optimisation of the container ship hull structure Tadeusz Jastrzebski, Zbigniew Sekulski, Piotr Gutowski, Maciej Taczala Szczecin University of Technology, Poland Alfred Jazukiewicz Stocznia Szczecinska

More information

S19 S19. (1997) (Rev ) (Rev. 2 Feb. 1998) (Rev.3 Jun. 1998) (Rev.4 Sept. 2000) (Rev.5 July 2004) S Application and definitions

S19 S19. (1997) (Rev ) (Rev. 2 Feb. 1998) (Rev.3 Jun. 1998) (Rev.4 Sept. 2000) (Rev.5 July 2004) S Application and definitions (1997) (Rev. 1 1997) (Rev. Feb. 1998) (Rev.3 Jun. 1998) (Rev.4 Sept. 000) (Rev.5 July 004) Evaluation of Scantlings of the Transverse Watertight Corrugated Bulkhead between Cargo Holds Nos. 1 and, with

More information

RULES FOR CLASSIFICATION. Ships. Part 3 Hull Chapter 4 Loads. Edition January 2017 DNV GL AS

RULES FOR CLASSIFICATION. Ships. Part 3 Hull Chapter 4 Loads. Edition January 2017 DNV GL AS RULES FOR CLASSIFICATION Ships Edition January 2017 Part 3 Hull Chapter 4 The content of this service document is the subject of intellectual property rights reserved by ("DNV GL"). The user accepts that

More information

Hit 6 No. 1 Secondary Director

Hit 6 No. 1 Secondary Director Hit 6 No. 1 Secondary Director From the BuShips damage report: 20. The 10-pound STS splinter shield was hit at frame 74 about two feet above the house top deck. The projectile penetrated the 60-pound STS

More information

Corrigenda 3 Rule Editorials

Corrigenda 3 Rule Editorials Common Structural Rules for Oil Tankers, January 006 Corrigenda 3 Rule s Notes: (1) These Rule Corrigenda enter into force on 1 st pril-006. () This document contains a copy of the affected rule along

More information

On the Ship s Trimming using Moments of the Gravity and Buoyancy Forces of High Order

On the Ship s Trimming using Moments of the Gravity and Buoyancy Forces of High Order ABS TECHNICAL PAPERS 8 On the Ship s Trimming using Moments of the Gravit and Buoanc Forces of High Order Luben D Ivanov ), John E. Kokarakis ) ) American Bureau of Shipping, USA, Livanov@eagle.org ) Bureau

More information

Machinery Requirements for Polar Class Ships

Machinery Requirements for Polar Class Ships (August 2006) (Rev.1 Jan 2007) (Corr.1 Oct 2007) Machinery Requirements for Polar Class Ships.1 Application * The contents of this Chapter apply to main propulsion, steering gear, emergency and essential

More information

ASSESSMENT OF STRESS CONCENTRATIONS IN LARGE CONTAINER SHIPS USING BEAM HYDROELASTIC MODEL

ASSESSMENT OF STRESS CONCENTRATIONS IN LARGE CONTAINER SHIPS USING BEAM HYDROELASTIC MODEL ASSESSMENT OF STRESS CONCENTRATIONS IN LARGE CONTAINER SHIPS USING BEAM HYDROELASTIC MODEL Ivo Senjanović, Nikola Vladimir Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb,

More information

Welcome to the Ship Resistance Predictor! The total calm water resistance is given by:

Welcome to the Ship Resistance Predictor! The total calm water resistance is given by: Welcome to the Ship Resistance Predictor! What does this Excel Sheet do? This Excel sheet helps you calculate the Total Calm Water Resistance for a Ship at a given forward speed It also calculates from

More information

Technical Background for Rule Change Notice 1 to 01 JAN 2014 version

Technical Background for Rule Change Notice 1 to 01 JAN 2014 version Common Structural Rules for Bulk Carriers and Oil Tankers Technical Background for Rule Change Notice 1 to 01 JAN 2014 version Copyright in these Common Structural Rules is owned by each IACS Member as

More information

Ships for navigation in ice

Ships for navigation in ice RULES FOR CLASSIFICATION OF Ships PART 5 CHAPTER 1 NEWBUILDINGS SPECIAL SERVICE AND TYPE ADDITIONAL CLASS Ships for navigation in ice JANUARY 2016 The electronic pdf version of this document found through

More information

ICE CLASS REGULATIONS 2008 (FINNISH-SWEDISH ICE CLASS RULES)

ICE CLASS REGULATIONS 2008 (FINNISH-SWEDISH ICE CLASS RULES) Finnish Maritime Administration BULLETIN 10/10.12.2008 ICE CLASS REGULATIONS 2008 (FINNISH-SWEDISH ICE CLASS RULES) The Finnish Maritime Administration has, by a decision of 8 December 2008, issued the

More information

Final Exam Ship Structures Page 1 MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Engineering Ship Structures

Final Exam Ship Structures Page 1 MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Engineering Ship Structures Final Exam - 53 - Ship Structures - 16 Page 1 MEMORIA UNIVERSITY OF NEWFOUNDAND Faculty of Engineering and Applied Science Engineering 53 - Ship Structures FINA EXAMINATION SONS Date: Wednesday April 13,

More information

Noise prediction of large ship 6700PCTC using EFEA-SEA hybrid technique

Noise prediction of large ship 6700PCTC using EFEA-SEA hybrid technique Noise prediction of large ship 6700PCTC using EFEA-SEA hybrid technique Xinwei ZHANG 1 ; Shawn WANG 2 ; Jinxiang PANG 3 1 SDARI, China 2 Microcomputing LLC, USA 3 PROSYNX Technology Inc, China ABSTRACT

More information

SLAMMING LOADS AND STRENGTH ASSESSMENT FOR VESSELS

SLAMMING LOADS AND STRENGTH ASSESSMENT FOR VESSELS Guide for Slamming Loads and Strength Assessment for Vessels GUIDE FOR SLAMMING LOADS AND STRENGTH ASSESSMENT FOR VESSELS MARCH 2011 (Updated February 2016 see next page) American Bureau of Shipping Incorporated

More information

Prediction of induced vibrations for a passenger - car ferry

Prediction of induced vibrations for a passenger - car ferry IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Prediction of induced vibrations for a passenger - car ferry To cite this article: L Crudu et al 2016 IOP Conf. Ser.: Mater. Sci.

More information

RULES FOR THE CONSTRUCTION AND CLASSIFICATION OF SHIPS IDENTIFIED BY THEIR MISSION CHAPTERS A. SCOPE B. DOCUMENTS, REGULATIONS AND STANDARDS

RULES FOR THE CONSTRUCTION AND CLASSIFICATION OF SHIPS IDENTIFIED BY THEIR MISSION CHAPTERS A. SCOPE B. DOCUMENTS, REGULATIONS AND STANDARDS DE NAVIOS E AERONAVES Classification of Ships Identified by STRUCTURE - Section 2 RGMM14EN their Mission Part II CHAPTERS - A, B, C, F and H PART II RULES FOR THE CONSTRUCTION AND CLASSIFICATION OF SHIPS

More information

SHIP BUOYANCY AND STABILITY

SHIP BUOYANCY AND STABILITY SHIP BUOYANCY AND STABILITY Lecture 04 Ship stability-z curve 09/11/2017 Ship Buoyancy and Stability 1 Literature J. Matusiak: Laivan kelluvuus ja vakavuus Biran A. B., Ship Hydrostatics and Stability,

More information

THE ANNALS OF DUNĂREA DE JOS UNIVERSITY OF GALAŢI FASCICLE V, TECHNOLOGIES IN MACHINE BUILDING, ISSN , 2012

THE ANNALS OF DUNĂREA DE JOS UNIVERSITY OF GALAŢI FASCICLE V, TECHNOLOGIES IN MACHINE BUILDING, ISSN , 2012 THE ANNALS OF DUNĂREA DE JOS UNIVERSITY OF GALAŢI FASCICLE V, TECHNOLOGIES IN MACHINE BUILDING, ISSN 1221-4566, 212 GLOBAL AND LOCAL STRANGTH ASSESSMENT, UNDER EQUIVALENT QUASI-STATIC HEAD WAVE LOADS,

More information

Hydrostatic and Stability IN A NUTSHELL. of Floating Structures. Compendium. Relevant to Questions in Exam. Robert Bronsart

Hydrostatic and Stability IN A NUTSHELL. of Floating Structures. Compendium. Relevant to Questions in Exam. Robert Bronsart Hydrostatic and Stability of Floating Structures IN A NUTSHELL Compendium Relevant to Questions in Exam Robert Bronsart Version Date Comment 2.21 September 2015 minor corrections Author: Robert Bronsart

More information

Dynamics of Machinery

Dynamics of Machinery Dynamics of Machinery Two Mark Questions & Answers Varun B Page 1 Force Analysis 1. Define inertia force. Inertia force is an imaginary force, which when acts upon a rigid body, brings it to an equilibrium

More information

Upper and Lower Connections of Side Frame of Single Side Bulk Carrier

Upper and Lower Connections of Side Frame of Single Side Bulk Carrier Upper and Lower Connections of Side Frame of Single Side Bulk Carrier Lloyd Register Asia Yokohama Design Support Office 16 January 008 Contents 1. Detail FE Structural Analysis. Technical Background to

More information

STRUCTURAL DESIGN OF OFFSHORE SHIPS

STRUCTURAL DESIGN OF OFFSHORE SHIPS RECOMMENDED PRACTICE DNV-RP-C102 STRUCTURAL DESIGN OF OFFSHORE SHIPS FEBRUARY 2002 DET NORSKE VERITAS FOREWORD DET NORSKE VERITAS (DNV) is an autonomous and independent foundation with the objectives of

More information

Safe Struck Ship (3S):Software Package for Structural analysis of collision between ships

Safe Struck Ship (3S):Software Package for Structural analysis of collision between ships Port Said Engineering Research Journal Faculty of Engineering - Port Said University Volume 16 No. 2 pp.: 68:79 Safe Struck Ship (3S):Software Package for Structural analysis of collision between ships

More information

RULES FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS

RULES FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS 15-393 RULES FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS Part CSR-B&T Common Structural Rules for Bulk Carriers and Oil Tankers Rules for the Survey and Construction of Steel Ships Part CSR-B&T 016

More information

DRILLSHIPS GUIDE FOR BUILDING AND CLASSING HULL STRUCTURAL DESIGN AND ANALYSIS. AUGUST 2011 (Updated February 2014 see next page)

DRILLSHIPS GUIDE FOR BUILDING AND CLASSING HULL STRUCTURAL DESIGN AND ANALYSIS. AUGUST 2011 (Updated February 2014 see next page) Guide for Building and Classing Drillships GUIDE FOR BUILDING AND CLASSING DRILLSHIPS HULL STRUCTURAL DESIGN AND ANALYSIS AUGUST 2011 (Updated February 2014 see next page) American Bureau of Shipping Incorporated

More information

Notice No. 1 (Corrigenda)

Notice No. 1 (Corrigenda) Notice No. 1 () Code for Lifting Appliances in a Marine Environment, August 2013 The status of this Rule set is amended as shown and is now to be read in conjunction with this and prior Notices. Any corrigenda

More information

An accurate model for seaworthy container vessel stowage planning with ballast tanks

An accurate model for seaworthy container vessel stowage planning with ballast tanks Downloaded from orbit.dtu.dk on: Jul 23, 28 An accurate model for seaworthy container vessel stowage planning with ballast tanks Pacino, Dario; Delgado-Ortegon, Alberto; Jensen, Rune Møller; Bebbington,

More information

Development of formulas allowing to predict hydrodynamic responses of inland vessels operated within the range of navigation 0.6 Hs 2.

Development of formulas allowing to predict hydrodynamic responses of inland vessels operated within the range of navigation 0.6 Hs 2. Gian Carlo Matheus Torres 6 th EMship cycle: October 2015 February 2017 Master Thesis Development of formulas allowing to predict hydrodynamic responses of inland vessels operated within the range of navigation

More information

SPECIAL CONDITION. Water Load Conditions. SPECIAL CONDITION Water Load Conditions

SPECIAL CONDITION. Water Load Conditions. SPECIAL CONDITION Water Load Conditions Doc. No. : SC-CVLA.051-01 Issue : 1d Date : 04-Aug-009 Page : 1 of 13 SUBJECT : CERTIFICATION SPECIFICATION : VLA.51 PRIMARY GROUP / PANEL : 03 (Structure) SECONDARY GROUPE / PANEL : -- NATURE : SCN VLA.51

More information

Evaluation of Scantlings of Corrugated Transverse Watertight Bulkheads in Non-CSR Bulk Carriers Considering Hold Flooding

Evaluation of Scantlings of Corrugated Transverse Watertight Bulkheads in Non-CSR Bulk Carriers Considering Hold Flooding (1997) (Rev.1 1997) (Rev.1.1 Mar 1998 /Corr.1) (Rev. Sept 000) (Rev.3 eb 001) (Rev.4 Nov 001) (Rev.5 July 003) (Rev.6 July 004) (Rev.7 eb 006) (Corr.1 Oct 009) (Rev.8 May 010) (Rev.9 Apr 014) Evaluation

More information

SPRINGING ASSESSMENT FOR CONTAINER CARRIERS

SPRINGING ASSESSMENT FOR CONTAINER CARRIERS Guidance Notes on Springing Assessment for Container Carriers GUIDANCE NOTES ON SPRINGING ASSESSMENT FOR CONTAINER CARRIERS FEBRUARY 2014 American Bureau of Shipping Incorporated by Act of Legislature

More information

Additional Rule for Longitudinal Strength Assessment of Container Ships JULY 2016

Additional Rule for Longitudinal Strength Assessment of Container Ships JULY 2016 Additional Rule for Longitudinal Strength Assessment of Container Ships JULY 2016 This latest edition incorporates all rule changes. The latest revisions are shown with a vertical line. The section title

More information

CARGO STOWAGE AND SECURING

CARGO STOWAGE AND SECURING Resolutions from the 17th Session of the Assembly of IMO, November 1991, as amended CODE OF SAFE PRACTICE FOR CARGO STOWAGE AND SECURING CARGO STOWAGE AND SECURING ANNEX 13. Til bruk i maritime fagskoler

More information

Structural reliability assessment of accidentally damaged oil tanker

Structural reliability assessment of accidentally damaged oil tanker Towards Green Marine Technology and Transport Guedes Soares, Dejhalla & Pavleti (Eds) 2015 Taylor & Francis Group, London, ISBN 978-1-138-02887-6 Structural reliability assessment of accidentally damaged

More information

QUANTIFYING THE EFFECT OF INSPECTIONS IN SHIPS CONSIDERING THE SPATIAL VARIABILITY OF CORROSION

QUANTIFYING THE EFFECT OF INSPECTIONS IN SHIPS CONSIDERING THE SPATIAL VARIABILITY OF CORROSION QUANTIFYING THE EFFECT OF INSPECTIONS IN SHIPS CONSIDERING THE SPATIAL VARIABILITY OF CORROSION Hyun-Joong Kim, Engineering Risk Analysis Group, Technische Universität München, Germany Daniel Straub, Engineering

More information

ESTIMATION OF HULL S RESISTANCE AT PRELIMINARY PHASE OF DESIGNING

ESTIMATION OF HULL S RESISTANCE AT PRELIMINARY PHASE OF DESIGNING Journal of KONES Powertrain and Transport, Vol. 24, No. 1 2017 ESTIMATION OF HULL S RESISTANCE AT PRELIMINARY PHASE OF DESIGNING Adam Charchalis Gdynia Maritime University, Faculty of Marine Engineering

More information

Research on Prediction of Ship Manoeuvrability

Research on Prediction of Ship Manoeuvrability Journal of Shipping and Ocean Engineering 8 (08 30-35 doi 0.765/59-5879/08.0.004 D DAVID PUBLISHING Research on Prediction of Ship Manoeuvrability CUI Jian, WU Zixin and CHEN Weimin Shanghai Ship and Shipping

More information

RULES PUBLICATION NO. 122/P REQUIREMENTS FOR BALTIC ICE CLASS AND POLAR CLASS FOR SHIPS UNDER PRS SUPERVISION January

RULES PUBLICATION NO. 122/P REQUIREMENTS FOR BALTIC ICE CLASS AND POLAR CLASS FOR SHIPS UNDER PRS SUPERVISION January RULES PUBLICATION NO. 122/P REQUIREMENTS FOR BALTIC ICE CLASS AND POLAR CLASS FOR SHIPS UNDER PRS SUPERVISION 2019 January Publications P (Additional Rule Requirements) issued by Polski Rejestr Statków

More information

Digitalization in Shipping

Digitalization in Shipping Digitalization in Shipping Tom Sundell VP Products, NAPA www.napa.fi NAPA Solutions for Safe and Efficient Ship Operations NAPA A very short introduction to NAPA NAPA for safety and efficiency of the industry

More information

SAFEHULL-DYNAMIC LOADING APPROACH FOR VESSELS

SAFEHULL-DYNAMIC LOADING APPROACH FOR VESSELS Guide for SafeHull- Dynamic Loading Approach for Vessels GUIDE FOR SAFEHULL-DYNAMIC LOADING APPROACH FOR VESSELS DECEMBER 2006 (Updated February 2014 see next page) American Bureau of Shipping Incorporated

More information

Hydrostatics and Stability Dr. Hari V Warrior Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur

Hydrostatics and Stability Dr. Hari V Warrior Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur Hydrostatics and Stability Dr. Hari V Warrior Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 09 Free Surface Effect In the

More information

Design Theories of Ship and Offshore Plant

Design Theories of Ship and Offshore Plant 7-6-6 Lecture Note o Design Theories o Ship and Oshore Plant Design Theories o Ship and Oshore Plant Part I. Ship Design Ch. 6 Structural Design Fall 6 yung-il Roh Department o Naval Architecture and Ocean

More information

Additional Design Procedures

Additional Design Procedures ShipRight................................................ Design and construction Additional Design Procedures Procedure for Analysis of Pump Tower and Pump Tower Base September 008 ABCD Lloyd s Register

More information

Motions and Resistance of a Ship in Regular Following Waves

Motions and Resistance of a Ship in Regular Following Waves Reprinted: 01-11-2000 Revised: 03-10-2007 Website: www.shipmotions.nl Report 440, September 1976, Delft University of Technology, Ship Hydromechanics Laboratory, Mekelweg 2, 2628 CD Delft, The Netherlands.

More information

Ship Resistance And Propulsion Prof. Dr. P. Krishnankutty Ocean Department Indian Institute of Technology, Madras

Ship Resistance And Propulsion Prof. Dr. P. Krishnankutty Ocean Department Indian Institute of Technology, Madras Ship Resistance And Propulsion Prof. Dr. P. Krishnankutty Ocean Department Indian Institute of Technology, Madras Lecture - 14 Ship Resistance Prediction Methods II We have been discussing about resistance

More information

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder 16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders

More information

RESOLUTION MEPC.147(54) Adopted on 24 March 2006 GUIDELINES ON THE ASSESSMENT OF RESIDUAL FILLET WELD BETWEEN DECK PLATING AND LONGITUDINALS

RESOLUTION MEPC.147(54) Adopted on 24 March 2006 GUIDELINES ON THE ASSESSMENT OF RESIDUAL FILLET WELD BETWEEN DECK PLATING AND LONGITUDINALS THE MARINE ENVIRONMENT PROTECTION COMMITTEE, RECALLING Article 38(a) of the Convention on the International Maritime Organization concerning the functions of the Marine Environment Protection Committee

More information

VIBRATION ANALYSIS IN SHIP STRUCTURES BY FINITE ELEMENT METHOD

VIBRATION ANALYSIS IN SHIP STRUCTURES BY FINITE ELEMENT METHOD Proceedings of COBEM 2007 Copyright 2007 by ABCM 19th International Congress of Mechanical Engineering November 5-9, 2007, Brasília, DF VIBRATION ANALYSIS IN SHIP STRUCTURES BY FINITE ELEMENT METHOD Luiz

More information

C C S 通函 Circular China Classification Society (2012 )Circ. 25 /Total No /2/2012 (total pages: 1+23 )

C C S 通函 Circular China Classification Society (2012 )Circ. 25 /Total No /2/2012 (total pages: 1+23 ) Form: RWPRR401-B C C S 通函 Circular China Classification Society (2012 )Circ. 25 /Total No. 187 15/2/2012 (total pages: 1+23 ) To relevant departments of CCS Headquarters, Plan approval centers, CCS surveyors,

More information

DESIGN OPTIMIZATION STUDY ON A CONTAINERSHIP PROPULSION SYSTEM

DESIGN OPTIMIZATION STUDY ON A CONTAINERSHIP PROPULSION SYSTEM DESIGN OPTIMIZATION STUDY ON A CONTAINERSHIP PROPULSION SYSTEM Brian Cuneo Thomas McKenney Morgan Parker ME 555 Final Report April 19, 2010 ABSTRACT This study develops an optimization algorithm to explore

More information

No INTER-GOVERNMENTAL MARITIME CONSULTATIVE ORGANIZATION

No INTER-GOVERNMENTAL MARITIME CONSULTATIVE ORGANIZATION INTER-GOVERNMENTAL MARITIME CONSULTATIVE ORGANIZATION International Convention on Load Lines, 1966 (with annexes). Done at London, on 5 April 1966» Official texts: English and French. Registered by the

More information

Rules for Classification and Construction Analysis Techniques

Rules for Classification and Construction Analysis Techniques V Rules for Classification and Construction Analysis Techniques 1 Hull Structural Design Analyses 2 Guidelines for Fatigue Strength Analyses of Ship Structures Edition 2004 The following Guidelines come

More information

Chapter 33 - Polar Class Ships 2013

Chapter 33 - Polar Class Ships 2013 Chapter 33 - Polar Class Ships 2013 This latest edition incorporates all rule changes. This rule is totally revised. Changes after the publication of the rule are written in red colour. Unless otherwise

More information

Aircraft Structures Design Example

Aircraft Structures Design Example University of Liège Aerospace & Mechanical Engineering Aircraft Structures Design Example Ludovic Noels Computational & Multiscale Mechanics of Materials CM3 http://www.ltas-cm3.ulg.ac.be/ Chemin des Chevreuils

More information

OTC Copyright 2012, Offshore Technology Conference

OTC Copyright 2012, Offshore Technology Conference OT 3166 Wind Effect Estimation and Navigational Effect in Side by Side Offloading Operation for FNG and NG arrier Ships Toshifumi Fujiwara, Kazuhiro ukawa, Hiroshi Sato, Shunji Kato, National Maritime

More information

ITTC Recommended Procedures and Guidelines Testing and Extrapolation Methods Propulsion, Performance Propulsion Test

ITTC Recommended Procedures and Guidelines Testing and Extrapolation Methods Propulsion, Performance Propulsion Test 7.5- Page 1 of 13 Table of Contents... 2 1. PURPOSE OF PROCEDURE... 2 2. PARAMETERS... 2 2.1 Data Reduction Equations... 2 2.2 Definition of Variables... 3 3. DESCRIPTION OF PROCEDURE... 3 3.1 Model and

More information

Aircraft Performance, Stability and control with experiments in Flight. Questions

Aircraft Performance, Stability and control with experiments in Flight. Questions Aircraft Performance, Stability and control with experiments in Flight Questions Q. If only the elevator size of a given aircraft is decreased; keeping horizontal tail area unchanged; then the aircraft

More information

PRIVATE CAR STRUCTURES BASELINE LOAD PATHS

PRIVATE CAR STRUCTURES BASELINE LOAD PATHS PRIVATE CAR STRUCTURES BASELINE LOAD PATHS to demonstrate that a car structure can be represented by SSS to introduce the load paths in a car structure for different load cases INTRODUCTION The structures

More information