Physics 8 Wednesday, October 28, 2015

Size: px
Start display at page:

Download "Physics 8 Wednesday, October 28, 2015"

Transcription

1 Physics 8 Wednesday, October 8, 015 HW7 (due this Friday will be quite easy in comparison with HW6, to make up for your having a lot to read this week. For today, you read Chapter 3 (analyzes cables, trusses, arches, etc. of Onouye/Kane. We ll analyze some examples along these lines in class: a cable and a simplified arch today; trusses Friday. Many of you already bought copies of Onouye/Kane. I have many more used copies available. You need your own copy, in some form or another. I don t care which edition you read. Next week, you ll skim O/K ch4 ( load tracing and read O/K ch5 ( strength of materials. Today: more examples using static equilibrium.

2 A beam of mass M = 0 kg and length L = m is attached to a wall by a hinge. A sign of mass m = 10 kg hangs from the end of the beam. The end of the beam is supported by a cable (at θ = 30 angle w.r.t. horizontal beam, which is anchored to the wall above the hinge. What forces act on the beam? (Draw EFBD. Find the cable tension T. Find the reaction forces F x and F y exerted by the hinge on the beam. What 3 equations can we write for the beam? (Next few slides. (Redraw this on the board.

3 Beam mass M, length L. Sign mass m. Cable angle θ from horizontal. Hinge exerts forces F x, F y on beam. How do we write sum of horizontal forces (on beam = 0? (A F x + T cos θ = 0 (B F x + T sin θ = 0 (C F x T cos θ = 0 (D F x T sin θ = 0

4 Beam mass M, length L. Sign mass m. Cable angle θ from horizontal. Hinge exerts forces F x, F y on beam. How do we write sum of vertical forces (on beam = 0? (A F y + T cos θ + (M + mg = 0 (B F y + T cos θ (M + mg = 0 (C F y + T cos θ (M + mg = 0 (D F y + T sin θ + (M + mg = 0 (E F y + T cos θ (M + mg = 0 (F F y + T sin θ (M + mg = 0 (G F y T cos θ (M + mg = 0 (H F y T sin θ (M + mg = 0

5 Beam mass M, length L. Sign mass m. Cable angle θ from horizontal. Hinge exerts forces F x, F y on beam. How do we write sum of torques (about hinge = 0? (A + L Mg + Lmg + LT cos θ = 0 (B + L Mg + Lmg + LT sin θ = 0 (C L Mg + Lmg + LT cos θ = 0 (D L Mg + Lmg + LT sin θ = 0 (E L Mg Lmg + LT cos θ = 0 (F L Mg Lmg + LT sin θ = 0

6 The 3 equations for static equilibrium in the xy plane sum of horizontal forces = 0: F x T cos θ = 0 sum of vertical forces = 0: F y + T sin θ (M + mg = 0 sum of torques (a.k.a. moments about hinge = 0: L Mg Lmg + LT sin θ = 0

7 Here s my solution: let s compare with the demonstration

8 Let s build & measure a simplified arch Often the essence of physics is to reduce a complicated problem to a similar problem that is easier to analyze. (Does this make the function of a roller support more obvious?!

9 (We ll emphasize function over form here... Often the essence of physics is to reduce a complicated problem to a similar problem that is easier to analyze. Use a cable to hold bottom together so that we can use scale to measure tension. Weight (mg of each side is 0 N. We ll exploit mirror symmetry and analyze just one side of arch. What forces act (and where on the r.h.s. of the arch? (Draw EFBD for the right-hand board.

10 Use a cable to hold bottom of arch together so that we can use scale to measure tension. Weight (mg of each side is 0 N. We ll exploit mirror symmetry and analyze just one side of arch. Right side shows EFBD for right-hand board.

11 How many unknown variables is it possible to determine using the equations for static equilibrium in a plane? (A one (B two (C three (D four (E five

12 Static equilibrium lets us write down three equations for a given object: F x = 0, F y = 0, M z = 0. Let s first sum up the moments (a.k.a. torques about the top hinge. Which statement correctly expresses M z = 0 (a.k.a. τ = 0? (Let the mass and length of each wooden board be L and m. (A mg ( L cos θ + F N L cos θ TL sin θ = 0 (B mg ( L cos θ + F N L cos θ + TL sin θ = 0 (C mg ( L sin θ + F N L sin θ TL cos θ = 0 (D mg ( L sin θ + F N L sin θ + TL cos θ = 0 (E +mg ( L cos θ + F N L cos θ TL sin θ = 0 (F +mg ( L cos θ + F N L cos θ + TL sin θ = 0 (G +mg ( L sin θ + F N L sin θ TL cos θ = 0 (H +mg ( L sin θ + F N L sin θ + TL cos θ = 0

13 Let s start with torque (about top hinge due to tension T. Usual convention: clockwise = negative, ccw = positive. Draw vector r from pivot to point where force is applied. Draw force vector F, with its line-of-action passing through the point where the force is applied. Decompose r to find component r that is perpendicular to F. The component r is called the lever arm. Magnitude of torque is τ = (r (F.

14 Alternative method: use (r(f instead of (r (F. Draw vector r from pivot to point where force is applied. Draw force vector F, with its line-of-action passing through the point where the force is applied. Decompose F to find component F perpendicular to r. Magnitude of torque is τ = (r(f.

15 Now you try it for the normal force F N. Draw vector r from pivot to point where force is applied. Draw force vector F, with its line-of-action passing through the point where the force is applied. Decompose r to find component r that is perpendicular to F. The component r is called the lever arm. Magnitude of torque is τ = r F. Which component of r is perpendicular to the normal force F N? (A horizontal component (B vertical component

16 Now you try it for the normal force F N. Draw vector r from pivot to point where force is applied. Draw force vector F, with its line-of-action passing through the point where the force is applied. Decompose r to find component r that is perpendicular to F. The component r is called the lever arm. Magnitude of torque is τ = r F. How long is the horizontal component of r (i.e. the r component which is perpendicular to F? (A L cos θ (B L sin θ (C L tan θ

17 OK, now back to the original question: Let s sum up the moments (a.k.a. torques about the top hinge. Which statement correctly expresses M z = 0 (a.k.a. τ = 0? (Let the mass and length of each wooden board be L and m. (A mg ( L cos θ + F N L cos θ TL sin θ = 0 (B mg ( L cos θ + F N L cos θ + TL sin θ = 0 (C mg ( L sin θ + F N L sin θ TL cos θ = 0 (D mg ( L sin θ + F N L sin θ + TL cos θ = 0 (E +mg ( L cos θ + F N L cos θ TL sin θ = 0 (F +mg ( L cos θ + F N L cos θ + TL sin θ = 0 (G +mg ( L sin θ + F N L sin θ TL cos θ = 0 (H +mg ( L sin θ + F N L sin θ + TL cos θ = 0 Next: what about F x = 0 and F y = 0?

18 Next: what about F x = 0 and F y = 0?

19 We said mg = 0 N, so we expect the string tension to be T = 10 N tan θ How would this change if we suspended a weight Mg from the hinge? (By symmetry, each side of arch carries half of this Mg.

20 Why must we say the wall is slippery? Is the slippery wall more like a pin or a roller support? What plays the role here that string tension played in the previous problem? Does the combination of two forces at the bottom act more like a pin or a roller support? Which forces would an engineer call reaction forces?

21 Physics 8 Wednesday, October 8, 015 HW7 (due this Friday will be quite easy in comparison with HW6, to make up for your having a lot to read this week. For today, you read Chapter 3 (analyzes cables, trusses, arches, etc. of Onouye/Kane. We ll analyze some examples along these lines in class: a cable and a simplified arch today; trusses Friday. Many of you already bought copies of Onouye/Kane. I have many more used copies available. You need your own copy, in some form or another. I don t care which edition you read. Next week, you ll skim O/K ch4 ( load tracing and read O/K ch5 ( strength of materials. Today: more examples using static equilibrium.

Physics 8 Wednesday, October 25, 2017

Physics 8 Wednesday, October 25, 2017 Physics 8 Wednesday, October 25, 2017 HW07 due Friday. It is mainly rotation, plus a couple of basic torque questions. And there are only 8 problems this week. For today, you read (in Perusall) Onouye/Kane

More information

Physics 8 Monday, October 28, 2013

Physics 8 Monday, October 28, 2013 Physics 8 Monday, October 28, 2013 Turn in HW8 today. I ll make them less difficult in the future! Rotation is a hard topic. And these were hard problems. HW9 (due Friday) is 7 conceptual + 8 calculation

More information

Static equilibrium. Objectives. Physics terms. Assessment. Brainstorm. Equations 6/3/14

Static equilibrium. Objectives. Physics terms. Assessment. Brainstorm. Equations 6/3/14 Static equilibrium Objectives State the conditions of static equilibrium in terms of forces and torques. Draw a free-body diagram of a lever showing all forces. Use the condition of equilibrium to solve

More information

Static Equilibrium; Torque

Static Equilibrium; Torque Static Equilibrium; Torque The Conditions for Equilibrium An object with forces acting on it, but that is not moving, is said to be in equilibrium. The first condition for equilibrium is that the net force

More information

Torque. Physics 6A. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Torque. Physics 6A. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 6A Torque is what causes angular acceleration (just like a force causes linear acceleration) Torque is what causes angular acceleration (just like a force causes linear acceleration) For a torque

More information

Physics 8 Wednesday, October 30, 2013

Physics 8 Wednesday, October 30, 2013 Physics 8 Wednesday, October 30, 2013 HW9 (due Friday) is 7 conceptual + 8 calculation problems. Of the 8 calculation problems, 4 or 5 are from Chapter 11, and 3 or 4 are from Chapter 12. 7pm HW sessions:

More information

Torque and Static Equilibrium

Torque and Static Equilibrium Torque and Static Equilibrium Rigid Bodies Rigid body: An extended object in which the distance between any two points in the object is constant in time. Examples: sphere, disk Effect of external forces

More information

Equilibrium. Today: Center of Gravity Static Equilibrium. Sign convention for torques: (-) CW torque (+) CCW torque

Equilibrium. Today: Center of Gravity Static Equilibrium. Sign convention for torques: (-) CW torque (+) CCW torque Tue Sept 29 Assign 5 Friday Exam Mon Oct 5 Morton 235 7:15-9:15 PM Email by Wednesday afternoon at the latest if conflict Q/A Sunday 1-3,4-6,7-9 Today: Center of Gravity Static Equilibrium Sign convention

More information

Physics 8 Friday, October 20, 2017

Physics 8 Friday, October 20, 2017 Physics 8 Friday, October 20, 2017 HW06 is due Monday (instead of today), since we still have some rotation ideas to cover in class. Pick up the HW07 handout (due next Friday). It is mainly rotation, plus

More information

Physics 8 Friday, November 8, 2013

Physics 8 Friday, November 8, 2013 Physics 8 Friday, November 8, 2013 Turn in HW10 today. I ll put HW11 online tomorrow. Today & Monday: mainly trusses. Some beams next week. Monday reading: from Vossoughi ch5+8 (centroids + second moment

More information

Chapter 8. Centripetal Force and The Law of Gravity

Chapter 8. Centripetal Force and The Law of Gravity Chapter 8 Centripetal Force and The Law of Gravity Centripetal Acceleration An object traveling in a circle, even though it moves with a constant speed, will have an acceleration The centripetal acceleration

More information

Chapter 9- Static Equilibrium

Chapter 9- Static Equilibrium Chapter 9- Static Equilibrium Changes in Office-hours The following changes will take place until the end of the semester Office-hours: - Monday, 12:00-13:00h - Wednesday, 14:00-15:00h - Friday, 13:00-14:00h

More information

ΣF = 0 and Στ = 0 In 2-d: ΣF X = 0 and ΣF Y = 0 Goal: Write expression for Στ and ΣF

ΣF = 0 and Στ = 0 In 2-d: ΣF X = 0 and ΣF Y = 0 Goal: Write expression for Στ and ΣF Thur Sept 24 Assign 5 Friday Exam Mon Oct 5 Morton 235 7:15-9:15 PM Email if conflict Today: Rotation and Torques Static Equilibrium Sign convention for torques: (-) CW torque (+) CCW torque Equilibrium

More information

Announcements. Civil and Mechanical engineers: This week is for you!

Announcements. Civil and Mechanical engineers: This week is for you! Announcements Civil and echanical engineers: his week is for you! Ø Sta;cs: Oooh, so exci;ng! Ø Please pay aaen;on: We want you to build bridges that don t fall down! Exam 3 next Wednesday!!! (November

More information

Physics 101: Lecture 15 Torque, F=ma for rotation, and Equilibrium

Physics 101: Lecture 15 Torque, F=ma for rotation, and Equilibrium Physics 101: Lecture 15 Torque, F=ma for rotation, and Equilibrium Strike (Day 10) Prelectures, checkpoints, lectures continue with no change. Take-home quizzes this week. See Elaine Schulte s email. HW

More information

TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0

TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0 TUTORIAL SHEET 1 1. The rectangular platform is hinged at A and B and supported by a cable which passes over a frictionless hook at E. Knowing that the tension in the cable is 1349N, determine the moment

More information

P12 Torque Notes.notebook. March 26, Torques

P12 Torque Notes.notebook. March 26, Torques Torques The size of a torque depends on two things: 1. The size of the force being applied (a larger force will have a greater effect) 2. The distance away from the pivot point (the further away from this

More information

Chapter 12 Static Equilibrium; Elasticity and Fracture

Chapter 12 Static Equilibrium; Elasticity and Fracture 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination

More information

Physics 8 Friday, November 4, 2011

Physics 8 Friday, November 4, 2011 Physics 8 Friday, November 4, 2011 Please turn in Homework 7. I will hand out solutions once everyone is here. The handout also includes HW8 and a page or two of updates to the equation sheet needed to

More information

Section 2: Static Equilibrium II- Balancing Torques

Section 2: Static Equilibrium II- Balancing Torques Section 2: Static Equilibrium II- Balancing Torques Last Section: If (ie. Forces up = Forces down and Forces left = Forces right), then the object will have no translatory motion. In other words, the object

More information

Chapter 12 Static Equilibrium

Chapter 12 Static Equilibrium Chapter Static Equilibrium. Analysis Model: Rigid Body in Equilibrium. More on the Center of Gravity. Examples of Rigid Objects in Static Equilibrium CHAPTER : STATIC EQUILIBRIUM AND ELASTICITY.) The Conditions

More information

Physics 8 Monday, October 12, 2015

Physics 8 Monday, October 12, 2015 Physics 8 Monday, October 12, 2015 HW5 will be due Friday. (HW5 is just Ch9 and Ch10 problems.) You re reading Chapter 12 ( torque ) this week, even though in class we re just finishing Ch10 / starting

More information

4.0 m s 2. 2 A submarine descends vertically at constant velocity. The three forces acting on the submarine are viscous drag, upthrust and weight.

4.0 m s 2. 2 A submarine descends vertically at constant velocity. The three forces acting on the submarine are viscous drag, upthrust and weight. 1 1 wooden block of mass 0.60 kg is on a rough horizontal surface. force of 12 N is applied to the block and it accelerates at 4.0 m s 2. wooden block 4.0 m s 2 12 N hat is the magnitude of the frictional

More information

Name Section Number Team Number

Name Section Number Team Number Physics 218 LAB: TORQUES and STATIC EQUILIBRIUM Name Section Number Team Number Introduction One purpose of this lab is to introduce you to quantity called torque or, as engineers cail it, moment of a

More information

Consider two students pushing with equal force on opposite sides of a desk. Looking top-down on the desk:

Consider two students pushing with equal force on opposite sides of a desk. Looking top-down on the desk: 1 Bodies in Equilibrium Recall Newton's First Law: if there is no unbalanced force on a body (i.e. if F Net = 0), the body is in equilibrium. That is, if a body is in equilibrium, then all the forces on

More information

HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT STATIC EQUILIBRIUM MULTIPLE CHOICE / 33 OPEN ENDED / 80 TOTAL / 113 NAME: 1. State the condition for translational equilibrium. A. ΣF = 0 B. ΣF

More information

Physics 211 Week 10. Statics: Walking the Plank (Solution)

Physics 211 Week 10. Statics: Walking the Plank (Solution) Statics: Walking the Plank (Solution) A uniform horizontal beam 8 m long is attached by a frictionless pivot to a wall. A cable making an angle of 37 o, attached to the beam 5 m from the pivot point, supports

More information

Physics 8 Wednesday, November 20, 2013

Physics 8 Wednesday, November 20, 2013 Physics 8 Wednesday, November 20, 2013 I plan next time to use Statics & Strength of Materials for Architecture & Building Construction by Onouye & Kane for these few weeks supplemental topics. Used copies

More information

Today we applied our knowledge of vectors to different kinds of problems.

Today we applied our knowledge of vectors to different kinds of problems. DAY 18 Summary of Primary Topics Covered Center of Mass and More Vector Examples Today we applied our knowledge of vectors to different kinds of problems. Working these problems is a matter of taking concepts

More information

The case where there is no net effect of the forces acting on a rigid body

The case where there is no net effect of the forces acting on a rigid body The case where there is no net effect of the forces acting on a rigid body Outline: Introduction and Definition of Equilibrium Equilibrium in Two-Dimensions Special cases Equilibrium in Three-Dimensions

More information

PHYSICS - CLUTCH CH 13: ROTATIONAL EQUILIBRIUM.

PHYSICS - CLUTCH CH 13: ROTATIONAL EQUILIBRIUM. !! www.clutchprep.com EXAMPLE: POSITION OF SECOND KID ON SEESAW EXAMPLE: A 4 m-long seesaw 50 kg in mass and of uniform mass distribution is pivoted on a fulcrum at its middle, as shown. Two kids sit on

More information

Physics 8 Monday, November 20, 2017

Physics 8 Monday, November 20, 2017 Physics 8 Monday, November 20, 2017 Pick up HW11 handout, due Dec 1 (Friday next week). This week, you re skimming/reading O/K ch8, which goes into more detail on beams. Since many people will be traveling

More information

Physics 2210 Homework 18 Spring 2015

Physics 2210 Homework 18 Spring 2015 Physics 2210 Homework 18 Spring 2015 Charles Jui April 12, 2015 IE Sphere Incline Wording A solid sphere of uniform density starts from rest and rolls without slipping down an inclined plane with angle

More information

Physics 8 Wednesday, October 11, 2017

Physics 8 Wednesday, October 11, 2017 Physics 8 Wednesday, October 11, 2017 HW5 due Friday. It s really Friday this week! Homework study/help sessions (optional): Bill will be in DRL 2C6 Wednesdays from 4 6pm (today). Grace will be in DRL

More information

Physics 8 Wednesday, November 18, 2015

Physics 8 Wednesday, November 18, 2015 Physics 8 Wednesday, November 18, 2015 Remember HW10 due Friday. For this week s homework help, I will show up Wednesday, DRL 2C4, 4pm-6pm (when/where you normally find Camilla), and Camilla will show

More information

Equilibrium Notes 1 Translational Equilibrium

Equilibrium Notes 1 Translational Equilibrium Equilibrium Notes 1 Translational Equilibrium A 20.0 kg object is suspended by a rope as shown. What is the net force acting on it? Ok that was easy, now that same 20.0 kg object is lifted at a velocity

More information

Announcements Oct 16, 2014

Announcements Oct 16, 2014 Announcements Oct 16, 2014 1. Prayer 2. While waiting, see how many of these blanks you can fill out: Centripetal Accel.: Causes change in It points but not Magnitude: a c = How to use with N2: Always

More information

Unit 4 Statics. Static Equilibrium Translational Forces Torque

Unit 4 Statics. Static Equilibrium Translational Forces Torque Unit 4 Statics Static Equilibrium Translational Forces Torque 1 Dynamics vs Statics Dynamics: is the study of forces and motion. We study why objects move. Statics: is the study of forces and NO motion.

More information

Physics 2210 Fall smartphysics Rotational Statics 11/18/2015

Physics 2210 Fall smartphysics Rotational Statics 11/18/2015 Physics 2210 Fall 2015 smartphysics 17-18 Rotational Statics 11/18/2015 τ TT = L T 1 sin 150 = 1 T 2 1L Poll 11-18-01 τ TT = L 2 T 2 sin 150 = 1 4 T 2L 150 150 τ gg = L 2 MM sin +90 = 1 2 MMM +90 MM τ

More information

Lecture 8. Torque. and Equilibrium. Pre-reading: KJF 8.1 and 8.2

Lecture 8. Torque. and Equilibrium. Pre-reading: KJF 8.1 and 8.2 Lecture 8 Torque and Equilibrium Pre-reading: KJF 8.1 and 8.2 Archimedes Lever Rule At equilibrium (and with forces 90 to lever): r 1 F 1 = r 2 F 2 2 General Lever Rule For general angles r 1 F 1 sin θ

More information

is the study of and. We study objects. is the study of and. We study objects.

is the study of and. We study objects. is the study of and. We study objects. Static Equilibrium Translational Forces Torque Unit 4 Statics Dynamics vs Statics is the study of and. We study objects. is the study of and. We study objects. Recall Newton s First Law All objects remain

More information

Physics 111. Tuesday, November 2, Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy

Physics 111. Tuesday, November 2, Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy ics Tuesday, ember 2, 2002 Ch 11: Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy Announcements Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468 Announcements This

More information

Semester 1 Revision. Last modified: 05/06/2018

Semester 1 Revision. Last modified: 05/06/2018 Semester 1 Revision Last modified: 05/06/2018 Contents Links Motion with Uniform Acceleration Equations Method Example Forces Equations Method Example Static Equilibrium Equations Method Example Energy

More information

Equilibrium. For an object to remain in equilibrium, two conditions must be met. The object must have no net force: and no net torque:

Equilibrium. For an object to remain in equilibrium, two conditions must be met. The object must have no net force: and no net torque: Equilibrium For an object to remain in equilibrium, two conditions must be met. The object must have no net force: F v = 0 and no net torque: v τ = 0 Worksheet A uniform rod with a length L and a mass

More information

use one of the methods to compute the magnitude of the torque, given the magnitudes of the force and position vector

use one of the methods to compute the magnitude of the torque, given the magnitudes of the force and position vector PH2213 : Examples from Chapter 12 : Static Equilibrium Equilibrium represents the condition where an object is not accelerating (either linearly or angularly). It can still be moving (and rotating), it

More information

Lab 17 Torques/Moments

Lab 17 Torques/Moments Lab 17 Torques/Moments Name Partner s Name I. Introduction/Theory Terminology: The word 'torque' does not typically appear in the index to statics books such as Bedford and Fowler. For these authors, the

More information

Equilibrium Notes 1 Translational Equilibrium

Equilibrium Notes 1 Translational Equilibrium Equilibrium Notes 1 Translational Equilibrium Ex. A 20.0 kg object is suspended by a rope as shown. What is the net force acting on it? Ex. Ok that was easy, now that same 20.0 kg object is lifted at a

More information

Chapter 10. Rotation

Chapter 10. Rotation Chapter 10 Rotation Rotation Rotational Kinematics: Angular velocity and Angular Acceleration Rotational Kinetic Energy Moment of Inertia Newton s nd Law for Rotation Applications MFMcGraw-PHY 45 Chap_10Ha-Rotation-Revised

More information

Center of Mass. A baseball thrown into the air follows a smooth parabolic path. A baseball bat thrown into the air does not follow a smooth path.

Center of Mass. A baseball thrown into the air follows a smooth parabolic path. A baseball bat thrown into the air does not follow a smooth path. Center of Mass A baseball thrown into the air follows a smooth parabolic path. A baseball bat thrown into the air does not follow a smooth path. The bat wobbles about a special point. This point stays

More information

LECTURE 15 TORQUE AND CENTER OF GRAVITY

LECTURE 15 TORQUE AND CENTER OF GRAVITY LECTURE 15 TORQUE AND CENTER OF GRAVITY 7.3 Torque Net torque 7.4 Gravitational torque and the center of gravity Calculating the position of the center of gravity What is unusual about this door? Learning

More information

Physics 8 Monday, October 9, 2017

Physics 8 Monday, October 9, 2017 Physics 8 Monday, October 9, 2017 Pick up a HW #5 handout if you didn t already get one on Wednesday. It s due this Friday, 10/13. It contains some Ch9 (work) problems, some Ch10 (motion in a plane) problems,

More information

Static Equilibrium and Torque

Static Equilibrium and Torque 10.3 Static Equilibrium and Torque SECTION OUTCOMES Use vector analysis in two dimensions for systems involving static equilibrium and torques. Apply static torques to structures such as seesaws and bridges.

More information

Physics 111. Lecture 22 (Walker: ) Torque Rotational Dynamics Static Equilibrium Oct. 28, 2009

Physics 111. Lecture 22 (Walker: ) Torque Rotational Dynamics Static Equilibrium Oct. 28, 2009 Physics 111 Lecture 22 (Walker: 11.1-3) Torque Rotational Dynamics Static Equilibrium Oct. 28, 2009 Lecture 22 1/26 Torque (τ) We define a quantity called torque which is a measure of twisting effort.

More information

Chapter 11. Today. Last Wednesday. Precession from Pre- lecture. Solving problems with torque

Chapter 11. Today. Last Wednesday. Precession from Pre- lecture. Solving problems with torque Chapter 11 Last Wednesday Solving problems with torque Work and power with torque Angular momentum Conserva5on of angular momentum Today Precession from Pre- lecture Study the condi5ons for equilibrium

More information

PHY 1150 Doug Davis Chapter 8; Static Equilibrium 8.3, 10, 22, 29, 52, 55, 56, 74

PHY 1150 Doug Davis Chapter 8; Static Equilibrium 8.3, 10, 22, 29, 52, 55, 56, 74 PHY 1150 Doug Davis Chapter 8; Static Equilibrium 8.3, 10, 22, 29, 52, 55, 56, 74 8.3 A 2-kg ball is held in position by a horizontal string and a string that makes an angle of 30 with the vertical, as

More information

LECTURE 22 EQUILIBRIUM. Instructor: Kazumi Tolich

LECTURE 22 EQUILIBRIUM. Instructor: Kazumi Tolich LECTURE 22 EQUILIBRIUM Instructor: Kazumi Tolich Lecture 22 2 Reading chapter 11-3 to 11-4 Static equilibrium Center of mass and balance Static equilibrium 3 If a rigid object is in equilibrium (constant

More information

Torque rotational force which causes a change in rotational motion. This force is defined by linear force multiplied by a radius.

Torque rotational force which causes a change in rotational motion. This force is defined by linear force multiplied by a radius. Warm up A remote-controlled car's wheel accelerates at 22.4 rad/s 2. If the wheel begins with an angular speed of 10.8 rad/s, what is the wheel's angular speed after exactly three full turns? AP Physics

More information

θ Beam Pivot F r Figure 1. Figure 2. STATICS (Force Vectors, Tension & Torque) MBL-32 (Ver. 3/20/2006) Name: Lab Partner: Lab Partner:

θ Beam Pivot F r Figure 1. Figure 2. STATICS (Force Vectors, Tension & Torque) MBL-32 (Ver. 3/20/2006) Name: Lab Partner: Lab Partner: Please Circle Your Lab day: M T W T F Name: Lab Partner: Lab Partner: Project #1: Kinesthetic experiences with force vectors and torque. Project #2: How does torque depend on the lever arm? Project #1:

More information

Definition. is a measure of how much a force acting on an object causes that object to rotate, symbol is, (Greek letter tau)

Definition. is a measure of how much a force acting on an object causes that object to rotate, symbol is, (Greek letter tau) Torque Definition is a measure of how much a force acting on an object causes that object to rotate, symbol is, (Greek letter tau) = r F = rfsin, r = distance from pivot to force, F is the applied force

More information

Continuing Education Course #207 What Every Engineer Should Know About Structures Part B Statics Applications

Continuing Education Course #207 What Every Engineer Should Know About Structures Part B Statics Applications 1 of 6 Continuing Education Course #207 What Every Engineer Should Know About Structures Part B Statics Applications 1. As a practical matter, determining design loads on structural members involves several

More information

Physics 8, Fall 2017, Practice Exam.

Physics 8, Fall 2017, Practice Exam. Physics 8, Fall 2017, Practice Exam. Name: This open-book take-home exam is 10% of your course grade. (The in-class final exam will be 20% of your course grade. For the in-class exam, you can bring one

More information

Torque. Introduction. Torque. PHY torque - J. Hedberg

Torque. Introduction. Torque. PHY torque - J. Hedberg Torque PHY 207 - torque - J. Hedberg - 2017 1. Introduction 2. Torque 1. Lever arm changes 3. Net Torques 4. Moment of Rotational Inertia 1. Moment of Inertia for Arbitrary Shapes 2. Parallel Axis Theorem

More information

Rotational N.2 nd Law

Rotational N.2 nd Law Lecture 19 Chapter 12 Rotational N.2 nd Law Torque Newton 2 nd Law again!? That s it. He crossed the line! Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi IN THIS CHAPTER, you will

More information

Ishik University / Sulaimani Architecture Department. Structure. ARCH 214 Chapter -5- Equilibrium of a Rigid Body

Ishik University / Sulaimani Architecture Department. Structure. ARCH 214 Chapter -5- Equilibrium of a Rigid Body Ishik University / Sulaimani Architecture Department 1 Structure ARCH 214 Chapter -5- Equilibrium of a Rigid Body CHAPTER OBJECTIVES To develop the equations of equilibrium for a rigid body. To introduce

More information

Newton s Laws and Free-Body Diagrams General Physics I

Newton s Laws and Free-Body Diagrams General Physics I Newton s Laws and Free-Body Diagrams In the next few sections, we will be exploring some of the most fundamental laws of our universe, laws that govern the relationship actions and motion. These laws are

More information

Section 2: Static Equilibrium II- Balancing Torques

Section 2: Static Equilibrium II- Balancing Torques Section 2: Static Equilibrium II- Balancing Torques Last Section: If (ie. Forces up = Forces down and Forces left = Forces right), then the object will have no translatory motion. In other words, the object

More information

EQUILIBRIUM OF RIGID BODIES

EQUILIBRIUM OF RIGID BODIES EQUILIBRIUM OF RIGID BODIES Equilibrium A body in equilibrium is at rest or can translate with constant velocity F = 0 M = 0 EQUILIBRIUM IN TWO DIMENSIONS Case where the force system acting on a rigid

More information

Rotational N.2 nd Law

Rotational N.2 nd Law Lecture 0 Chapter 1 Physics I Rotational N. nd Law Torque Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi IN THIS CHAPTER, you will continue discussing rotational dynamics Today

More information

τ net l = r p L = Iω = d L dt = I α ΔL Angular momentum (one) Angular momentum (system, fixed axis) Newton s second law (system)

τ net l = r p L = Iω = d L dt = I α ΔL Angular momentum (one) Angular momentum (system, fixed axis) Newton s second law (system) l = r p L = Iω = d L dt = I α ΔL = 0 Angular momentum (one) Angular momentum (system, fixed axis) Newton s second law (system) Conserva

More information

Equilibrium and Torque

Equilibrium and Torque Equilibrium and Torque Equilibrium An object is in Equilibrium when: 1. There is no net force acting on the object 2. There is no net Torque (we ll get to this later) In other words, the object is NOT

More information

Chapter 9 Rotational Dynamics

Chapter 9 Rotational Dynamics Chapter 9 ROTATIONAL DYNAMICS PREVIEW A force acting at a perpendicular distance from a rotation point, such as pushing a doorknob and causing the door to rotate on its hinges, produces a torque. If the

More information

Rotational Equilibrium

Rotational Equilibrium Rotational Equilibrium 6-1 Rotational Equilibrium INTRODUCTION Have you ever tried to pull a stubborn nail out of a board or develop your forearm muscles by lifting weights? Both these activities involve

More information

Vector Mechanics: Statics

Vector Mechanics: Statics PDHOnline Course G492 (4 PDH) Vector Mechanics: Statics Mark A. Strain, P.E. 2014 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org www.pdhcenter.com

More information

Statics. Phys101 Lectures 19,20. Key points: The Conditions for static equilibrium Solving statics problems Stress and strain. Ref: 9-1,2,3,4,5.

Statics. Phys101 Lectures 19,20. Key points: The Conditions for static equilibrium Solving statics problems Stress and strain. Ref: 9-1,2,3,4,5. Phys101 Lectures 19,20 Statics Key points: The Conditions for static equilibrium Solving statics problems Stress and strain Ref: 9-1,2,3,4,5. Page 1 The Conditions for Static Equilibrium An object in static

More information

How Can Motion be Described? and Explained?

How Can Motion be Described? and Explained? How Can Motion be Described? and Explained? Lesson 14: Torque and the Stability of Structures Stable Structures Explain why structures should be stable. What are the conditions for a structure to be stable?

More information

Chapter 9 TORQUE & Rotational Kinematics

Chapter 9 TORQUE & Rotational Kinematics Chapter 9 TORQUE & Rotational Kinematics This motionless person is in static equilibrium. The forces acting on him add up to zero. Both forces are vertical in this case. This car is in dynamic equilibrium

More information

Torque and Static Equilibrium

Torque and Static Equilibrium Torque and Static Equilibrium Ch. 7.3, 8.1 (KJF 3 rd ed.) Phys 114 Eyres Torque 1 Causing rotation: Torque Three factors affect the how a force can affect the rotation: The magnitude of the force The distance,

More information

two forces and moments Structural Math Physics for Structures Structural Math

two forces and moments Structural Math Physics for Structures Structural Math RHITETURL STRUTURES: ORM, EHVIOR, ND DESIGN DR. NNE NIHOLS SUMMER 05 lecture two forces and moments orces & Moments rchitectural Structures 009abn Structural Math quantify environmental loads how big is

More information

Chapter 18 Static Equilibrium

Chapter 18 Static Equilibrium Chapter 8 Static Equilibrium Chapter 8 Static Equilibrium... 8. Introduction Static Equilibrium... 8. Lever Law... 3 Example 8. Lever Law... 5 8.3 Generalized Lever Law... 6 8.4 Worked Examples... 8 Example

More information

Lecture Outline Chapter 11. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 11. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 11 Physics, 4 th Edition James S. Walker Chapter 11 Rotational Dynamics and Static Equilibrium Units of Chapter 11 Torque Torque and Angular Acceleration Zero Torque and Static

More information

STATICS--AN INVESTIGATION OF FORCES

STATICS--AN INVESTIGATION OF FORCES STTIS--N INVESTIGTION O ORES Two areas of study to investigate forces. Statics where the forces acting on a material are balanced so that the material is either stationary or in uniform motion. or fluid

More information

Pin-Jointed Frame Structures (Frameworks)

Pin-Jointed Frame Structures (Frameworks) Pin-Jointed rame Structures (rameworks) 1 Pin Jointed rame Structures (rameworks) A pin-jointed frame is a structure constructed from a number of straight members connected together at their ends by frictionless

More information

MEE224: Engineering Mechanics Lecture 4

MEE224: Engineering Mechanics Lecture 4 Lecture 4: Structural Analysis Part 1: Trusses So far we have only analysed forces and moments on a single rigid body, i.e. bars. Remember that a structure is a formed by and this lecture will investigate

More information

Rotational Equilibrium

Rotational Equilibrium Rotational Equilibrium In this laboratory, we study the conditions for static equilibrium. Axis Through the Center of Gravity Suspend the meter stick at its center of gravity, with its numbers increasing

More information

(1) (allow e.c.f. for work done in (ii)) = 133 W (1) (allow e.c.f. for incorrect time conversion) 6

(1) (allow e.c.f. for work done in (ii)) = 133 W (1) (allow e.c.f. for incorrect time conversion) 6 1. (a) F cos 20 = 300 gives F = 319 N 1 (i) work done = force distance moved in direction of force F is not in the direction of motion work done = force distance = 300 8000 = 2.4 10 6 J work done (iii)

More information

TEST REPORT. Question file: P Copyright:

TEST REPORT. Question file: P Copyright: Date: February-12-16 Time: 2:00:28 PM TEST REPORT Question file: P12-2006 Copyright: Test Date: 21/10/2010 Test Name: EquilibriumPractice Test Form: 0 Test Version: 0 Test Points: 138.00 Test File: EquilibriumPractice

More information

CHAPTER 12 STATIC EQUILIBRIUM AND ELASTICITY. Conditions for static equilibrium Center of gravity (weight) Examples of static equilibrium

CHAPTER 12 STATIC EQUILIBRIUM AND ELASTICITY. Conditions for static equilibrium Center of gravity (weight) Examples of static equilibrium CHAPTER 12 STATIC EQUILIBRIUM AND ELASTICITY As previously defined, an object is in equilibrium when it is at rest or moving with constant velocity, i.e., with no net force acting on it. The following

More information

Study Guide. Physics 3104A. Science. Force, Motion and Energy. Adult Basic Education. Prerequisite: Physics 2104B or Physics 2204.

Study Guide. Physics 3104A. Science. Force, Motion and Energy. Adult Basic Education. Prerequisite: Physics 2104B or Physics 2204. Adult Basic Education Science Force, Motion and Energy Prerequisite: Physics 2104B or Physics 2204 Credit Value: 1 Text: Physics: Concepts and Connections. Irwin, 2002 Physics Concentration Physics 1104

More information

Jurong Junior College 2014 J1 H1 Physics (8866) Tutorial 3: Forces (Solutions)

Jurong Junior College 2014 J1 H1 Physics (8866) Tutorial 3: Forces (Solutions) Jurong Junior College 2014 J1 H1 Physics (8866) Tutorial 3: Forces (Solutions) Take g = 9.81 m s -2, P atm = 1.0 x 10 5 Pa unless otherwise stated Learning Outcomes (a) Sub-Topic recall and apply Hooke

More information

Sports biomechanics explores the relationship between the body motion, internal forces and external forces to optimize the sport performance.

Sports biomechanics explores the relationship between the body motion, internal forces and external forces to optimize the sport performance. What is biomechanics? Biomechanics is the field of study that makes use of the laws of physics and engineering concepts to describe motion of body segments, and the internal and external forces, which

More information

Cross Product Angular Momentum

Cross Product Angular Momentum Lecture 21 Chapter 12 Physics I Cross Product Angular Momentum Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi IN THIS CHAPTER, you will continue discussing rotational dynamics

More information

Solutionbank M1 Edexcel AS and A Level Modular Mathematics

Solutionbank M1 Edexcel AS and A Level Modular Mathematics Page of Solutionbank M Exercise A, Question A particle P of mass 0. kg is moving along a straight horizontal line with constant speed m s. Another particle Q of mass 0.8 kg is moving in the same direction

More information

Engineering Mechanics Department of Mechanical Engineering Dr. G. Saravana Kumar Indian Institute of Technology, Guwahati

Engineering Mechanics Department of Mechanical Engineering Dr. G. Saravana Kumar Indian Institute of Technology, Guwahati Engineering Mechanics Department of Mechanical Engineering Dr. G. Saravana Kumar Indian Institute of Technology, Guwahati Module 3 Lecture 6 Internal Forces Today, we will see analysis of structures part

More information

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10 Units of Chapter 10 Determining Moments of Inertia Rotational Kinetic Energy Rotational Plus Translational Motion; Rolling Why Does a Rolling Sphere Slow Down? General Definition of Torque, final Taking

More information

Rotational Kinetic Energy

Rotational Kinetic Energy Lecture 17, Chapter 10: Rotational Energy and Angular Momentum 1 Rotational Kinetic Energy Consider a rigid body rotating with an angular velocity ω about an axis. Clearly every point in the rigid body

More information

2008 FXA THREE FORCES IN EQUILIBRIUM 1. Candidates should be able to : TRIANGLE OF FORCES RULE

2008 FXA THREE FORCES IN EQUILIBRIUM 1. Candidates should be able to : TRIANGLE OF FORCES RULE THREE ORCES IN EQUILIBRIUM 1 Candidates should be able to : TRIANGLE O ORCES RULE Draw and use a triangle of forces to represent the equilibrium of three forces acting at a point in an object. State that

More information

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples The Laws of Motion Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples Gravitational Force Gravitational force is a vector Expressed by Newton s Law of Universal

More information

SOLUTION 8 1. a+ M B = 0; N A = 0. N A = kn = 16.5 kn. Ans. + c F y = 0; N B = 0

SOLUTION 8 1. a+ M B = 0; N A = 0. N A = kn = 16.5 kn. Ans. + c F y = 0; N B = 0 8 1. The mine car and its contents have a total mass of 6 Mg and a center of gravity at G. If the coefficient of static friction between the wheels and the tracks is m s = 0.4 when the wheels are locked,

More information

Static Equilibrium. Lecture 22. Chapter 12. Physics I Department of Physics and Applied Physics

Static Equilibrium. Lecture 22. Chapter 12. Physics I Department of Physics and Applied Physics Lecture 22 Chapter 12 Physics I 12.02.2013 Static Equilibrium Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov2013/physics1fall.html

More information

Equilibrium and Torque

Equilibrium and Torque Equilibrium and Torque Equilibrium An object is in Equilibrium when: 1. There is no net force acting on the object 2. There is no net Torque In other words, the object is NOT experiencing linear acceleration

More information