MAP METHODS FOR MACHINE LEARNING. Mark A. Kon, Boston University Leszek Plaskota, Warsaw University, Warsaw Andrzej Przybyszewski, McGill University

Size: px
Start display at page:

Download "MAP METHODS FOR MACHINE LEARNING. Mark A. Kon, Boston University Leszek Plaskota, Warsaw University, Warsaw Andrzej Przybyszewski, McGill University"

Transcription

1 MAP METHODS FOR MACHINE LEARNING Mark A. Kon, Boston University Leszek Plaskota, Warsaw University, Warsaw Andrzej Przybyszewski, McGill University

2 Example: Control System 1. Paradigm: Machine learning of an unknown input-output function Example: Control system Seeking relationship between inputs and outputs in industrial chemical mixture

3 Example: Control System Given: We control chemical mixture parameters, e.g.: ì temperature œ B " ì ambient humidity œ B #, along with other non-chemical parameters B$ ßBßB % & ì proportions of various chemical components œ B6 ßáßB#! Goal: Control output variable C = ratio of strength to brittleness of resulting plastic We want machine which predicts C from x œðb" ßáßB20Ñ based on data from finite number of experimental runs of equipment. Ê want "best" 0 so with minimal error %Þ C œ 0ÐB" ßáßB#! Ñ % œ0ðxñ %

4 MAPN approach 2. Solution: MAPN (MAP for Nonparametric machine learning) Maximum A Posteriori (MAP) methods common for parametric statistical problems (see below). MAPN (MAP for Nonparametric machine learning) extends these methods to Nonparametric problems. ì Method simple, intuitively appealing (even in high dimension) ì Incorporation of prior knowledge explicit and transparent ì Results of method often coincide with standard methods, e.g., statistical learning theory (SLT), information-based complexity (IBC), etc..

5 MAPN approach Bayesian machine learning strategy: Use prior knowledge about 0 to choose reasonable probability distribution.tð0ñ on set J of possible 0. experimental data. Then combine prior knowledge with

6 MAPN approach Model: Experimental data C 3 satisfy C3 œ 0Ðx 3Ñ % 3, with % 3 œ Gaussian random error. Equivalently, where y œrð0ñ %ß y œðcßáßc Ñ " 8 RÐ0Ñ œ œ Ð0Ð Ñß á ß 0Ð ÑÑÞ information vector x x " 8

7 MAPN approach Standard strategy: Compute conditional expectation IÐ0lR0 œ y Ñ (*) as best guess of 0. Difficulties of the strategy: ì we have "infinite dimensional" parameter space J ì difficult to determine "reasonable" a priori probability measure T ì expectation (*) above hard to compute.

8 Sidebar: Parametric Statistics 3. Sidebar: maximum a Posteriori (MAP) solutions yield a useful strategy in parametric statistics (finite dimension): Finite dimensional method involves writing probability measure T for unknown parameter z as where.tðzñ œ 3ÐzÑ. zß.z œ "uniform distribution" on z, and is density function of zþ MAP procedure finds.tðzñ. z œ 3ÐzÑ sz œ maximizer of 3ÐzÑ (analogously to maximum likelihood estimation) as best estimate.

9 MAP Example: OCR Example of MAP (discrete case): Decide which letter j! (a letter of the alphabet) we are looking at in an OCR program. A priori information: overall probability distribution TÐjÑ on 26 letters j in alphabet.

10 MAP Example: OCR Data: Vector z œðdßáßdñof 8 features of viewed letterþ " ) Assume true letter is j œ K! s j! œ MAP estimate of true letter j! œ arg max TÐjlzÑß j where j ranges over alphabet. Here TÐjlzÑ is computed using Bayes' formula: TÐjlzÑ œ T ÐzljÑT ÐjÑ! T Ðzl4ÑT Ð4Ñ 4 œ GTÐzljÑTÐjÑ ( Gœdenominator term is independent of jñþ Note TÐzljÑ is known, since we know which features occur in which letters.

11 MAP Example: OCR Thus sj œ arg mint ÐzljÑT ÐjÑ j

12 Extending MAP: Nonparametric case 4. Extending MAP to non-parameteric statistics: Can we use MAP to discover an entire function 0ÐxÑ? Recall: input data points are x 3, output are C 3, model is C3 œ 0Ðx 3Ñ % 3 œ ÐR0Ñ3Þ Strategy: Goal: Solve for unknown dependence Cœ0ÐxÑ using above model y œr0 %. Prior knowledge: reflected in probability distribution.tð0ñ on space Jœpossible choices of 0.

13 Extending MAP: Nonparametric case Density function: Define a density function 3Ð0Ñ for the distribution.tð0ñ, i.e., so that.t Ð0Ñ œ 3Ð0Ñ.0Þ Algorithm: maximize y œr0þ 3Ð0lyÑ, i.e., density conditioned on data Problem: There is no "uniform distribution".0 on a function space such as J. Remark: finding 3Ð0Ñ is difficult part here - probability density in function space not easy to define! Solution: MAPN theorem (below)

14 Extending MAP: Nonparametric case Remark: The function 3Ð0Ñ plays the role of a likelihood function in statistics - ì the larger 3Ð0Ñ the more "likely" 0 is ì intuitively appealing ì easily interpretable ì very easily modifiable as prior information or intuition warrants ì nevertheless, 3Ð0Ñ always corresponds to a genuine probability distribution.tð0ñ on functions.

15 5. Details of the algorithm: Algorithm: details Note we have y œr0 % Ê % œy R0Þ MAPN estimate is (using continuous Bayes formula) arg max 3Ð0lyÑ œ 0 0 3yÐyl0Ñ3Ð0Ñ arg max 3 ÐyÑ (here G œ is independent of 0). " " 3 y ÐyÑ y œ G " 3 Ðyl0Ñ3Ð0ÑÞ Choose prior distribution.tð0ñ for 0 to be Gaussian with " covariance operator GœaEEb, with Egiven below. y

16 Algorithm: details To define E: let a œð+ ßáß+ ÑœÐÞ"ßáßÞ"ßÞ#ßáßÞ#Ñ " #! be a vector which determines strength of a priori information for each component. B 3 Here a has first 5 components œþ" last 15 components œþ# reflects lower dependence of a priori assumptions on first 5 parameters (i.e., temperature, humidity, other non-chemical parameters)à greater on the last 15 (chemical parameters).

17 Algorithm: details Choose covariance matrix of Gaussian to be the operator GœÐEEÑ " ßwhere with E œ "regularization operator" œ.ðxñð" adñ.ðxñß #! ` ad œ " + 3 Þ $! `B 3œ" $! 3

18 Algorithm: details Here.ÐxÑ reflects density of sample points on via ".ÐxÑ œ a" $ ÐxÑb ß #! where $ÐxÑ œ smoothed density of sample points 8 œ " "/ 5œ" Ðx x 5 Ñ. "Î#! Note: order 30 above reflects smoothness level we expect of solution function 0; note in 20 dimensions we need at least 10 derivatives for 0 to be continuous. Thus distribution T concentrated on smooth solutions 0; minimizing solution given by radial basis functions (see below)

19 Algorithm: details Then MAPN theorem (below) shows probability distribution " # has density function 3Ð0Ñ œ G / # Þ # me0m.tð0ñ If we assume error vector % œð% ßáß% Ñis Gaussian: " 8 mf% m 3 % % $ $ # # mfðr0 yñm ÐÑœG/ œg/ Þ (with Fœ8 8covariance matrix), then: 3Ð0lyÑ œ mfðrð0ñ yñm 3yÐyl0Ñ3Ð0Ñ / / œ G$ 3 ÐyÑ 3 ÐCÑ y C # # me0m œg/ / % œg/ % mfðr0 Ñm me0m y # # me0m mfðr0 ˆ # # y mñ Þ

20 Thus maximizer of 3Ð0lyÑ is Algorithm: details s # # 0 œarg min me0m mfðr0 CÑm Ð Ñ 0 where 8 œ "- KÐxx ß Ñ Ð Ñ 5œ" 5 5 KÐxx ß w ) œ radial basis function œ Green's function for operator E Î #! Ñ œ Y " " + 3 # Ð303Ñ $! Ðx x w Ñß Ï Ò 3œ" where œ Fourier variable dual to B "

21 Algorithm: details Note: (*) is same functional appearing in regularization solutions in SLT, and the solution (**) is the same as spline solution in IBC. Solution of problem: Choose 0s as in (**) for best approximation of i-o relationship Cœ0ÐxÑ

22 How does it work? 6. How does it work? How do we define density 3Ð0Ñ corresponding to prior probability distribution.tð0ñ on the set of all functions? Analogously to standard parametric MAP methods. Use a definition of probability density 3Ð0Ñ corresponding to probability distribution.tð0ñ which works for both parametric (finite dimensional) and nonparametric (function) spaces. TÐF Ð0ÑÑ T ÐF Ð!ÑÑ < Define 3Ð0Ñ to be proportional to the ratio of probabilities of balls of radius < near 0 and!, in the small < limit. <

23 How does it work? This limit exists for most generic measures in infinite dimension, including Gaussian measures:

24 How does it work? < MAPN Theorem: (a) The limit 3Ð0Ñ œ lim exists for a TÐF Ð0ÑÑ <Ä! T ÐF< Ð!ÑÑ Gaussian measure T on a function space J with covariance operator G, defining its density function. (b) If Gœ( EE ) " as above 3Ð0Ñ œ O/ # me0m In finite dimensions this reduces to ordinary density function of the Gaussian distribution. Thank you! " #

E.G., data mining, prediction. Function approximation problem: How >9 best estimate the function 0 from partial information (examples)

E.G., data mining, prediction. Function approximation problem: How >9 best estimate the function 0 from partial information (examples) Can Neural Network and Statistical Learning Theory be Formulated in terms of Continuous Complexity Theory? 1. Neural Networks and Statistical Learning Theory Many areas of mathematics, statistics, and

More information

Statistical machine learning and kernel methods. Primary references: John Shawe-Taylor and Nello Cristianini, Kernel Methods for Pattern Analysis

Statistical machine learning and kernel methods. Primary references: John Shawe-Taylor and Nello Cristianini, Kernel Methods for Pattern Analysis Part 5 (MA 751) Statistical machine learning and kernel methods Primary references: John Shawe-Taylor and Nello Cristianini, Kernel Methods for Pattern Analysis Christopher Burges, A tutorial on support

More information

Solving SVM: Quadratic Programming

Solving SVM: Quadratic Programming MA 751 Part 7 Solving SVM: Quadratic Programming 1. Quadratic programming (QP): Introducing Lagrange multipliers α 4 and. 4 (can be justified in QP for inequality as well as equality constraints) we define

More information

SVM example: cancer classification Support Vector Machines

SVM example: cancer classification Support Vector Machines SVM example: cancer classification Support Vector Machines 1. Cancer genomics: TCGA The cancer genome atlas (TCGA) will provide high-quality cancer data for large scale analysis by many groups: SVM example:

More information

Suggestions - Problem Set (a) Show the discriminant condition (1) takes the form. ln ln, # # R R

Suggestions - Problem Set (a) Show the discriminant condition (1) takes the form. ln ln, # # R R Suggetion - Problem Set 3 4.2 (a) Show the dicriminant condition (1) take the form x D Ð.. Ñ. D.. D. ln ln, a deired. We then replace the quantitie. 3ß D3 by their etimate to get the proper form for thi

More information

8œ! This theorem is justified by repeating the process developed for a Taylor polynomial an infinite number of times.

8œ! This theorem is justified by repeating the process developed for a Taylor polynomial an infinite number of times. Taylor and Maclaurin Series We can use the same process we used to find a Taylor or Maclaurin polynomial to find a power series for a particular function as long as the function has infinitely many derivatives.

More information

Gene expression experiments. Infinite Dimensional Vector Spaces. 1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces

Gene expression experiments. Infinite Dimensional Vector Spaces. 1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces MA 751 Part 3 Gene expression experiments Infinite Dimensional Vector Spaces 1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces Gene expression experiments Question: Gene

More information

Infinite Dimensional Vector Spaces. 1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces

Infinite Dimensional Vector Spaces. 1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces MA 751 Part 3 Infinite Dimensional Vector Spaces 1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces Microarray experiment: Question: Gene expression - when is the DNA in

More information

Systems of Equations 1. Systems of Linear Equations

Systems of Equations 1. Systems of Linear Equations Lecture 1 Systems of Equations 1. Systems of Linear Equations [We will see examples of how linear equations arise here, and how they are solved:] Example 1: In a lab experiment, a researcher wants to provide

More information

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce > ƒ? @ Z [ \ _ ' µ `. l 1 2 3 z Æ Ñ 6 = Ð l sl (~131 1606) rn % & +, l r s s, r 7 nr ss r r s s s, r s, r! " # $ s s ( ) r * s, / 0 s, r 4 r r 9;: < 10 r mnz, rz, r ns, 1 s ; j;k ns, q r s { } ~ l r mnz,

More information

Density Estimation: ML, MAP, Bayesian estimation

Density Estimation: ML, MAP, Bayesian estimation Density Estimation: ML, MAP, Bayesian estimation CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Introduction Maximum-Likelihood Estimation Maximum

More information

Outline. 1. The Screening Philosophy 2. Robust Products/Processes 3. A Statistical Screening Procedure 4. Some Caveats 5.

Outline. 1. The Screening Philosophy 2. Robust Products/Processes 3. A Statistical Screening Procedure 4. Some Caveats 5. Screening to Identify Robust Products Based on Fractional Factorial Experiments Thomas J. Santner Ohio State University Guohua Pan Novartis Pharmaceuticals Corp Outline 1. The Screening Philosophy 2. Robust

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Proofs Involving Quantifiers. Proof Let B be an arbitrary member Proof Somehow show that there is a value

Proofs Involving Quantifiers. Proof Let B be an arbitrary member Proof Somehow show that there is a value Proofs Involving Quantifiers For a given universe Y : Theorem ÐaBÑ T ÐBÑ Theorem ÐbBÑ T ÐBÑ Proof Let B be an arbitrary member Proof Somehow show that there is a value of Y. Call it B œ +, say Þ ÐYou can

More information

The Hahn-Banach and Radon-Nikodym Theorems

The Hahn-Banach and Radon-Nikodym Theorems The Hahn-Banach and Radon-Nikodym Theorems 1. Signed measures Definition 1. Given a set Hand a 5-field of sets Y, we define a set function. À Y Ä to be a signed measure if it has all the properties of

More information

TOTAL DIFFERENTIALS. In Section B-4, we observed that.c is a pretty good approximation for? C, which is the increment of

TOTAL DIFFERENTIALS. In Section B-4, we observed that.c is a pretty good approximation for? C, which is the increment of TOTAL DIFFERENTIALS The differential was introduced in Section -4. Recall that the differential of a function œ0ðñis w. œ 0 ÐÑ.Þ Here. is the differential with respect to the independent variable and is

More information

Application: Can we tell what people are looking at from their brain activity (in real time)? Gaussian Spatial Smooth

Application: Can we tell what people are looking at from their brain activity (in real time)? Gaussian Spatial Smooth Application: Can we tell what people are looking at from their brain activity (in real time? Gaussian Spatial Smooth 0 The Data Block Paradigm (six runs per subject Three Categories of Objects (counterbalanced

More information

Math 131 Exam 4 (Final Exam) F04M

Math 131 Exam 4 (Final Exam) F04M Math 3 Exam 4 (Final Exam) F04M3.4. Name ID Number The exam consists of 8 multiple choice questions (5 points each) and 0 true/false questions ( point each), for a total of 00 points. Mark the correct

More information

of inequality indexes in the design-based framework

of inequality indexes in the design-based framework A functional derivative useful for the linearization of inequality indexes in the design-based framework # $ Lucio Barabesi Giancarlo Diana and Pier Francesco Perri Department of Economics and Statistics

More information

Product Measures and Fubini's Theorem

Product Measures and Fubini's Theorem Product Measures and Fubini's Theorem 1. Product Measures Recall: Borel sets U in are generated by open sets. They are also generated by rectangles VœN " á N hich are products of intervals NÞ 3 Let V be

More information

Probability basics. Probability and Measure Theory. Probability = mathematical analysis

Probability basics. Probability and Measure Theory. Probability = mathematical analysis MA 751 Probability basics Probability and Measure Theory 1. Basics of probability 2 aspects of probability: Probability = mathematical analysis Probability = common sense Probability basics A set-up of

More information

: œ Ö: =? À =ß> real numbers. œ the previous plane with each point translated by : Ðfor example,! is translated to :)

: œ Ö: =? À =ß> real numbers. œ the previous plane with each point translated by : Ðfor example,! is translated to :) â SpanÖ?ß@ œ Ö =? > @ À =ß> real numbers : SpanÖ?ß@ œ Ö: =? > @ À =ß> real numbers œ the previous plane with each point translated by : Ðfor example, is translated to :) á In general: Adding a vector :

More information

Dr. H. Joseph Straight SUNY Fredonia Smokin' Joe's Catalog of Groups: Direct Products and Semi-direct Products

Dr. H. Joseph Straight SUNY Fredonia Smokin' Joe's Catalog of Groups: Direct Products and Semi-direct Products Dr. H. Joseph Straight SUNY Fredonia Smokin' Joe's Catalog of Groups: Direct Products and Semi-direct Products One of the fundamental problems in group theory is to catalog all the groups of some given

More information

The Bayes classifier

The Bayes classifier The Bayes classifier Consider where is a random vector in is a random variable (depending on ) Let be a classifier with probability of error/risk given by The Bayes classifier (denoted ) is the optimal

More information

The classifier. Theorem. where the min is over all possible classifiers. To calculate the Bayes classifier/bayes risk, we need to know

The classifier. Theorem. where the min is over all possible classifiers. To calculate the Bayes classifier/bayes risk, we need to know The Bayes classifier Theorem The classifier satisfies where the min is over all possible classifiers. To calculate the Bayes classifier/bayes risk, we need to know Alternatively, since the maximum it is

More information

The classifier. Linear discriminant analysis (LDA) Example. Challenges for LDA

The classifier. Linear discriminant analysis (LDA) Example. Challenges for LDA The Bayes classifier Linear discriminant analysis (LDA) Theorem The classifier satisfies In linear discriminant analysis (LDA), we make the (strong) assumption that where the min is over all possible classifiers.

More information

Framework for functional tree simulation applied to 'golden delicious' apple trees

Framework for functional tree simulation applied to 'golden delicious' apple trees Purdue University Purdue e-pubs Open Access Theses Theses and Dissertations Spring 2015 Framework for functional tree simulation applied to 'golden delicious' apple trees Marek Fiser Purdue University

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS Parametric Distributions Basic building blocks: Need to determine given Representation: or? Recall Curve Fitting Binary Variables

More information

Example Let VœÖÐBßCÑ À b-, CœB - ( see the example above). Explain why

Example Let VœÖÐBßCÑ À b-, CœB - ( see the example above). Explain why Definition If V is a relation from E to F, then a) the domain of V œ dom ÐVÑ œ Ö+ E À b, F such that Ð+ß,Ñ V b) the range of V œ ran( VÑ œ Ö, F À b+ E such that Ð+ß,Ñ V " c) the inverse relation of V œ

More information

of the function, Cœ/ 7B and its derivatives and the good 'ol quadratic equation from algebra.

of the function, Cœ/ 7B and its derivatives and the good 'ol quadratic equation from algebra. Linear Differential Equations with Constant Coefficients Section 7.1 In this Chapter we deal with a specific type of DE. Specifically, it is linear, homogeneous, ordinary, and has constant coefficients.

More information

BAYESIAN ANALYSIS OF NONHOMOGENEOUS MARKOV CHAINS: APPLICATION TO MENTAL HEALTH DATA

BAYESIAN ANALYSIS OF NONHOMOGENEOUS MARKOV CHAINS: APPLICATION TO MENTAL HEALTH DATA BAYESIAN ANALYSIS OF NONHOMOGENEOUS MARKOV CHAINS: APPLICATION TO MENTAL HEALTH DATA " # $ Minje Sung, Refik Soyer, Nguyen Nhan " Department of Biostatistics and Bioinformatics, Box 3454, Duke University

More information

It's Only Fitting. Fitting model to data parameterizing model estimating unknown parameters in the model

It's Only Fitting. Fitting model to data parameterizing model estimating unknown parameters in the model It's Only Fitting Fitting model to data parameterizing model estimating unknown parameters in the model Likelihood: an example Cohort of 8! individuals observe survivors at times >œ 1, 2, 3,..., : 8",

More information

Digital Communications: An Overview of Fundamentals

Digital Communications: An Overview of Fundamentals IMPERIAL COLLEGE of SCIENCE, TECHNOLOGY and MEDICINE, DEPARTMENT of ELECTRICAL and ELECTRONIC ENGINEERING. COMPACT LECTURE NOTES on COMMUNICATION THEORY. Prof Athanassios Manikas, Spring 2001 Digital Communications:

More information

You may have a simple scientific calculator to assist with arithmetic, but no graphing calculators are allowed on this exam.

You may have a simple scientific calculator to assist with arithmetic, but no graphing calculators are allowed on this exam. Math 131 Exam 3 Solutions You may have a simple scientific calculator to assist ith arithmetic, but no graphing calculators are alloed on this exam. Part I consists of 14 multiple choice questions (orth

More information

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r )

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) v e r. E N G O u t l i n e T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) C o n t e n t s : T h i s w o

More information

An investigation into the use of maximum posterior probability estimates for assessing the accuracy of large maps

An investigation into the use of maximum posterior probability estimates for assessing the accuracy of large maps An investigation into the use of maximum posterior probability estimates for assessing the accuracy of large maps Brian Steele 1 and Dave Patterson2 Dept. of Mathematical Sciences University of Montana

More information

Inner Product Spaces

Inner Product Spaces Inner Product Spaces In 8 X, we defined an inner product? @? @?@ ÞÞÞ? 8@ 8. Another notation sometimes used is? @? ß@. The inner product in 8 has several important properties ( see Theorem, p. 33) that

More information

From Handout #1, the randomization model for a design with a simple block structure can be written as

From Handout #1, the randomization model for a design with a simple block structure can be written as Hout 4 Strata Null ANOVA From Hout 1 the romization model for a design with a simple block structure can be written as C œ.1 \ X α % (4.1) w where α œðα á α > Ñ E ÐÑœ % 0 Z œcov ÐÑ % with cov( % 3 % 4

More information

Gentle Introduction to Infinite Gaussian Mixture Modeling

Gentle Introduction to Infinite Gaussian Mixture Modeling Gentle Introduction to Infinite Gaussian Mixture Modeling with an application in neuroscience By Frank Wood Rasmussen, NIPS 1999 Neuroscience Application: Spike Sorting Important in neuroscience and for

More information

B œ c " " ã B œ c 8 8. such that substituting these values for the B 3 's will make all the equations true

B œ c   ã B œ c 8 8. such that substituting these values for the B 3 's will make all the equations true System of Linear Equations variables Ð unknowns Ñ B" ß B# ß ÞÞÞ ß B8 Æ Æ Æ + B + B ÞÞÞ + B œ, "" " "# # "8 8 " + B + B ÞÞÞ + B œ, #" " ## # #8 8 # ã + B + B ÞÞÞ + B œ, 3" " 3# # 38 8 3 ã + 7" B" + 7# B#

More information

e) D œ < f) D œ < b) A parametric equation for the line passing through Ð %, &,) ) and (#,(, %Ñ.

e) D œ < f) D œ < b) A parametric equation for the line passing through Ð %, &,) ) and (#,(, %Ñ. Page 1 Calculus III : Bonus Problems: Set 1 Grade /42 Name Due at Exam 1 6/29/2018 1. (2 points) Give the equations for the following geometrical objects : a) A sphere of radius & centered at the point

More information

The Spotted Owls 5 " 5. = 5 " œ!þ")45 Ð'!% leave nest, 30% of those succeed) + 5 " œ!þ("= 5!Þ*%+ 5 ( adults live about 20 yrs)

The Spotted Owls 5  5. = 5  œ!þ)45 Ð'!% leave nest, 30% of those succeed) + 5  œ!þ(= 5!Þ*%+ 5 ( adults live about 20 yrs) The Spotted Owls Be sure to read the example at the introduction to Chapter in the textbook. It gives more general background information for this example. The example leads to a dynamical system which

More information

y Xw 2 2 y Xw λ w 2 2

y Xw 2 2 y Xw λ w 2 2 CS 189 Introduction to Machine Learning Spring 2018 Note 4 1 MLE and MAP for Regression (Part I) So far, we ve explored two approaches of the regression framework, Ordinary Least Squares and Ridge Regression:

More information

B-9= B.Bà B 68 B.Bß B/.Bß B=38 B.B >+8 ab b.bß ' 68aB b.bà

B-9= B.Bà B 68 B.Bß B/.Bß B=38 B.B >+8 ab b.bß ' 68aB b.bà 8.1 Integration y Parts.@ a.? a Consider. a? a @ a œ? a @ a Þ....@ a..? a We can write this as? a œ a? a @ a@ a Þ... If we integrate oth sides, we otain.@ a a.?. œ a? a @ a..? a @ a. or...? a.@ œ? a @

More information

Cellular Automaton Growth on # : Theorems, Examples, and Problems

Cellular Automaton Growth on # : Theorems, Examples, and Problems Cellular Automaton Growth on : Theorems, Examples, and Problems (Excerpt from Advances in Applied Mathematics) Exactly 1 Solidification We will study the evolution starting from a single occupied cell

More information

Notes on the Unique Extension Theorem. Recall that we were interested in defining a general measure of a size of a set on Ò!ß "Ó.

Notes on the Unique Extension Theorem. Recall that we were interested in defining a general measure of a size of a set on Ò!ß Ó. 1. More on measures: Notes on the Unique Extension Theorem Recall that we were interested in defining a general measure of a size of a set on Ò!ß "Ó. Defined this measure T. Defined TÐ ( +ß, ) Ñ œ, +Þ

More information

Juan Juan Salon. EH National Bank. Sandwich Shop Nail Design. OSKA Beverly. Chase Bank. Marina Rinaldi. Orogold. Mariposa.

Juan Juan Salon. EH National Bank. Sandwich Shop Nail Design. OSKA Beverly. Chase Bank. Marina Rinaldi. Orogold. Mariposa. ( ) X é X é Q Ó / 8 ( ) Q / ( ) ( ) : ( ) : 44-3-8999 433 4 z 78-19 941, #115 Z 385-194 77-51 76-51 74-7777, 75-5 47-55 74-8141 74-5115 78-3344 73-3 14 81-4 86-784 78-33 551-888 j 48-4 61-35 z/ zz / 138

More information

Lecture : Probabilistic Machine Learning

Lecture : Probabilistic Machine Learning Lecture : Probabilistic Machine Learning Riashat Islam Reasoning and Learning Lab McGill University September 11, 2018 ML : Many Methods with Many Links Modelling Views of Machine Learning Machine Learning

More information

Ð"Ñ + Ð"Ñ, Ð"Ñ +, +, + +, +,,

ÐÑ + ÐÑ, ÐÑ +, +, + +, +,, Handout #11 Confounding: Complete factorial experiments in incomplete blocks Blocking is one of the important principles in experimental design. In this handout we address the issue of designing complete

More information

! " # $! % & '! , ) ( + - (. ) ( ) * + / 0 1 2 3 0 / 4 5 / 6 0 ; 8 7 < = 7 > 8 7 8 9 : Œ Š ž P P h ˆ Š ˆ Œ ˆ Š ˆ Ž Ž Ý Ü Ý Ü Ý Ž Ý ê ç è ± ¹ ¼ ¹ ä ± ¹ w ç ¹ è ¼ è Œ ¹ ± ¹ è ¹ è ä ç w ¹ ã ¼ ¹ ä ¹ ¼ ¹ ±

More information

MACHINE LEARNING ADVANCED MACHINE LEARNING

MACHINE LEARNING ADVANCED MACHINE LEARNING MACHINE LEARNING ADVANCED MACHINE LEARNING Recap of Important Notions on Estimation of Probability Density Functions 22 MACHINE LEARNING Discrete Probabilities Consider two variables and y taking discrete

More information

EXCERPTS FROM ACTEX CALCULUS REVIEW MANUAL

EXCERPTS FROM ACTEX CALCULUS REVIEW MANUAL EXCERPTS FROM ACTEX CALCULUS REVIEW MANUAL Table of Contents Introductory Comments SECTION 6 - Differentiation PROLEM SET 6 TALE OF CONTENTS INTRODUCTORY COMMENTS Section 1 Set Theory 1 Section 2 Intervals,

More information

Some Concepts of Probability (Review) Volker Tresp Summer 2018

Some Concepts of Probability (Review) Volker Tresp Summer 2018 Some Concepts of Probability (Review) Volker Tresp Summer 2018 1 Definition There are different way to define what a probability stands for Mathematically, the most rigorous definition is based on Kolmogorov

More information

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution Outline A short review on Bayesian analysis. Binomial, Multinomial, Normal, Beta, Dirichlet Posterior mean, MAP, credible interval, posterior distribution Gibbs sampling Revisit the Gaussian mixture model

More information

Stat 643 Problems. a) Show that V is a sub 5-algebra of T. b) Let \ be an integrable random variable. Find EÐ\lVÑÞ

Stat 643 Problems. a) Show that V is a sub 5-algebra of T. b) Let \ be an integrable random variable. Find EÐ\lVÑÞ Stat 643 Problems 1. Let ( HT, ) be a measurable space. Suppose that., T and Uare 5-finite positive measures on this space with T Uand U...T.T.U a) Show that T. and œ a.s......u.....u.u Š.. b) Show that

More information

Section 1.3 Functions and Their Graphs 19

Section 1.3 Functions and Their Graphs 19 23. 0 1 2 24. 0 1 2 y 0 1 0 y 1 0 0 Section 1.3 Functions and Their Graphs 19 3, Ÿ 1, 0 25. y œ 26. y œ œ 2, 1 œ, 0 Ÿ " 27. (a) Line through a!ß! band a"ß " b: y œ Line through a"ß " band aß! b: y œ 2,

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 2013-14 We know that X ~ B(n,p), but we do not know p. We get a random sample

More information

Machine Learning: Logistic Regression. Lecture 04

Machine Learning: Logistic Regression. Lecture 04 Machine Learning: Logistic Regression Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Supervised Learning Task = learn an (unkon function t : X T that maps input

More information

Statistical and Learning Techniques in Computer Vision Lecture 2: Maximum Likelihood and Bayesian Estimation Jens Rittscher and Chuck Stewart

Statistical and Learning Techniques in Computer Vision Lecture 2: Maximum Likelihood and Bayesian Estimation Jens Rittscher and Chuck Stewart Statistical and Learning Techniques in Computer Vision Lecture 2: Maximum Likelihood and Bayesian Estimation Jens Rittscher and Chuck Stewart 1 Motivation and Problem In Lecture 1 we briefly saw how histograms

More information

1. Classify each number. Choose all correct answers. b. È # : (i) natural number (ii) integer (iii) rational number (iv) real number

1. Classify each number. Choose all correct answers. b. È # : (i) natural number (ii) integer (iii) rational number (iv) real number Review for Placement Test To ypass Math 1301 College Algebra Department of Computer and Mathematical Sciences University of Houston-Downtown Revised: Fall 2009 PLEASE READ THE FOLLOWING CAREFULLY: 1. The

More information

An Introduction to Optimal Control Applied to Disease Models

An Introduction to Optimal Control Applied to Disease Models An Introduction to Optimal Control Applied to Disease Models Suzanne Lenhart University of Tennessee, Knoxville Departments of Mathematics Lecture1 p.1/37 Example Number of cancer cells at time (exponential

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

7. Random variables as observables. Definition 7. A random variable (function) X on a probability measure space is called an observable

7. Random variables as observables. Definition 7. A random variable (function) X on a probability measure space is called an observable 7. Random variables as observables Definition 7. A random variable (function) X on a probability measure space is called an observable Note all functions are assumed to be measurable henceforth. Note that

More information

Chances are good Modeling stochastic forces in ecology

Chances are good Modeling stochastic forces in ecology Chances are good Modeling stochastic forces in ecology Ecologists have a love-hate relationship with mathematical models The current popularity in population ecology of models so abstract that it is difficult

More information

Equivalent Sets. It is intuitively clear that for finite sets E F iff Eand Fhave the same number of elementsþ

Equivalent Sets. It is intuitively clear that for finite sets E F iff Eand Fhave the same number of elementsþ Equivalent Sets Definition Let Eß F be sets. We say that E is equivalent to F iff there exists a bijection 0ÀEÄF. If Eis equivalent to F, we write E FÐor E For EµFor something similar: the notation varies

More information

Example: A Markov Process

Example: A Markov Process Example: A Markov Process Divide the greater metro region into three parts: city such as St. Louis), suburbs to include such areas as Clayton, University City, Richmond Heights, Maplewood, Kirkwood,...)

More information

MATHEMATICS 3D03 Instructor: Z.V. Kovarik DURATION OF EXAMINATION: 3 HOURS MCMASTER UNIVERSITY FINAL EXAMINATION April, 2010

MATHEMATICS 3D03 Instructor: Z.V. Kovarik DURATION OF EXAMINATION: 3 HOURS MCMASTER UNIVERSITY FINAL EXAMINATION April, 2010 Mathematics 303(2010), Final exam Answers, page 1 of * First Name: ANSWERS Last Name: Student Numer: MATHEMATICS 303 AY CLASS Instructor: Z.V. Kovarik URATION OF EXAMINATION: 3 HOURS MCMASTER UNIVERSITY

More information

Gradient Ascent Chris Piech CS109, Stanford University

Gradient Ascent Chris Piech CS109, Stanford University Gradient Ascent Chris Piech CS109, Stanford University Our Path Deep Learning Linear Regression Naïve Bayes Logistic Regression Parameter Estimation Our Path Deep Learning Linear Regression Naïve Bayes

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 4771 Instructor: Tony Jebara Topic 11 Maximum Likelihood as Bayesian Inference Maximum A Posteriori Bayesian Gaussian Estimation Why Maximum Likelihood? So far, assumed max (log) likelihood

More information

236 Chapter 4 Applications of Derivatives

236 Chapter 4 Applications of Derivatives 26 Chapter Applications of Derivatives Î$ &Î$ Î$ 5 Î$ 0 "Î$ 5( 2) $È 26. (a) g() œ ( 5) œ 5 Ê g () œ œ Ê critical points at œ 2 and œ 0 Ê g œ ± )(, increasing on ( _ß 2) and (!ß _), decreasing on ( 2 ß!)!

More information

Algorithmisches Lernen/Machine Learning

Algorithmisches Lernen/Machine Learning Algorithmisches Lernen/Machine Learning Part 1: Stefan Wermter Introduction Connectionist Learning (e.g. Neural Networks) Decision-Trees, Genetic Algorithms Part 2: Norman Hendrich Support-Vector Machines

More information

Math 1AA3/1ZB3 Sample Test 3, Version #1

Math 1AA3/1ZB3 Sample Test 3, Version #1 Math 1AA3/1ZB3 Sample Test 3, Version 1 Name: (Last Name) (First Name) Student Number: Tutorial Number: This test consists of 16 multiple choice questions worth 1 mark each (no part marks), and 1 question

More information

An Analytical Comparison between Bayes Point Machines and Support Vector Machines

An Analytical Comparison between Bayes Point Machines and Support Vector Machines An Analytical Comparison between Bayes Point Machines and Support Vector Machines Ashish Kapoor Massachusetts Institute of Technology Cambridge, MA 02139 kapoor@mit.edu Abstract This paper analyzes the

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

CHAPTER I INTRODUCTION

CHAPTER I INTRODUCTION CHAPTER I INTRODUCTION Preliminaries. Perturbation theory is the study of the effects of small disturbances in the mathematical model of a physical system. The model could be expressed as an algebraic

More information

Curve Fitting Re-visited, Bishop1.2.5

Curve Fitting Re-visited, Bishop1.2.5 Curve Fitting Re-visited, Bishop1.2.5 Maximum Likelihood Bishop 1.2.5 Model Likelihood differentiation p(t x, w, β) = Maximum Likelihood N N ( t n y(x n, w), β 1). (1.61) n=1 As we did in the case of the

More information

Stochastic logistic model with environmental noise. Brian Dennis Dept Fish and Wildlife Resources and Dept Statistical Science University of Idaho

Stochastic logistic model with environmental noise. Brian Dennis Dept Fish and Wildlife Resources and Dept Statistical Science University of Idaho Stochastic logistic model with environmental noise Brian Dennis Dept Fish and Wildlife Resources and Dept Statistical Science University of Idaho Questions I. What plausible biological mechanisms, if any,

More information

Chapter Seven The Quantum Mechanical Simple Harmonic Oscillator

Chapter Seven The Quantum Mechanical Simple Harmonic Oscillator Capter Seven Te Quantum Mecanical Simple Harmonic Oscillator Introduction Te potential energy function for a classical, simple armonic oscillator is given by ZÐBÑ œ 5B were 5 is te spring constant. Suc

More information

Here are proofs for some of the results about diagonalization that were presented without proof in class.

Here are proofs for some of the results about diagonalization that were presented without proof in class. Suppose E is an 8 8 matrix. In what follows, terms like eigenvectors, eigenvalues, and eigenspaces all refer to the matrix E. Here are proofs for some of the results about diagonalization that were presented

More information

QUALIFYING EXAMINATION II IN MATHEMATICAL STATISTICS SATURDAY, MAY 9, Examiners: Drs. K. M. Ramachandran and G. S. Ladde

QUALIFYING EXAMINATION II IN MATHEMATICAL STATISTICS SATURDAY, MAY 9, Examiners: Drs. K. M. Ramachandran and G. S. Ladde QUALIFYING EXAMINATION II IN MATHEMATICAL STATISTICS SATURDAY, MAY 9, 2015 Examiners: Drs. K. M. Ramachandran and G. S. Ladde INSTRUCTIONS: a. The quality is more important than the quantity. b. Attempt

More information

Definition Suppose M is a collection (set) of sets. M is called inductive if

Definition Suppose M is a collection (set) of sets. M is called inductive if Definition Suppose M is a collection (set) of sets. M is called inductive if a) g M, and b) if B Mß then B MÞ Then we ask: are there any inductive sets? Informally, it certainly looks like there are. For

More information

Inner Product Spaces. Another notation sometimes used is X.?

Inner Product Spaces. Another notation sometimes used is X.? Inner Product Spaces X In 8 we have an inner product? @? @?@ ÞÞÞ? 8@ 8Þ Another notation sometimes used is X? ß@? @? @? @ ÞÞÞ? @ 8 8 The inner product in?@ ß in 8 has several essential properties ( see

More information

OC330C. Wiring Diagram. Recommended PKH- P35 / P50 GALH PKA- RP35 / RP50. Remarks (Drawing No.) No. Parts No. Parts Name Specifications

OC330C. Wiring Diagram. Recommended PKH- P35 / P50 GALH PKA- RP35 / RP50. Remarks (Drawing No.) No. Parts No. Parts Name Specifications G G " # $ % & " ' ( ) $ * " # $ % & " ( + ) $ * " # C % " ' ( ) $ * C " # C % " ( + ) $ * C D ; E @ F @ 9 = H I J ; @ = : @ A > B ; : K 9 L 9 M N O D K P D N O Q P D R S > T ; U V > = : W X Y J > E ; Z

More information

MATH 1301 (College Algebra) - Final Exam Review

MATH 1301 (College Algebra) - Final Exam Review MATH 1301 (College Algebra) - Final Exam Review This review is comprehensive but should not be the only material used to study for the final exam. It should not be considered a preview of the final exam.

More information

Distributed Estimation, Information Loss and Exponential Families. Qiang Liu Department of Computer Science Dartmouth College

Distributed Estimation, Information Loss and Exponential Families. Qiang Liu Department of Computer Science Dartmouth College Distributed Estimation, Information Loss and Exponential Families Qiang Liu Department of Computer Science Dartmouth College Statistical Learning / Estimation Learning generative models from data Topic

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Lior Wolf 2014-15 We know that X ~ B(n,p), but we do not know p. We get a random sample from X, a

More information

STATISTICAL LIKELIHOOD REPRESENTATIONS OF PRIOR KNOWLEDGE IN MACHINE LEARNING

STATISTICAL LIKELIHOOD REPRESENTATIONS OF PRIOR KNOWLEDGE IN MACHINE LEARNING STATISTICAL LIKELIHOOD REPRESENTATIONS OF PRIOR KNOWLEDGE IN MACHINE LEARNING Mark A. Kon Department of Mathematics an Statistics Boston University Boston, MA 02215 email: mkon@bu.eu Anrzej Przybyszewski

More information

ETIKA V PROFESII PSYCHOLÓGA

ETIKA V PROFESII PSYCHOLÓGA P r a ž s k á v y s o k á š k o l a p s y c h o s o c i á l n í c h s t u d i í ETIKA V PROFESII PSYCHOLÓGA N a t á l i a S l o b o d n í k o v á v e d ú c i p r á c e : P h D r. M a r t i n S t r o u

More information

Introduction: MLE, MAP, Bayesian reasoning (28/8/13)

Introduction: MLE, MAP, Bayesian reasoning (28/8/13) STA561: Probabilistic machine learning Introduction: MLE, MAP, Bayesian reasoning (28/8/13) Lecturer: Barbara Engelhardt Scribes: K. Ulrich, J. Subramanian, N. Raval, J. O Hollaren 1 Classifiers In this

More information

2. Let 0 be as in problem 1. Find the Fourier coefficient,&. (In other words, find the constant,& the Fourier series for 0.)

2. Let 0 be as in problem 1. Find the Fourier coefficient,&. (In other words, find the constant,& the Fourier series for 0.) Engineering Mathematics (ESE 317) Exam 4 April 23, 200 This exam contains seven multiple-choice problems worth two points each, 11 true-false problems worth one point each, and some free-response problems

More information

DEPARTMENT OF MATHEMATICS AND STATISTICS QUALIFYING EXAMINATION II IN MATHEMATICAL STATISTICS SATURDAY, SEPTEMBER 24, 2016

DEPARTMENT OF MATHEMATICS AND STATISTICS QUALIFYING EXAMINATION II IN MATHEMATICAL STATISTICS SATURDAY, SEPTEMBER 24, 2016 DEPARTMENT OF MATHEMATICS AND STATISTICS QUALIFYING EXAMINATION II IN MATHEMATICAL STATISTICS SATURDAY, SEPTEMBER 24, 2016 Examiners: Drs. K. M. Ramachandran and G. S. Ladde INSTRUCTIONS: a. The quality

More information

Least Absolute Shrinkage is Equivalent to Quadratic Penalization

Least Absolute Shrinkage is Equivalent to Quadratic Penalization Least Absolute Shrinkage is Equivalent to Quadratic Penalization Yves Grandvalet Heudiasyc, UMR CNRS 6599, Université de Technologie de Compiègne, BP 20.529, 60205 Compiègne Cedex, France Yves.Grandvalet@hds.utc.fr

More information

Dr. Nestler - Math 2 - Ch 3: Polynomial and Rational Functions

Dr. Nestler - Math 2 - Ch 3: Polynomial and Rational Functions Dr. Nestler - Math 2 - Ch 3: Polynomial and Rational Functions 3.1 - Polynomial Functions We have studied linear functions and quadratic functions Defn. A monomial or power function is a function of the

More information

Mixture of Gaussians Models

Mixture of Gaussians Models Mixture of Gaussians Models Outline Inference, Learning, and Maximum Likelihood Why Mixtures? Why Gaussians? Building up to the Mixture of Gaussians Single Gaussians Fully-Observed Mixtures Hidden Mixtures

More information

Course Outline MODEL INFORMATION. Bayes Decision Theory. Unsupervised Learning. Supervised Learning. Parametric Approach. Nonparametric Approach

Course Outline MODEL INFORMATION. Bayes Decision Theory. Unsupervised Learning. Supervised Learning. Parametric Approach. Nonparametric Approach Course Outline MODEL INFORMATION COMPLETE INCOMPLETE Bayes Decision Theory Supervised Learning Unsupervised Learning Parametric Approach Nonparametric Approach Parametric Approach Nonparametric Approach

More information

Optimal Control of PDEs

Optimal Control of PDEs Optimal Control of PDEs Suzanne Lenhart University of Tennessee, Knoville Department of Mathematics Lecture1 p.1/36 Outline 1. Idea of diffusion PDE 2. Motivating Eample 3. Big picture of optimal control

More information

Pattern Recognition. Parameter Estimation of Probability Density Functions

Pattern Recognition. Parameter Estimation of Probability Density Functions Pattern Recognition Parameter Estimation of Probability Density Functions Classification Problem (Review) The classification problem is to assign an arbitrary feature vector x F to one of c classes. The

More information

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions DD2431 Autumn, 2014 1 2 3 Classification with Probability Distributions Estimation Theory Classification in the last lecture we assumed we new: P(y) Prior P(x y) Lielihood x2 x features y {ω 1,..., ω K

More information

Æ Å not every column in E is a pivot column (so EB œ! has at least one free variable) Æ Å E has linearly dependent columns

Æ Å not every column in E is a pivot column (so EB œ! has at least one free variable) Æ Å E has linearly dependent columns ßÞÞÞß @ is linearly independent if B" @" B# @# ÞÞÞ B: @: œ! has only the trivial solution EB œ! has only the trivial solution Ðwhere E œ Ò@ @ ÞÞÞ@ ÓÑ every column in E is a pivot column E has linearly

More information