Stochastic logistic model with environmental noise. Brian Dennis Dept Fish and Wildlife Resources and Dept Statistical Science University of Idaho

Size: px
Start display at page:

Download "Stochastic logistic model with environmental noise. Brian Dennis Dept Fish and Wildlife Resources and Dept Statistical Science University of Idaho"

Transcription

1 Stochastic logistic model with environmental noise Brian Dennis Dept Fish and Wildlife Resources and Dept Statistical Science University of Idaho

2 Questions I. What plausible biological mechanisms, if any, lead to logistic growth? Derivations of & mechanisms behind logistic II. How can the logistic be made more useful? Accounting for stochastic forces Í Fitting to data and evaluating

3 œ<r R œ+r,r.r _ <.> R # # R : population abundance at time > <: maximum per-unit-abundance growth rate R : equilibrium abundance " R transformation: ] œ yields linear DE for ] solution trajectory: R œ R R R "! / R! <>

4 time population abundance

5 I. Derivations/mechanisms A. Verhulst (1838) "logistique # α added,r and,r to the exponential growth DE as an adjustment B. Lotka (1925).R.> œ7r +R,R # Handwaves about the sign of, Taylor series expands around a particular point what point does he have in mind? Lotka's derivation is parroted in many ecology textbooks and websites (Hutchinson 1978) C. Chapman (1928).R R.> O œ<r environmental resistance œ<r "

6 D. Dennis and Patil (1984), Dennis (1989a) Re-formulation of Lotka.R.> œr1r 1R is per-unit-abundance growth rate, presumed decreasing Near R, 1R w œ!, 1 R! w 1 R 1 R R R 1 R œ +,R w w + œ R1 R, œ 1 R

7 population abundance (1/N)dN/dt

8 E. Substrate-product model: "something replacing something else" Invasions: cheat grass replacing native grassland. Epidemics: infecteds replacing susceptibles. Commerce: Wal-Mart replacing K-Mart. Innovation: DVDs replacing VHSs. Dissemination of ideas: Like an autocatalytic chemical reaction (Pearl and Reed 1920, Reed and Berkson 1929):.R.> " œ5ro R

9

10

11 F. (Williams 1972) Explicit limiting nutrient (or substrate) 1. Closed system.g.> œ α " 5 GR α: conversion (in)efficiency.r.> œ5gr " mass balance: G αrœg αr Ê G œ G αr αr!!!! œ<r R <œ5 G αr, Rœ G αr.r < ".> R # "!! α!!

12 2. Open system (like a laboratory microbial chemostat).g.> œ5! # α 5GR 5G "! #: nutrient concentration in inflow 5! : dilution rate.r.> œ5gr 5R "! mass balance: G α Rœ# G α R # /!! 5 >! Ê.R.> is a logistic with time-dependent coefficients (Dennis 1978), is exactly logistic if # œg αr, and becomes logistic as >p!!

13 3. Closed system, Michaelis-Menton nutrient uptake C + V Þ C~V Ä V + N V: uptake bottleneck (gut volume, cell membrane sites, filter surface, etc.) Ê rate of product formation per unit abundance JG (analogous to Michaelis-Menten enzyme kinetics).g JGR.> œ α O G.R JGR.> œ O G O G

14 population abundance growth rate

15 time population abundance

16 II. Stochastic forces and data analysis A. Problems with using the logistic as is. 1. Life is stochastic (data depart from model in noisy ways) 2. How to do inferences (estimation, evaluation) 3. Modeling objectives might require more realistic modeling

17

18

19

20 B. Off-the-shelf solution: least squares (Leach 1981) Data: time series population abundances 0 > " > # â > ; 8! 8" 8# â 8; Model parameters: <, R, 5 # Minimize departures of observations from logistic trajectory: ; WW <, R, œ R 83 R 8! 5 # 3œ" " / 8! <> 3 This procedure implicitly assumes a stochastic logistic model in which the underlying growth is deterministic and the departures from the trajectory are due to observation or measurement error. Ecological populations themselves are stochastic (process noise). #

21 C. Models of process noise Seek: a useful, general stochastic version of.r œ 7ÐRÑ.> Answer: a diffusion process is in the form.r> œ 7ÐR> Ñ.[ >, where: R > is population abundance at time >,.[ > µ normal(!,.>) 7Ð8Ñ is the infinitesimal mean ( skeleton is the infinitesimal variance

22 D. Stochastic logistic with environmental noise : 7Ð8Ñ œ <8 < œ 5 # 8 # 5 # (I'll use " 5" instead of R from here on... "equilibrium" of the stochastic model will be seen to be a probability distribution) this form Êln R has a constant infinitesimal variance > Ê substantial fluctuations at all population sizes, not just at low population sizes

23

24 Transition probability density function: :8>l8,, > +! Pr + R Ÿ, œ :8, >l8.8! :8>l8,.8œ1 # `: 1 ` 7: `> œ 2 `8# `8! (Fokker-Planck equation) The FP for the stochastic logistic has been solved! :8>l8, œ: /! - -! -% E -> 9 - is related to a confluent hypergeometric function!

25 Stationary pdf of a diffusion process: :8>l8, Ò :8! :8 œ / as >p #.8 stationary pdf exists if :8.8œ! 1

26 Stationary pdf for stochastic logistic: " >α α " " 8 :8 œ 8 / α (gamma distribution) 2< 2< 5 55 α œ 1, " œ # # stationary pdf exists if α!

27

28 Moments of R > :? 8, > œ E R lr œ 8 / /! >!! #! `? `? `> œ `8! `8 / / /! #! (backward equation)? 8,0 œ 8 / /!!

29 Approximation for the transition pdf (Dennis 1989b) 1. Find approximations for? 8, > and? 8, > "! #! 2. Use a gamma pdf with those moments

30 1. Singular perturbation (small noise expansion) of backward equation: write?/ 8!, > œ A! 8!, > # 5A 8, > 5 A 8, > â "! #! substitute into the PDE, equate coefficients of like powers of 5, solve resulting PDEs for A, A,..., subject to initial condition (laborious)! " Wieszak (1988) proved that this perturbation is asymptotically correct

31 !? 8, > 5Î " / "! 5 8 8! <> 55 #5 #<> #5 <> 5 8 <> #< 8! 8! 8! $ 5 8! <> 8! " / / " #< >/ " /! # # 5 8 <> #! 8! 5 # 5 # %5 & #<> %5 <> " # < 8! # 8! # % 5 8! <> 5 8! <> 5 8! <> 8 8 8!? 8, > 5 Î " / #< / # / < >/ / # " /!!! 2. Use a gamma distribution w/ matching moments as transition pdf: " > α > " " > 8 :8>l8, 8 / α! >α?" α 8, > œ # >! >?? # " # " " " 8, > œ >!??? # " #

32 E. Simulations: does the approximation work?.r œ <R < R.> 5R.[ > > 5 > # > > 1000 realizations ending at each time > ( > œ 1, 2, 3,...until stationarity) Density probability plot: excellent graphical tool for assessing goodness of fit for a continuous distribution (related to the probability plot)

33 ], r.v. with continuous distribution J C, 0 C : cdf & pdf models to be assessed C, C,..., C data (ordered) " # ; usual probability plot : " 3 ; 3 plot J vs. C " # straight line indicates good fit, but the interpretations of departures from fit are not transparent

34 density probability plot (Jones and Daly 1995, Jones 2004): " 3 ; 3 # plot 0 J vs. C superimposed with plot of 0 C "

35

36

37

38

39

40

41

42

43 Uses of the stochastic logistic: data analysis! <, 5, 5 # unknown parameters 0 > " > # â > ; 8! 8" 8# â 8; time series data (pop. abundances) 7 œ>!, 7 œ> >,..., 7 œ> > intervals " " # # " ; ; ; " Likelihood function: # P<5,, 5 œ:8, 7 l8 :8, 7 l8 â:8, 7 l8 " "! # # " ; ; ; " # # s<, s 5, 5s maximum likelihood estimates (values of <, 5, 5 that jointly maximize P<5,, 5 # ) requires numerical maximization: optim() function in R, etc.

44 Residuals: " αs 3 * αs3 3 *s D œ " s "Î$ are approximately normal(0, 1) distributed, where α 3 αs œ α 8, s<, s " 5, 5s " s œ " 8, s <, s 5, 5 s # " " #

45

46

47

48

49

50 References: Chapman 1928 Ecology, Dennis 1978 Mathematical Biosciences, Dennis 1989a Natural Resource Modeling, Dennis 1989b in MacDonald et al. eds. Estimation and analysis of insect populations, Dennis and Patil 1984 Mathematical Biosciences, Hutchinson 1978 An introduction to population ecology, Jones 2004 The American Statistician, Jones and Daly 1995 Communications in Statistics Simulation and Computation, Leach 1981 JRSS A, Lotka 1925 Elements of physical biology, Pearl and Reed 1920 PNAS, Reed and Berkson 1929 J Physical Chemistry, Verhulst 1838 Correspondance Mathématique et Physique, Wieszak 1988 UI PhD Thesis, Williams 1972 in Deevey, ed. Growth by intussusception: ecological essays in honor of G. E. Hutchinson.

Allee effects in stochastic populations

Allee effects in stochastic populations Allee effects in stochastic populations Brian Dennis Dept Fish and Wildlife Resources University of Idaho Moscow ID 83844-1136 USA brian@uidaho.edu ... what minimal numbers are necessary if a species is

More information

Chances are good Modeling stochastic forces in ecology

Chances are good Modeling stochastic forces in ecology Chances are good Modeling stochastic forces in ecology Ecologists have a love-hate relationship with mathematical models The current popularity in population ecology of models so abstract that it is difficult

More information

It's Only Fitting. Fitting model to data parameterizing model estimating unknown parameters in the model

It's Only Fitting. Fitting model to data parameterizing model estimating unknown parameters in the model It's Only Fitting Fitting model to data parameterizing model estimating unknown parameters in the model Likelihood: an example Cohort of 8! individuals observe survivors at times >œ 1, 2, 3,..., : 8",

More information

SIMULTANEOUS CONFIDENCE BANDS FOR THE PTH PERCENTILE AND THE MEAN LIFETIME IN EXPONENTIAL AND WEIBULL REGRESSION MODELS. Ping Sa and S.J.

SIMULTANEOUS CONFIDENCE BANDS FOR THE PTH PERCENTILE AND THE MEAN LIFETIME IN EXPONENTIAL AND WEIBULL REGRESSION MODELS. Ping Sa and S.J. SIMULTANEOUS CONFIDENCE BANDS FOR THE PTH PERCENTILE AND THE MEAN LIFETIME IN EXPONENTIAL AND WEIBULL REGRESSION MODELS " # Ping Sa and S.J. Lee " Dept. of Mathematics and Statistics, U. of North Florida,

More information

MATH 1014 N 3.0 W2015 APPLIED CALCULUS II - SECTION P. Perhaps the most important of all the applications of calculus is to differential equations.

MATH 1014 N 3.0 W2015 APPLIED CALCULUS II - SECTION P. Perhaps the most important of all the applications of calculus is to differential equations. MATH 1014 N 3.0 W2015 APPLIED CALCULUS II - SECTION P Stewart Chapter 9 Differential Equations Perhaps the most important of all the applications of calculus is to differential equations. 9.1 Modeling

More information

An investigation into the use of maximum posterior probability estimates for assessing the accuracy of large maps

An investigation into the use of maximum posterior probability estimates for assessing the accuracy of large maps An investigation into the use of maximum posterior probability estimates for assessing the accuracy of large maps Brian Steele 1 and Dave Patterson2 Dept. of Mathematical Sciences University of Montana

More information

Random and mixed effects models

Random and mixed effects models Random and mixed effects models Fixed effect: Three fields were available for an agricultural yield experiment. The experiment is conducted on those fields. The mean yield of this particular strain of

More information

Handbook of Stochastic Methods

Handbook of Stochastic Methods C. W. Gardiner Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences Third Edition With 30 Figures Springer Contents 1. A Historical Introduction 1 1.1 Motivation I 1.2 Some Historical

More information

Continuum Limit of Forward Kolmogorov Equation Friday, March 06, :04 PM

Continuum Limit of Forward Kolmogorov Equation Friday, March 06, :04 PM Continuum Limit of Forward Kolmogorov Equation Friday, March 06, 2015 2:04 PM Please note that one of the equations (for ordinary Brownian motion) in Problem 1 was corrected on Wednesday night. And actually

More information

Frequentist-Bayesian Model Comparisons: A Simple Example

Frequentist-Bayesian Model Comparisons: A Simple Example Frequentist-Bayesian Model Comparisons: A Simple Example Consider data that consist of a signal y with additive noise: Data vector (N elements): D = y + n The additive noise n has zero mean and diagonal

More information

Applied Probability and Stochastic Processes

Applied Probability and Stochastic Processes Applied Probability and Stochastic Processes In Engineering and Physical Sciences MICHEL K. OCHI University of Florida A Wiley-Interscience Publication JOHN WILEY & SONS New York - Chichester Brisbane

More information

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r )

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) v e r. E N G O u t l i n e T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) C o n t e n t s : T h i s w o

More information

An Introduction to Optimal Control Applied to Disease Models

An Introduction to Optimal Control Applied to Disease Models An Introduction to Optimal Control Applied to Disease Models Suzanne Lenhart University of Tennessee, Knoxville Departments of Mathematics Lecture1 p.1/37 Example Number of cancer cells at time (exponential

More information

AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS

AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS First the X, then the AR, finally the MA Jan C. Willems, K.U. Leuven Workshop on Observation and Estimation Ben Gurion University, July 3, 2004 p./2 Joint

More information

Math 345 Intro to Math Biology Lecture 19: Models of Molecular Events and Biochemistry

Math 345 Intro to Math Biology Lecture 19: Models of Molecular Events and Biochemistry Math 345 Intro to Math Biology Lecture 19: Models of Molecular Events and Biochemistry Junping Shi College of William and Mary, USA Molecular biology and Biochemical kinetics Molecular biology is one of

More information

Computer Simulation and Data Analysis in Molecular Biology and Biophysics

Computer Simulation and Data Analysis in Molecular Biology and Biophysics Victor Bloomfield Computer Simulation and Data Analysis in Molecular Biology and Biophysics An Introduction Using R Springer Contents Part I The Basics of R 1 Calculating with R 3 1.1 Installing R 3 1.1.1

More information

M4A42 APPLIED STOCHASTIC PROCESSES

M4A42 APPLIED STOCHASTIC PROCESSES M4A42 APPLIED STOCHASTIC PROCESSES G.A. Pavliotis Department of Mathematics Imperial College London, UK LECTURE 1 12/10/2009 Lectures: Mondays 09:00-11:00, Huxley 139, Tuesdays 09:00-10:00, Huxley 144.

More information

Animal Population Dynamics

Animal Population Dynamics Animal Population Dynamics Jennifer Gervais Weniger 449 737-6122 jennifer.gervais@oregonstate.edu Syllabus Course webpage http://oregonstate.edu/~gervaisj/ There is something fascinating about science.

More information

MAP METHODS FOR MACHINE LEARNING. Mark A. Kon, Boston University Leszek Plaskota, Warsaw University, Warsaw Andrzej Przybyszewski, McGill University

MAP METHODS FOR MACHINE LEARNING. Mark A. Kon, Boston University Leszek Plaskota, Warsaw University, Warsaw Andrzej Przybyszewski, McGill University MAP METHODS FOR MACHINE LEARNING Mark A. Kon, Boston University Leszek Plaskota, Warsaw University, Warsaw Andrzej Przybyszewski, McGill University Example: Control System 1. Paradigm: Machine learning

More information

Analysis of bacterial population growth using extended logistic Growth model with distributed delay. Abstract INTRODUCTION

Analysis of bacterial population growth using extended logistic Growth model with distributed delay. Abstract INTRODUCTION Analysis of bacterial population growth using extended logistic Growth model with distributed delay Tahani Ali Omer Department of Mathematics and Statistics University of Missouri-ansas City ansas City,

More information

SARAH P. OTTO and TROY DAY

SARAH P. OTTO and TROY DAY A Biologist's Guide to Mathematical Modeling in Ecology and Evolution SARAH P. OTTO and TROY DAY Univsr?.ltats- und Lender bibliolhek Darmstadt Bibliothek Biotogi Princeton University Press Princeton and

More information

Chapter 6. Random Processes

Chapter 6. Random Processes Chapter 6 Random Processes Random Process A random process is a time-varying function that assigns the outcome of a random experiment to each time instant: X(t). For a fixed (sample path): a random process

More information

Handbook of Stochastic Methods

Handbook of Stochastic Methods Springer Series in Synergetics 13 Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences von Crispin W Gardiner Neuausgabe Handbook of Stochastic Methods Gardiner schnell und portofrei

More information

Birth-Death Processes

Birth-Death Processes Birth-Death Processes Birth-Death Processes: Transient Solution Poisson Process: State Distribution Poisson Process: Inter-arrival Times Dr Conor McArdle EE414 - Birth-Death Processes 1/17 Birth-Death

More information

System Identification, Lecture 4

System Identification, Lecture 4 System Identification, Lecture 4 Kristiaan Pelckmans (IT/UU, 2338) Course code: 1RT880, Report code: 61800 - Spring 2012 F, FRI Uppsala University, Information Technology 30 Januari 2012 SI-2012 K. Pelckmans

More information

Juan Juan Salon. EH National Bank. Sandwich Shop Nail Design. OSKA Beverly. Chase Bank. Marina Rinaldi. Orogold. Mariposa.

Juan Juan Salon. EH National Bank. Sandwich Shop Nail Design. OSKA Beverly. Chase Bank. Marina Rinaldi. Orogold. Mariposa. ( ) X é X é Q Ó / 8 ( ) Q / ( ) ( ) : ( ) : 44-3-8999 433 4 z 78-19 941, #115 Z 385-194 77-51 76-51 74-7777, 75-5 47-55 74-8141 74-5115 78-3344 73-3 14 81-4 86-784 78-33 551-888 j 48-4 61-35 z/ zz / 138

More information

Home Page. Title Page. Page 1 of c. Go Back. Full Screen. Close. Quit

Home Page. Title Page. Page 1 of c. Go Back. Full Screen. Close. Quit ênúo (15-16 ïä)) wðï Page 1 of 100 2016c Introduction to Mathematical Statistics Fifth Edition Authors: Robert V. Hogg and Allen T. Craig Page 2 of 100 Page 3 of 100 Assistant: Zhang Juan (q ) URL: http://math.cnu.edu.cn/szdw/56293.htm

More information

8œ! This theorem is justified by repeating the process developed for a Taylor polynomial an infinite number of times.

8œ! This theorem is justified by repeating the process developed for a Taylor polynomial an infinite number of times. Taylor and Maclaurin Series We can use the same process we used to find a Taylor or Maclaurin polynomial to find a power series for a particular function as long as the function has infinitely many derivatives.

More information

Empirical Macroeconomics

Empirical Macroeconomics Empirical Macroeconomics Francesco Franco Nova SBE April 5, 2016 Francesco Franco Empirical Macroeconomics 1/39 Growth and Fluctuations Supply and Demand Figure : US dynamics Francesco Franco Empirical

More information

LECTURE 1: Introduction and Brief History of Population Ecology

LECTURE 1: Introduction and Brief History of Population Ecology WMAN 512 SPRING 2010 ADV WILDL POP ECOL LECTURE 1: Introduction and Brief History of Population Ecology Cappuccino, N. 1995. Novel approaches to the study of population dynamics. pp 2-16 in Population

More information

E.G., data mining, prediction. Function approximation problem: How >9 best estimate the function 0 from partial information (examples)

E.G., data mining, prediction. Function approximation problem: How >9 best estimate the function 0 from partial information (examples) Can Neural Network and Statistical Learning Theory be Formulated in terms of Continuous Complexity Theory? 1. Neural Networks and Statistical Learning Theory Many areas of mathematics, statistics, and

More information

Read Section 1.1, Examples of time series, on pages 1-8. These example introduce the book; you are not tested on them.

Read Section 1.1, Examples of time series, on pages 1-8. These example introduce the book; you are not tested on them. TS Module 1 Time series overview (The attached PDF file has better formatting.)! Model building! Time series plots Read Section 1.1, Examples of time series, on pages 1-8. These example introduce the book;

More information

Syllabus BINF Computational Biology Core Course

Syllabus BINF Computational Biology Core Course Course Description Syllabus BINF 701-702 Computational Biology Core Course BINF 701/702 is the Computational Biology core course developed at the KU Center for Computational Biology. The course is designed

More information

Analytical Non-Linear Uncertainty Propagation: Theory And Implementation

Analytical Non-Linear Uncertainty Propagation: Theory And Implementation Analytical Non-Linear Uncertainty Propagation: Theory And Implementation Kohei Fujimoto 1), Daniel J. Scheeres 2), and K. Terry Alfriend 1) May 13, 2013 1) Texas A&M University 2) The University of Colorado

More information

X t = a t + r t, (7.1)

X t = a t + r t, (7.1) Chapter 7 State Space Models 71 Introduction State Space models, developed over the past 10 20 years, are alternative models for time series They include both the ARIMA models of Chapters 3 6 and the Classical

More information

Table of Contents [ntc]

Table of Contents [ntc] Table of Contents [ntc] 1. Introduction: Contents and Maps Table of contents [ntc] Equilibrium thermodynamics overview [nln6] Thermal equilibrium and nonequilibrium [nln1] Levels of description in statistical

More information

Sampling-based probabilistic inference through neural and synaptic dynamics

Sampling-based probabilistic inference through neural and synaptic dynamics Sampling-based probabilistic inference through neural and synaptic dynamics Wolfgang Maass for Robert Legenstein Institute for Theoretical Computer Science Graz University of Technology, Austria Institute

More information

Control Theory in Physics and other Fields of Science

Control Theory in Physics and other Fields of Science Michael Schulz Control Theory in Physics and other Fields of Science Concepts, Tools, and Applications With 46 Figures Sprin ger 1 Introduction 1 1.1 The Aim of Control Theory 1 1.2 Dynamic State of Classical

More information

Final exam: Computer-controlled systems (Datorbaserad styrning, 1RT450, 1TS250)

Final exam: Computer-controlled systems (Datorbaserad styrning, 1RT450, 1TS250) Uppsala University Department of Information Technology Systems and Control Professor Torsten Söderström Final exam: Computer-controlled systems (Datorbaserad styrning, RT450, TS250) Date: December 9,

More information

Modeling Microbial Populations in the Chemostat

Modeling Microbial Populations in the Chemostat Modeling Microbial Populations in the Chemostat Hal Smith A R I Z O N A S T A T E U N I V E R S I T Y H.L. Smith (ASU) Modeling Microbial Populations in the Chemostat MBI, June 3, 204 / 34 Outline Why

More information

Optimal Control of PDEs

Optimal Control of PDEs Optimal Control of PDEs Suzanne Lenhart University of Tennessee, Knoville Department of Mathematics Lecture1 p.1/36 Outline 1. Idea of diffusion PDE 2. Motivating Eample 3. Big picture of optimal control

More information

Modeling the Immune System W9. Ordinary Differential Equations as Macroscopic Modeling Tool

Modeling the Immune System W9. Ordinary Differential Equations as Macroscopic Modeling Tool Modeling the Immune System W9 Ordinary Differential Equations as Macroscopic Modeling Tool 1 Lecture Notes for ODE Models We use the lecture notes Theoretical Fysiology 2006 by Rob de Boer, U. Utrecht

More information

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for COMPUTATIONAL BIOLOGY A. COURSE CODES: FFR 110, FIM740GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for COMPUTATIONAL BIOLOGY A. COURSE CODES: FFR 110, FIM740GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET EXAM for COMPUTATIONAL BIOLOGY A COURSE CODES: FFR 110, FIM740GU, PhD Time: Place: Teachers: Allowed material: Not allowed: June 8, 2018, at 08 30 12 30 Johanneberg Kristian

More information

From cell biology to Petri nets. Rainer Breitling, Groningen, NL David Gilbert, London, UK Monika Heiner, Cottbus, DE

From cell biology to Petri nets. Rainer Breitling, Groningen, NL David Gilbert, London, UK Monika Heiner, Cottbus, DE From cell biology to Petri nets Rainer Breitling, Groningen, NL David Gilbert, London, UK Monika Heiner, Cottbus, DE Biology = Concentrations Breitling / 2 The simplest chemical reaction A B irreversible,

More information

Different approaches to model wind speed based on stochastic differential equations

Different approaches to model wind speed based on stochastic differential equations 1 Universidad de Castilla La Mancha Different approaches to model wind speed based on stochastic differential equations Rafael Zárate-Miñano Escuela de Ingeniería Minera e Industrial de Almadén Universidad

More information

Institute of Actuaries of India

Institute of Actuaries of India Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2018 Examinations Subject CT3 Probability and Mathematical Statistics Core Technical Syllabus 1 June 2017 Aim The

More information

Chapter 3 - Temporal processes

Chapter 3 - Temporal processes STK4150 - Intro 1 Chapter 3 - Temporal processes Odd Kolbjørnsen and Geir Storvik January 23 2017 STK4150 - Intro 2 Temporal processes Data collected over time Past, present, future, change Temporal aspect

More information

Covariance function estimation in Gaussian process regression

Covariance function estimation in Gaussian process regression Covariance function estimation in Gaussian process regression François Bachoc Department of Statistics and Operations Research, University of Vienna WU Research Seminar - May 2015 François Bachoc Gaussian

More information

INVERTED KUMARASWAMY DISTRIBUTION: PROPERTIES AND ESTIMATION

INVERTED KUMARASWAMY DISTRIBUTION: PROPERTIES AND ESTIMATION Pak. J. Statist. 2017 Vol. 33(1), 37-61 INVERTED KUMARASWAMY DISTRIBUTION: PROPERTIES AND ESTIMATION A. M. Abd AL-Fattah, A.A. EL-Helbawy G.R. AL-Dayian Statistics Department, Faculty of Commerce, AL-Azhar

More information

Introduction to the Mathematical and Statistical Foundations of Econometrics Herman J. Bierens Pennsylvania State University

Introduction to the Mathematical and Statistical Foundations of Econometrics Herman J. Bierens Pennsylvania State University Introduction to the Mathematical and Statistical Foundations of Econometrics 1 Herman J. Bierens Pennsylvania State University November 13, 2003 Revised: March 15, 2004 2 Contents Preface Chapter 1: Probability

More information

Stochastic models in biology and their deterministic analogues

Stochastic models in biology and their deterministic analogues Stochastic models in biology and their deterministic analogues Alan McKane Theory Group, School of Physics and Astronomy, University of Manchester Newton Institute, May 2, 2006 Stochastic models in biology

More information

The Mixture Approach for Simulating New Families of Bivariate Distributions with Specified Correlations

The Mixture Approach for Simulating New Families of Bivariate Distributions with Specified Correlations The Mixture Approach for Simulating New Families of Bivariate Distributions with Specified Correlations John R. Michael, Significance, Inc. and William R. Schucany, Southern Methodist University The mixture

More information

NPTEL

NPTEL NPTEL Syllabus Nonequilibrium Statistical Mechanics - Video course COURSE OUTLINE Thermal fluctuations, Langevin dynamics, Brownian motion and diffusion, Fokker-Planck equations, linear response theory,

More information

System Identification, Lecture 4

System Identification, Lecture 4 System Identification, Lecture 4 Kristiaan Pelckmans (IT/UU, 2338) Course code: 1RT880, Report code: 61800 - Spring 2016 F, FRI Uppsala University, Information Technology 13 April 2016 SI-2016 K. Pelckmans

More information

Gaussian Processes for Machine Learning

Gaussian Processes for Machine Learning Gaussian Processes for Machine Learning Carl Edward Rasmussen Max Planck Institute for Biological Cybernetics Tübingen, Germany carl@tuebingen.mpg.de Carlos III, Madrid, May 2006 The actual science of

More information

Step-Stress Models and Associated Inference

Step-Stress Models and Associated Inference Department of Mathematics & Statistics Indian Institute of Technology Kanpur August 19, 2014 Outline Accelerated Life Test 1 Accelerated Life Test 2 3 4 5 6 7 Outline Accelerated Life Test 1 Accelerated

More information

Connection equations with stream variables are generated in a model when using the # $ % () operator or the & ' %

Connection equations with stream variables are generated in a model when using the # $ % () operator or the & ' % 7 9 9 7 The two basic variable types in a connector potential (or across) variable and flow (or through) variable are not sufficient to describe in a numerically sound way the bi-directional flow of matter

More information

Population Dynamics in a Microfounded Predator-Prey Model. Thomas Christiaans. University of Siegen. Discussion Paper No

Population Dynamics in a Microfounded Predator-Prey Model. Thomas Christiaans. University of Siegen. Discussion Paper No Volkswirtschaftliche Diskussionsbeiträge V W L Population Dynamics in a Microfounded Predator-Prey Model Thomas Christiaans University of Siegen Discussion Paper No. 8-04 ISSN 433-058x UNIVERSITÄT SIEGEN

More information

covariance function, 174 probability structure of; Yule-Walker equations, 174 Moving average process, fluctuations, 5-6, 175 probability structure of

covariance function, 174 probability structure of; Yule-Walker equations, 174 Moving average process, fluctuations, 5-6, 175 probability structure of Index* The Statistical Analysis of Time Series by T. W. Anderson Copyright 1971 John Wiley & Sons, Inc. Aliasing, 387-388 Autoregressive {continued) Amplitude, 4, 94 case of first-order, 174 Associated

More information

Organization. I MCMC discussion. I project talks. I Lecture.

Organization. I MCMC discussion. I project talks. I Lecture. Organization I MCMC discussion I project talks. I Lecture. Content I Uncertainty Propagation Overview I Forward-Backward with an Ensemble I Model Reduction (Intro) Uncertainty Propagation in Causal Systems

More information

Mathematical Biology - Lecture 1 - general formulation

Mathematical Biology - Lecture 1 - general formulation Mathematical Biology - Lecture 1 - general formulation course description Learning Outcomes This course is aimed to be accessible both to masters students of biology who have a good understanding of the

More information

1 Random walks and data

1 Random walks and data Inference, Models and Simulation for Complex Systems CSCI 7-1 Lecture 7 15 September 11 Prof. Aaron Clauset 1 Random walks and data Supposeyou have some time-series data x 1,x,x 3,...,x T and you want

More information

Final Project Descriptions Introduction to Mathematical Biology Professor: Paul J. Atzberger. Project I: Predator-Prey Equations

Final Project Descriptions Introduction to Mathematical Biology Professor: Paul J. Atzberger. Project I: Predator-Prey Equations Final Project Descriptions Introduction to Mathematical Biology Professor: Paul J. Atzberger Project I: Predator-Prey Equations The Lotka-Volterra Predator-Prey Model is given by: du dv = αu βuv = ρβuv

More information

Principles of Synthetic Biology: Midterm Exam

Principles of Synthetic Biology: Midterm Exam Principles of Synthetic Biology: Midterm Exam October 28, 2010 1 Conceptual Simple Circuits 1.1 Consider the plots in figure 1. Identify all critical points with an x. Put a circle around the x for each

More information

Regression Models - Introduction

Regression Models - Introduction Regression Models - Introduction In regression models, two types of variables that are studied: A dependent variable, Y, also called response variable. It is modeled as random. An independent variable,

More information

Infinite Dimensional Vector Spaces. 1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces

Infinite Dimensional Vector Spaces. 1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces MA 751 Part 3 Infinite Dimensional Vector Spaces 1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces Microarray experiment: Question: Gene expression - when is the DNA in

More information

Gene expression experiments. Infinite Dimensional Vector Spaces. 1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces

Gene expression experiments. Infinite Dimensional Vector Spaces. 1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces MA 751 Part 3 Gene expression experiments Infinite Dimensional Vector Spaces 1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces Gene expression experiments Question: Gene

More information

Density dependent state-space model for population abundance data with unequal time intervals

Density dependent state-space model for population abundance data with unequal time intervals Running head: Ornstein-Uhlenbeck state-space model Ecology: in press Density dependent state-space model for population abundance data with unequal time intervals Brian Dennis, and José Miguel Ponciano

More information

ABC methods for phase-type distributions with applications in insurance risk problems

ABC methods for phase-type distributions with applications in insurance risk problems ABC methods for phase-type with applications problems Concepcion Ausin, Department of Statistics, Universidad Carlos III de Madrid Joint work with: Pedro Galeano, Universidad Carlos III de Madrid Simon

More information

GAMM-workshop in UQ, TU Dortmund. Characterization of fluctuations in stochastic homogenization. Mitia Duerinckx, Antoine Gloria, Felix Otto

GAMM-workshop in UQ, TU Dortmund. Characterization of fluctuations in stochastic homogenization. Mitia Duerinckx, Antoine Gloria, Felix Otto GAMM-workshop in UQ, TU Dortmund Characterization of fluctuations in stochastic homogenization Mitia Duerinckx, Antoine Gloria, Felix Otto Max Planck Institut für Mathematik in den Naturwissenschaften,

More information

A game-theoretical approach to the analysis of microbial metabolic pathways

A game-theoretical approach to the analysis of microbial metabolic pathways A game-theoretical approach to the analysis of microbial metabolic pathways Stefan Schuster Dept. of Bioinformatics Friedrich Schiller University Jena, Germany Introduction Widely used hypothesis: During

More information

Empirical Macroeconomics

Empirical Macroeconomics Empirical Macroeconomics Francesco Franco Nova SBE April 21, 2015 Francesco Franco Empirical Macroeconomics 1/33 Growth and Fluctuations Supply and Demand Figure : US dynamics Francesco Franco Empirical

More information

Approximation around the risky steady state

Approximation around the risky steady state Approximation around the risky steady state Centre for International Macroeconomic Studies Conference University of Surrey Michel Juillard, Bank of France September 14, 2012 The views expressed herein

More information

Brownian Motion: Fokker-Planck Equation

Brownian Motion: Fokker-Planck Equation Chapter 7 Brownian Motion: Fokker-Planck Equation The Fokker-Planck equation is the equation governing the time evolution of the probability density of the Brownian particla. It is a second order differential

More information

Connections between score matching, contrastive divergence, and pseudolikelihood for continuous-valued variables. Revised submission to IEEE TNN

Connections between score matching, contrastive divergence, and pseudolikelihood for continuous-valued variables. Revised submission to IEEE TNN Connections between score matching, contrastive divergence, and pseudolikelihood for continuous-valued variables Revised submission to IEEE TNN Aapo Hyvärinen Dept of Computer Science and HIIT University

More information

Lessons in Estimation Theory for Signal Processing, Communications, and Control

Lessons in Estimation Theory for Signal Processing, Communications, and Control Lessons in Estimation Theory for Signal Processing, Communications, and Control Jerry M. Mendel Department of Electrical Engineering University of Southern California Los Angeles, California PRENTICE HALL

More information

An Application of Perturbation Methods in Evolutionary Ecology

An Application of Perturbation Methods in Evolutionary Ecology Dynamics at the Horsetooth Volume 2A, 2010. Focused Issue: Asymptotics and Perturbations An Application of Perturbation Methods in Evolutionary Ecology Department of Mathematics Colorado State University

More information

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition Preface Preface to the First Edition xi xiii 1 Basic Probability Theory 1 1.1 Introduction 1 1.2 Sample Spaces and Events 3 1.3 The Axioms of Probability 7 1.4 Finite Sample Spaces and Combinatorics 15

More information

Robustness of Principal Components

Robustness of Principal Components PCA for Clustering An objective of principal components analysis is to identify linear combinations of the original variables that are useful in accounting for the variation in those original variables.

More information

Bioinformatics: Network Analysis

Bioinformatics: Network Analysis Bioinformatics: Network Analysis Model Fitting COMP 572 (BIOS 572 / BIOE 564) - Fall 2013 Luay Nakhleh, Rice University 1 Outline Parameter estimation Model selection 2 Parameter Estimation 3 Generally

More information

F & B Approaches to a simple model

F & B Approaches to a simple model A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 215 http://www.astro.cornell.edu/~cordes/a6523 Lecture 11 Applications: Model comparison Challenges in large-scale surveys

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Introduction to Economic Time Series

Introduction to Economic Time Series Econometrics II Introduction to Economic Time Series Morten Nyboe Tabor Learning Goals 1 Give an account for the important differences between (independent) cross-sectional data and time series data. 2

More information

dv dt Predator-Prey Models

dv dt Predator-Prey Models Predator-Prey Models This is a diverse area that includes general models of consumption: Granivores eating seeds Parasitoids Parasite-host interactions Lotka-Voterra model prey and predator: V = victim

More information

PROBABILISTIC METHODS FOR A LINEAR REACTION-HYPERBOLIC SYSTEM WITH CONSTANT COEFFICIENTS

PROBABILISTIC METHODS FOR A LINEAR REACTION-HYPERBOLIC SYSTEM WITH CONSTANT COEFFICIENTS The Annals of Applied Probability 1999, Vol. 9, No. 3, 719 731 PROBABILISTIC METHODS FOR A LINEAR REACTION-HYPERBOLIC SYSTEM WITH CONSTANT COEFFICIENTS By Elizabeth A. Brooks National Institute of Environmental

More information

Lecture 20/Lab 21: Systems of Nonlinear ODEs

Lecture 20/Lab 21: Systems of Nonlinear ODEs Lecture 20/Lab 21: Systems of Nonlinear ODEs MAR514 Geoffrey Cowles Department of Fisheries Oceanography School for Marine Science and Technology University of Massachusetts-Dartmouth Coupled ODEs: Species

More information

A NUMERICAL STUDY ON PREDATOR PREY MODEL

A NUMERICAL STUDY ON PREDATOR PREY MODEL International Conference Mathematical and Computational Biology 2011 International Journal of Modern Physics: Conference Series Vol. 9 (2012) 347 353 World Scientific Publishing Company DOI: 10.1142/S2010194512005417

More information

CHAPTER 3 ANALYSIS OF RELIABILITY AND PROBABILITY MEASURES

CHAPTER 3 ANALYSIS OF RELIABILITY AND PROBABILITY MEASURES 27 CHAPTER 3 ANALYSIS OF RELIABILITY AND PROBABILITY MEASURES 3.1 INTRODUCTION The express purpose of this research is to assimilate reliability and its associated probabilistic variables into the Unit

More information

INTRODUCTION TO BAYESIAN INFERENCE PART 2 CHRIS BISHOP

INTRODUCTION TO BAYESIAN INFERENCE PART 2 CHRIS BISHOP INTRODUCTION TO BAYESIAN INFERENCE PART 2 CHRIS BISHOP Personal Healthcare Revolution Electronic health records (CFH) Personal genomics (DeCode, Navigenics, 23andMe) X-prize: first $10k human genome technology

More information

ETIKA V PROFESII PSYCHOLÓGA

ETIKA V PROFESII PSYCHOLÓGA P r a ž s k á v y s o k á š k o l a p s y c h o s o c i á l n í c h s t u d i í ETIKA V PROFESII PSYCHOLÓGA N a t á l i a S l o b o d n í k o v á v e d ú c i p r á c e : P h D r. M a r t i n S t r o u

More information

COMPETITION OF FAST AND SLOW MOVERS FOR RENEWABLE AND DIFFUSIVE RESOURCE

COMPETITION OF FAST AND SLOW MOVERS FOR RENEWABLE AND DIFFUSIVE RESOURCE CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 2, Number, Spring 22 COMPETITION OF FAST AND SLOW MOVERS FOR RENEWABLE AND DIFFUSIVE RESOURCE SILOGINI THANARAJAH AND HAO WANG ABSTRACT. In many studies of

More information

Final exam: Automatic Control II (Reglerteknik II, 1TT495)

Final exam: Automatic Control II (Reglerteknik II, 1TT495) Uppsala University Department of Information Technology Systems and Control Professor Torsten Söderström Final exam: Automatic Control II (Reglerteknik II, TT495) Date: October 6, Responsible examiner:

More information

BIOS 5970: Plant-Herbivore Interactions Dr. Stephen Malcolm, Department of Biological Sciences

BIOS 5970: Plant-Herbivore Interactions Dr. Stephen Malcolm, Department of Biological Sciences BIOS 5970: Plant-Herbivore Interactions Dr. Stephen Malcolm, Department of Biological Sciences D. POPULATION & COMMUNITY DYNAMICS Week 10. Population models 1: Lecture summary: Distribution and abundance

More information

A Primer on Asymptotics

A Primer on Asymptotics A Primer on Asymptotics Eric Zivot Department of Economics University of Washington September 30, 2003 Revised: October 7, 2009 Introduction The two main concepts in asymptotic theory covered in these

More information

Lecture 1 Modeling in Biology: an introduction

Lecture 1 Modeling in Biology: an introduction Lecture 1 in Biology: an introduction Luca Bortolussi 1 Alberto Policriti 2 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste Via Valerio 12/a, 34100 Trieste. luca@dmi.units.it

More information

Derivation of Itô SDE and Relationship to ODE and CTMC Models

Derivation of Itô SDE and Relationship to ODE and CTMC Models Derivation of Itô SDE and Relationship to ODE and CTMC Models Biomathematics II April 23, 2015 Linda J. S. Allen Texas Tech University TTU 1 Euler-Maruyama Method for Numerical Solution of an Itô SDE dx(t)

More information

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS International Workshop Quarkonium Working Group QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS ALBERTO POLLERI TU München and ECT* Trento CERN - November 2002 Outline What do we know for sure?

More information

Stochastic Spectral Approaches to Bayesian Inference

Stochastic Spectral Approaches to Bayesian Inference Stochastic Spectral Approaches to Bayesian Inference Prof. Nathan L. Gibson Department of Mathematics Applied Mathematics and Computation Seminar March 4, 2011 Prof. Gibson (OSU) Spectral Approaches to

More information

Open Economy Macroeconomics: Theory, methods and applications

Open Economy Macroeconomics: Theory, methods and applications Open Economy Macroeconomics: Theory, methods and applications Lecture 4: The state space representation and the Kalman Filter Hernán D. Seoane UC3M January, 2016 Today s lecture State space representation

More information

Ecology Regulation, Fluctuations and Metapopulations

Ecology Regulation, Fluctuations and Metapopulations Ecology Regulation, Fluctuations and Metapopulations The Influence of Density on Population Growth and Consideration of Geographic Structure in Populations Predictions of Logistic Growth The reality of

More information