Chances are good Modeling stochastic forces in ecology

Size: px
Start display at page:

Download "Chances are good Modeling stochastic forces in ecology"

Transcription

1 Chances are good Modeling stochastic forces in ecology Ecologists have a love-hate relationship with mathematical models The current popularity in population ecology of models so abstract that it is difficult to see how a testable hypothesis might be deduced from them is a more serious matter. How much weight and epistemological status do the authors and supporters of such models attach to the conclusions that might be drawn from them? Does the popularity of such models mark the first step toward Scholasticism? Andrewartha and Birch (1954) Part of the problem was that mathematical models in ecology were deterministic, consisting of differential equations, difference equations, etc. Ecological data, by contrast, typically revealed wild fluctuations (see Figures):

2 Solid circles: female grizzly bears with cubs, unduplicated sightings, Open circles: one-step expected values of fitted stochastic Ricker model.

3 The claim (May 1974) that such wild fluctuations might in fact be deterministic and explained with some low-dimensional mathematical model (if only we knew the form of the model) was the ultimate provocation. (In the '70s, in practically the same breath, the mathematical ecologists claimed that dynamic models, linearized around equilbrium, explained population abundance patterns in ecological communities.) What were ecologists to make of mathematical models? Were these differential equations in their textbooks intended to be taken seriously as scientific hypotheses? In all of the biomathematics literature, was there a single mathematical model that stuck as a succesful explanation of a real system?

4 Stochasticity population processes are fundamentally births, deaths, migrations stochasticity is the random variability in such processes random : unexplained, high-dimensional variability that is conveniently modeled by probability distributions

5 Importance of stochasticity noise is pervasive in ecological data, and satisfactory explanations (ecological theory) must accomodate such variability connecting deterministic models with data requires explicit modeling of stochastic forces (departures of data from model) deterministic concepts, such as point equilibria, cycles, and chaos must be rethought in stochastic contexts accurate modeling and estimation of stochastic forces crucial to species preservation efforts in conservation biology

6 Deterministic model: 8 œ:8 "! 8! : number of individuals in a cohort at year >œ0 :: survival fraction 8 " : number of individuals in cohort alive 1 year later Demographic stochasticity each individual in cohort experiences an independent random experiment to determine a life table outcome e.g. for each of 8! individuals, roll the dice of life to determine whether the individual lives or dies :: probability of survival R " : number of survivors is a random variable

7 Pr ÒR œ8 Óœ Š : " Ð" :Ñ! ", " " 8 8! " 8 œ " 0, 1, 2, notation: R " µ binomial( 8!, :) expected value: variance: 8 EaR b œ! 8 PrcR œ8 d " " 8œ0 8 "! œ:8! " " VaR b œ! a8 EaR bb TcR œ8 d " " " 8œ0 "! œ:ð1 :Ñ8 ( œ! 8 Ñ #!! " " coefficient of variation: CVaR b œ œ " ÈVaR" b EaR b " " Ð" :Ñ É È 8! : note: CVaR " bp0 as 8! becomes large (model becomes essentially deterministic)

8 Environmental stochasticity good years and bad years: survival probability varies model: T taken to be a random variable with continuous distribution on a0, 1b R œt8 "! expected value: EaR b œ EaTb8 "! variance: VaR b œ V atb8 # ( œ " 8 # Ñ "!! coefficient of variation: CVaR b œ CVaTb " note: CV ar bdoes not go to zero as 8 increases "!

9 Both demo and enviro stochasticity 0 T a: b: probability density function for T ' 0 a:.: b œ1! " T first draw value of T (say, :); then draw value of R " R Tœ:µ binomial a8, : b PrÒR "! œ8 Ó œ " " " ! 8 T ' Š! : " Ð" :Ñ! " 0 Ð:Ñ.: " from conditional probability: EÐR" Ñœ EE Ò ÐR" Tœ: ÑÓ VÐR" Ñœ EV Ò ÐR" Tœ: ÑÓ VE Ò ÐR" Tœ: ÑÓ expected value: EÐR Ñœ EÐ8 TÑœ8 EÐTÑ "!!

10 variance: VÐR Ñœ EÒ8 TÐ" TÑÓ VÐ8 TÑ "!! œ8 EÒTÐ" TÑÓ 8 VÐTÑ!! # ( œ! 8 " 8 )!! # Variance stabilizing transformations V ÐR" Ñœ@Ð8! Ñ (conditional on 8! ) want to find transformation \" œ1r a " b such that the variance of \ " is a constant (i.e. does not depend on ) 8! such a transformation represents the scale on which the stochasticity in R " can be modeled as additive noise \ œ1ðr Ñ 1Ð8 Ñ ÐR 8 Ñ1w " "! "! Ð8! Ñ w "! "!! VÐ\ Ñ Vc1Ð8 Ñ ÐR 8 Ñ1 Ð8 Ñd

11 w w # "!!! œ VaR 1Ð8 Ñb œ c1ð8 Ñ Ñ w # Set c1ð8ñ œ- and solve for 1a8b! (a positive constant) "'.8 # 1Ð8Ñ œ- - where -" ( œ È-! ) and -# are arbitrary constants demographic: a8b œ! 8 or just - # È! È # 1Ð8Ñ œ " 8-1Ð8Ñ œ È8

12 environmental: a8b œ " 8 # or just - 1Ð8Ñ œ " " ln 8-18 a b œ ln8 # both d & e: a8b œ! 8 " 8 # - # # 1Ð8Ñ œ " È" ln ˆ È" È"! reparameterize a b œ! 8 " 8 # œ 9 Ð" < Ñ%8 < 8 # <: relative weight of enviro stochasticity component

13 1Ð8Ñ œ # ln " È< 8 " È< 8 %Ð" < Ñ È< # # ( - œ È9 and - œ Ð#ÎÈ< Ñln Ð# È< Ñ) " # if < œ 1, 18 a b œ ln8 if < p0, 18 a bpè8

14 Stochastic dynamic models deterministic survival as a dynamic model: 8 œ:8 > > " where >œ0, 1, 2, Chains of conditional distributions (Markov, etc.) PrcR œ8 R œ8 d œ:8 a 8 b > > > " > " > > " : a b: probability mass (or density) function for R > given the fixed size of the previous population demographic stochastic model of survival :8 a > 8> " b œ Š : > Ð" :Ñ > " > " > > Start with, pick, then pick, R R! " #

15 ex. demo plus enviro :8 a > 8> " b= ' Š! : " Ð" :Ñ! " 0 Ð:Ñ.: " ! 8 T " Nonlinear autoregressive (NLAR) processes deterministic population model: ex. Ricker model: 8 œ08 a > > " 8 œ8 exp a+,8 > > " > " stochstic version: transform and add noise : B œ18 a b œ108 a a bb œ2ðb Ñ > > > " > " b b

16 \ œ2\ a b I > > " > where I > has a normal distribution with mean 0 and variance 5 # ( I > µ normalˆ 0, 5 #, with I", I#,..., uncorrelated. The above implies that the conditional distribution of \ > given \ > " œb> " is normal ˆ 2B a > " b, 5# Þ\ > is called a nonlinear autoregressive (NLAR) process. Conditional pdf for \ > is: :B a B b œ > > " # " a B 2 a B # 5 bb ˆ # > > " 5 # 1 exp # #

17 ex. environmental stochastic Ricker: lnr œ ln R +,R I > > " > " > \ > > " > \ œ\ +, e > " I The conditional pdf for :B a B b œ > > " \ > is: " # a B B +, e # 5 B > " # ˆ # > > " 5 # 1 exp # Multivariate NLAR process Deterministic model now is a system of difference equations 8 œ08 a > > " where 8 > is a vector of state variables, and 0 a b is a vector of functions b b

18 ex. LPA model of laboratory flour beetle populations P> œ,e> " expð -/6 P> " -/+ E> " Ñ T> œ P> " Ð". 6Ñ E> œ T> " exp Ð -:+ E> " Ñ E> " Ð". + Ñ P> œ feeding larvae at time >, T> œ nonfeeding larvae, pupae, & callow adults at time >E, > œsexually mature adults at time >

19 Stochastic version: \ œ2\ a b I > > " > where \ > is the vector of transformed variables, 2 a bis the map on the transformed scale, and I > is a random vector with a multivariate normal distribution having mean vector 0 and variance-covariance matrix D. ex. LPA model, demographic stochasticity ÈP> œ È,E expð - P - E Ñ > " /6 > " /+ > " ÈT œ ÈP Ð" Ñ I > > ". 6 #> I "> ÈE> œ ÈT exp Ð - E Ñ E Ð". Ñ > " :+ > " > " + I $>

20 Joint distribution of \, \,..., \ starting from B! :B a, B,..., B B " # ;! b " # ; œ:b a B b:b a B bâ: ˆ B B "! # " ; ; " joint pdf of the trajectory B, B,..., B starting at fixed size B! " # ; Advantages of chain models These types of chain models are excellent for analyzing time series data Many discrete time ecological processes

21 2. Diffusion processes (stochastic differential equations) deterministic model: stochastic version:.8>.> œ78 a > b.8 œ78 a b.> > >.R œ7r a b.> È@R a b.[ > > > > here.[ > µ normala0,.> b, 7Ð8Ñ is the infinitesimal mean function, a bis the infinitesimal variance function..r > is defined rigorously in terms of an Ito stochastic a b scales the noise, a b œ! 8 a b œ " 8 # environmental, etc.

22 ex. Stochastic logistic equation with environmental noise > > < 5 > # > # >.R œ ˆ <R R.> É" R.[ Conditional pdf ( transition distribution ) is solution to a PDE: Prc+ R, d œ ' :8ß a > 8 b.8 > +,! `: `8 œ " # # ` c@: d `7: c d `8# `8 Note: in chain models, it is usually not possible to write down the form of :8ß a > 8! b. But in diffusion processes, :8 a 8 b œ:8ß a 1 8 b > > " > > "

23 Advantages of diffusion processes: Many closed formulas for statistical properties of diffusion processes have been derived Many other stochastic processes can be approximated by diffusion processes

24 Stationary distributions In some stochastic models, the transition distribution converges to a stationary distribution (independent of time and initial condition) :8ß a > 8! bp:8 a b as >p_ In some other stochastic models, such as in models where extinction is possible, the transition distribution can become quasistationary for a long time In diffusion processes, if a stationary distribution exists, it is given by G 78 a a a b :8 a b œ exp 2'.8

25 ex. stochastic logistic, enviro noise = - > ab = = " -8 :8 a b œ 8 e, 0 8 _ 2< 2< " 5 " - œ, =œ 1 (gamma distribution; special case is the chisquare distribution)

26 First passage properties 0a8+, ;, b: probability of reaching + before,, starting from 8, where +Ÿ8Ÿ, 0a8+, ;, b œ, ' 8exp c AaB bd.b ', exp c AaB bd.b + ' 7B a a b where AB a b œ 2.B Interestingly, stable and unstable equilibria in 7Ð8Ñ correspond to inflection points in 0 taken as a function of 8

27 These presentation notes may be downloaded at: BDennis_reprint_list.htm My address:

It's Only Fitting. Fitting model to data parameterizing model estimating unknown parameters in the model

It's Only Fitting. Fitting model to data parameterizing model estimating unknown parameters in the model It's Only Fitting Fitting model to data parameterizing model estimating unknown parameters in the model Likelihood: an example Cohort of 8! individuals observe survivors at times >œ 1, 2, 3,..., : 8",

More information

Allee effects in stochastic populations

Allee effects in stochastic populations Allee effects in stochastic populations Brian Dennis Dept Fish and Wildlife Resources University of Idaho Moscow ID 83844-1136 USA brian@uidaho.edu ... what minimal numbers are necessary if a species is

More information

Stochastic logistic model with environmental noise. Brian Dennis Dept Fish and Wildlife Resources and Dept Statistical Science University of Idaho

Stochastic logistic model with environmental noise. Brian Dennis Dept Fish and Wildlife Resources and Dept Statistical Science University of Idaho Stochastic logistic model with environmental noise Brian Dennis Dept Fish and Wildlife Resources and Dept Statistical Science University of Idaho Questions I. What plausible biological mechanisms, if any,

More information

2. Let 0 be as in problem 1. Find the Fourier coefficient,&. (In other words, find the constant,& the Fourier series for 0.)

2. Let 0 be as in problem 1. Find the Fourier coefficient,&. (In other words, find the constant,& the Fourier series for 0.) Engineering Mathematics (ESE 317) Exam 4 April 23, 200 This exam contains seven multiple-choice problems worth two points each, 11 true-false problems worth one point each, and some free-response problems

More information

Section 1.3 Functions and Their Graphs 19

Section 1.3 Functions and Their Graphs 19 23. 0 1 2 24. 0 1 2 y 0 1 0 y 1 0 0 Section 1.3 Functions and Their Graphs 19 3, Ÿ 1, 0 25. y œ 26. y œ œ 2, 1 œ, 0 Ÿ " 27. (a) Line through a!ß! band a"ß " b: y œ Line through a"ß " band aß! b: y œ 2,

More information

Example: A Markov Process

Example: A Markov Process Example: A Markov Process Divide the greater metro region into three parts: city such as St. Louis), suburbs to include such areas as Clayton, University City, Richmond Heights, Maplewood, Kirkwood,...)

More information

SIMULATION - PROBLEM SET 1

SIMULATION - PROBLEM SET 1 SIMULATION - PROBLEM SET 1 " if! Ÿ B Ÿ 1. The random variable X has probability density function 0ÐBÑ œ " $ if Ÿ B Ÿ.! otherwise Using the inverse transform method of simulation, find the random observation

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 2016 MODULE 1 : Probability distributions Time allowed: Three hours Candidates should answer FIVE questions. All questions carry equal marks.

More information

System Identification

System Identification System Identification Arun K. Tangirala Department of Chemical Engineering IIT Madras July 27, 2013 Module 3 Lecture 1 Arun K. Tangirala System Identification July 27, 2013 1 Objectives of this Module

More information

1 Random walks and data

1 Random walks and data Inference, Models and Simulation for Complex Systems CSCI 7-1 Lecture 7 15 September 11 Prof. Aaron Clauset 1 Random walks and data Supposeyou have some time-series data x 1,x,x 3,...,x T and you want

More information

Handbook of Stochastic Methods

Handbook of Stochastic Methods C. W. Gardiner Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences Third Edition With 30 Figures Springer Contents 1. A Historical Introduction 1 1.1 Motivation I 1.2 Some Historical

More information

An investigation into the use of maximum posterior probability estimates for assessing the accuracy of large maps

An investigation into the use of maximum posterior probability estimates for assessing the accuracy of large maps An investigation into the use of maximum posterior probability estimates for assessing the accuracy of large maps Brian Steele 1 and Dave Patterson2 Dept. of Mathematical Sciences University of Montana

More information

Stat 643 Problems. a) Show that V is a sub 5-algebra of T. b) Let \ be an integrable random variable. Find EÐ\lVÑÞ

Stat 643 Problems. a) Show that V is a sub 5-algebra of T. b) Let \ be an integrable random variable. Find EÐ\lVÑÞ Stat 643 Problems 1. Let ( HT, ) be a measurable space. Suppose that., T and Uare 5-finite positive measures on this space with T Uand U...T.T.U a) Show that T. and œ a.s......u.....u.u Š.. b) Show that

More information

Econ 424 Time Series Concepts

Econ 424 Time Series Concepts Econ 424 Time Series Concepts Eric Zivot January 20 2015 Time Series Processes Stochastic (Random) Process { 1 2 +1 } = { } = sequence of random variables indexed by time Observed time series of length

More information

From Handout #1, the randomization model for a design with a simple block structure can be written as

From Handout #1, the randomization model for a design with a simple block structure can be written as Hout 4 Strata Null ANOVA From Hout 1 the romization model for a design with a simple block structure can be written as C œ.1 \ X α % (4.1) w where α œðα á α > Ñ E ÐÑœ % 0 Z œcov ÐÑ % with cov( % 3 % 4

More information

DEPARTMENT OF MATHEMATICS AND STATISTICS QUALIFYING EXAMINATION II IN MATHEMATICAL STATISTICS SATURDAY, SEPTEMBER 24, 2016

DEPARTMENT OF MATHEMATICS AND STATISTICS QUALIFYING EXAMINATION II IN MATHEMATICAL STATISTICS SATURDAY, SEPTEMBER 24, 2016 DEPARTMENT OF MATHEMATICS AND STATISTICS QUALIFYING EXAMINATION II IN MATHEMATICAL STATISTICS SATURDAY, SEPTEMBER 24, 2016 Examiners: Drs. K. M. Ramachandran and G. S. Ladde INSTRUCTIONS: a. The quality

More information

2 One-dimensional models in discrete time

2 One-dimensional models in discrete time 2 One-dimensional models in discrete time So far, we have assumed that demographic events happen continuously over time and can thus be written as rates. For many biological species with overlapping generations

More information

An R # Statistic for Fixed Effects in the Linear Mixed Model and Extension to the GLMM

An R # Statistic for Fixed Effects in the Linear Mixed Model and Extension to the GLMM An R Statistic for Fixed Effects in the Linear Mixed Model and Extension to the GLMM Lloyd J. Edwards, Ph.D. UNC-CH Department of Biostatistics email: Lloyd_Edwards@unc.edu Presented to the Department

More information

Math 131 Exam 4 (Final Exam) F04M

Math 131 Exam 4 (Final Exam) F04M Math 3 Exam 4 (Final Exam) F04M3.4. Name ID Number The exam consists of 8 multiple choice questions (5 points each) and 0 true/false questions ( point each), for a total of 00 points. Mark the correct

More information

Statistics of stochastic processes

Statistics of stochastic processes Introduction Statistics of stochastic processes Generally statistics is performed on observations y 1,..., y n assumed to be realizations of independent random variables Y 1,..., Y n. 14 settembre 2014

More information

EXCERPTS FROM ACTEX CALCULUS REVIEW MANUAL

EXCERPTS FROM ACTEX CALCULUS REVIEW MANUAL EXCERPTS FROM ACTEX CALCULUS REVIEW MANUAL Table of Contents Introductory Comments SECTION 6 - Differentiation PROLEM SET 6 TALE OF CONTENTS INTRODUCTORY COMMENTS Section 1 Set Theory 1 Section 2 Intervals,

More information

A proportion is the fraction of individuals having a particular attribute. Can range from 0 to 1!

A proportion is the fraction of individuals having a particular attribute. Can range from 0 to 1! Proportions A proportion is the fraction of individuals having a particular attribute. It is also the probability that an individual randomly sampled from the population will have that attribute Can range

More information

Stochastic Processes

Stochastic Processes Elements of Lecture II Hamid R. Rabiee with thanks to Ali Jalali Overview Reading Assignment Chapter 9 of textbook Further Resources MIT Open Course Ware S. Karlin and H. M. Taylor, A First Course in Stochastic

More information

QUALIFYING EXAMINATION II IN MATHEMATICAL STATISTICS SATURDAY, MAY 9, Examiners: Drs. K. M. Ramachandran and G. S. Ladde

QUALIFYING EXAMINATION II IN MATHEMATICAL STATISTICS SATURDAY, MAY 9, Examiners: Drs. K. M. Ramachandran and G. S. Ladde QUALIFYING EXAMINATION II IN MATHEMATICAL STATISTICS SATURDAY, MAY 9, 2015 Examiners: Drs. K. M. Ramachandran and G. S. Ladde INSTRUCTIONS: a. The quality is more important than the quantity. b. Attempt

More information

e) D œ < f) D œ < b) A parametric equation for the line passing through Ð %, &,) ) and (#,(, %Ñ.

e) D œ < f) D œ < b) A parametric equation for the line passing through Ð %, &,) ) and (#,(, %Ñ. Page 1 Calculus III : Bonus Problems: Set 1 Grade /42 Name Due at Exam 1 6/29/2018 1. (2 points) Give the equations for the following geometrical objects : a) A sphere of radius & centered at the point

More information

MAP METHODS FOR MACHINE LEARNING. Mark A. Kon, Boston University Leszek Plaskota, Warsaw University, Warsaw Andrzej Przybyszewski, McGill University

MAP METHODS FOR MACHINE LEARNING. Mark A. Kon, Boston University Leszek Plaskota, Warsaw University, Warsaw Andrzej Przybyszewski, McGill University MAP METHODS FOR MACHINE LEARNING Mark A. Kon, Boston University Leszek Plaskota, Warsaw University, Warsaw Andrzej Przybyszewski, McGill University Example: Control System 1. Paradigm: Machine learning

More information

STAT 2122 Homework # 3 Solutions Fall 2018 Instr. Sonin

STAT 2122 Homework # 3 Solutions Fall 2018 Instr. Sonin STAT 2122 Homeork Solutions Fall 2018 Instr. Sonin Due Friday, October 5 NAME (25 + 5 points) Sho all ork on problems! (4) 1. In the... Lotto, you may pick six different numbers from the set Ö"ß ß $ß ÞÞÞß

More information

8œ! This theorem is justified by repeating the process developed for a Taylor polynomial an infinite number of times.

8œ! This theorem is justified by repeating the process developed for a Taylor polynomial an infinite number of times. Taylor and Maclaurin Series We can use the same process we used to find a Taylor or Maclaurin polynomial to find a power series for a particular function as long as the function has infinitely many derivatives.

More information

at least 50 and preferably 100 observations should be available to build a proper model

at least 50 and preferably 100 observations should be available to build a proper model III Box-Jenkins Methods 1. Pros and Cons of ARIMA Forecasting a) need for data at least 50 and preferably 100 observations should be available to build a proper model used most frequently for hourly or

More information

HANDBOOK OF APPLICABLE MATHEMATICS

HANDBOOK OF APPLICABLE MATHEMATICS HANDBOOK OF APPLICABLE MATHEMATICS Chief Editor: Walter Ledermann Volume II: Probability Emlyn Lloyd University oflancaster A Wiley-Interscience Publication JOHN WILEY & SONS Chichester - New York - Brisbane

More information

For final project discussion every afternoon Mark and I will be available

For final project discussion every afternoon Mark and I will be available Worshop report 1. Daniels report is on website 2. Don t expect to write it based on listening to one project (we had 6 only 2 was sufficient quality) 3. I suggest writing it on one presentation. 4. Include

More information

The Wright-Fisher Model and Genetic Drift

The Wright-Fisher Model and Genetic Drift The Wright-Fisher Model and Genetic Drift January 22, 2015 1 1 Hardy-Weinberg Equilibrium Our goal is to understand the dynamics of allele and genotype frequencies in an infinite, randomlymating population

More information

The Leslie Matrix. The Leslie Matrix (/2)

The Leslie Matrix. The Leslie Matrix (/2) The Leslie Matrix The Leslie matrix is a generalization of the above. It describes annual increases in various age categories of a population. As above we write p n+1 = Ap n where p n, A are given by:

More information

NOVEMBER 2005 EXAM NOVEMBER 2005 CAS COURSE 3 EXAM SOLUTIONS 1. Maximum likelihood estimation: The log of the density is 68 0ÐBÑ œ 68 ) Ð) "Ñ 68 B. The loglikelihood function is & j œ 68 0ÐB Ñ œ & 68 )

More information

Math 266: Autonomous equation and population dynamics

Math 266: Autonomous equation and population dynamics Math 266: Autonomous equation and population namics Long Jin Purdue, Spring 2018 Autonomous equation An autonomous equation is a differential equation which only involves the unknown function y and its

More information

Switching Regime Estimation

Switching Regime Estimation Switching Regime Estimation Series de Tiempo BIrkbeck March 2013 Martin Sola (FE) Markov Switching models 01/13 1 / 52 The economy (the time series) often behaves very different in periods such as booms

More information

Handbook of Stochastic Methods

Handbook of Stochastic Methods Springer Series in Synergetics 13 Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences von Crispin W Gardiner Neuausgabe Handbook of Stochastic Methods Gardiner schnell und portofrei

More information

SIMULTANEOUS CONFIDENCE BANDS FOR THE PTH PERCENTILE AND THE MEAN LIFETIME IN EXPONENTIAL AND WEIBULL REGRESSION MODELS. Ping Sa and S.J.

SIMULTANEOUS CONFIDENCE BANDS FOR THE PTH PERCENTILE AND THE MEAN LIFETIME IN EXPONENTIAL AND WEIBULL REGRESSION MODELS. Ping Sa and S.J. SIMULTANEOUS CONFIDENCE BANDS FOR THE PTH PERCENTILE AND THE MEAN LIFETIME IN EXPONENTIAL AND WEIBULL REGRESSION MODELS " # Ping Sa and S.J. Lee " Dept. of Mathematics and Statistics, U. of North Florida,

More information

Chaos in Dynamical Systems. LIACS Natural Computing Group Leiden University

Chaos in Dynamical Systems. LIACS Natural Computing Group Leiden University Chaos in Dynamical Systems Overview Introduction: Modeling Nature! Example: Logistic Growth Fixed Points Bifurcation Diagrams Application Examples 2 INTRODUCTION 3 Linear and Non-linear dynamic systems

More information

Probability basics. Probability and Measure Theory. Probability = mathematical analysis

Probability basics. Probability and Measure Theory. Probability = mathematical analysis MA 751 Probability basics Probability and Measure Theory 1. Basics of probability 2 aspects of probability: Probability = mathematical analysis Probability = common sense Probability basics A set-up of

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

The Spotted Owls 5 " 5. = 5 " œ!þ")45 Ð'!% leave nest, 30% of those succeed) + 5 " œ!þ("= 5!Þ*%+ 5 ( adults live about 20 yrs)

The Spotted Owls 5  5. = 5  œ!þ)45 Ð'!% leave nest, 30% of those succeed) + 5  œ!þ(= 5!Þ*%+ 5 ( adults live about 20 yrs) The Spotted Owls Be sure to read the example at the introduction to Chapter in the textbook. It gives more general background information for this example. The example leads to a dynamical system which

More information

IEOR 3106: Introduction to Operations Research: Stochastic Models. Professor Whitt. SOLUTIONS to Homework Assignment 2

IEOR 3106: Introduction to Operations Research: Stochastic Models. Professor Whitt. SOLUTIONS to Homework Assignment 2 IEOR 316: Introduction to Operations Research: Stochastic Models Professor Whitt SOLUTIONS to Homework Assignment 2 More Probability Review: In the Ross textbook, Introduction to Probability Models, read

More information

Chapter 3 - Temporal processes

Chapter 3 - Temporal processes STK4150 - Intro 1 Chapter 3 - Temporal processes Odd Kolbjørnsen and Geir Storvik January 23 2017 STK4150 - Intro 2 Temporal processes Data collected over time Past, present, future, change Temporal aspect

More information

Systems of Equations 1. Systems of Linear Equations

Systems of Equations 1. Systems of Linear Equations Lecture 1 Systems of Equations 1. Systems of Linear Equations [We will see examples of how linear equations arise here, and how they are solved:] Example 1: In a lab experiment, a researcher wants to provide

More information

BAYESIAN ANALYSIS OF NONHOMOGENEOUS MARKOV CHAINS: APPLICATION TO MENTAL HEALTH DATA

BAYESIAN ANALYSIS OF NONHOMOGENEOUS MARKOV CHAINS: APPLICATION TO MENTAL HEALTH DATA BAYESIAN ANALYSIS OF NONHOMOGENEOUS MARKOV CHAINS: APPLICATION TO MENTAL HEALTH DATA " # $ Minje Sung, Refik Soyer, Nguyen Nhan " Department of Biostatistics and Bioinformatics, Box 3454, Duke University

More information

1.1 Review of Probability Theory

1.1 Review of Probability Theory 1.1 Review of Probability Theory Angela Peace Biomathemtics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology. CRC Press,

More information

236 Chapter 4 Applications of Derivatives

236 Chapter 4 Applications of Derivatives 26 Chapter Applications of Derivatives Î$ &Î$ Î$ 5 Î$ 0 "Î$ 5( 2) $È 26. (a) g() œ ( 5) œ 5 Ê g () œ œ Ê critical points at œ 2 and œ 0 Ê g œ ± )(, increasing on ( _ß 2) and (!ß _), decreasing on ( 2 ß!)!

More information

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment:

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment: Stochastic Processes: I consider bowl of worms model for oscilloscope experiment: SAPAscope 2.0 / 0 1 RESET SAPA2e 22, 23 II 1 stochastic process is: Stochastic Processes: II informally: bowl + drawing

More information

Feedback between US and UK Prices: a Frequency Domain Analysis. Abstract

Feedback between US and UK Prices: a Frequency Domain Analysis. Abstract Feedback between US and UK Prices: a Frequency Domain Analysis Jahyeong Koo Federal Reserve Bank of Dallas Paul A Johnson Vassar College Abstract This paper decomposes the feedback between US and UK price

More information

Suggestions - Problem Set (a) Show the discriminant condition (1) takes the form. ln ln, # # R R

Suggestions - Problem Set (a) Show the discriminant condition (1) takes the form. ln ln, # # R R Suggetion - Problem Set 3 4.2 (a) Show the dicriminant condition (1) take the form x D Ð.. Ñ. D.. D. ln ln, a deired. We then replace the quantitie. 3ß D3 by their etimate to get the proper form for thi

More information

Statistical Methods in HYDROLOGY CHARLES T. HAAN. The Iowa State University Press / Ames

Statistical Methods in HYDROLOGY CHARLES T. HAAN. The Iowa State University Press / Ames Statistical Methods in HYDROLOGY CHARLES T. HAAN The Iowa State University Press / Ames Univariate BASIC Table of Contents PREFACE xiii ACKNOWLEDGEMENTS xv 1 INTRODUCTION 1 2 PROBABILITY AND PROBABILITY

More information

An Introduction to Optimal Control Applied to Disease Models

An Introduction to Optimal Control Applied to Disease Models An Introduction to Optimal Control Applied to Disease Models Suzanne Lenhart University of Tennessee, Knoxville Departments of Mathematics Lecture1 p.1/37 Example Number of cancer cells at time (exponential

More information

Read Section 1.1, Examples of time series, on pages 1-8. These example introduce the book; you are not tested on them.

Read Section 1.1, Examples of time series, on pages 1-8. These example introduce the book; you are not tested on them. TS Module 1 Time series overview (The attached PDF file has better formatting.)! Model building! Time series plots Read Section 1.1, Examples of time series, on pages 1-8. These example introduce the book;

More information

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition Preface Preface to the First Edition xi xiii 1 Basic Probability Theory 1 1.1 Introduction 1 1.2 Sample Spaces and Events 3 1.3 The Axioms of Probability 7 1.4 Finite Sample Spaces and Combinatorics 15

More information

X t = a t + r t, (7.1)

X t = a t + r t, (7.1) Chapter 7 State Space Models 71 Introduction State Space models, developed over the past 10 20 years, are alternative models for time series They include both the ARIMA models of Chapters 3 6 and the Classical

More information

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN Lecture Notes 5 Convergence and Limit Theorems Motivation Convergence with Probability Convergence in Mean Square Convergence in Probability, WLLN Convergence in Distribution, CLT EE 278: Convergence and

More information

Mathematics, Box F, Brown University, Providence RI 02912, Web site:

Mathematics, Box F, Brown University, Providence RI 02912,  Web site: April 24, 2012 Jerome L, Stein 1 In their article Dynamics of cancer recurrence, J. Foo and K. Leder (F-L, 2012), were concerned with the timing of cancer recurrence. The cancer cell population consists

More information

CONTENTS. Preface List of Symbols and Notation

CONTENTS. Preface List of Symbols and Notation CONTENTS Preface List of Symbols and Notation xi xv 1 Introduction and Review 1 1.1 Deterministic and Stochastic Models 1 1.2 What is a Stochastic Process? 5 1.3 Monte Carlo Simulation 10 1.4 Conditional

More information

Table of Contents [ntc]

Table of Contents [ntc] Table of Contents [ntc] 1. Introduction: Contents and Maps Table of contents [ntc] Equilibrium thermodynamics overview [nln6] Thermal equilibrium and nonequilibrium [nln1] Levels of description in statistical

More information

Elementary Applications of Probability Theory

Elementary Applications of Probability Theory Elementary Applications of Probability Theory With an introduction to stochastic differential equations Second edition Henry C. Tuckwell Senior Research Fellow Stochastic Analysis Group of the Centre for

More information

Simulating stochastic epidemics

Simulating stochastic epidemics Simulating stochastic epidemics John M. Drake & Pejman Rohani 1 Introduction This course will use the R language programming environment for computer modeling. The purpose of this exercise is to introduce

More information

Business Statistics 41000: Homework # 2 Solutions

Business Statistics 41000: Homework # 2 Solutions Business Statistics 4000: Homework # 2 Solutions Drew Creal February 9, 204 Question #. Discrete Random Variables and Their Distributions (a) The probabilities have to sum to, which means that 0. + 0.3

More information

for valid PSD. PART B (Answer all five units, 5 X 10 = 50 Marks) UNIT I

for valid PSD. PART B (Answer all five units, 5 X 10 = 50 Marks) UNIT I Code: 15A04304 R15 B.Tech II Year I Semester (R15) Regular Examinations November/December 016 PROBABILITY THEY & STOCHASTIC PROCESSES (Electronics and Communication Engineering) Time: 3 hours Max. Marks:

More information

EC408 Topics in Applied Econometrics. B Fingleton, Dept of Economics, Strathclyde University

EC408 Topics in Applied Econometrics. B Fingleton, Dept of Economics, Strathclyde University EC408 Topics in Applied Econometrics B Fingleton, Dept of Economics, Strathclyde University Applied Econometrics What is spurious regression? How do we check for stochastic trends? Cointegration and Error

More information

Théorie Analytique des Probabilités

Théorie Analytique des Probabilités Théorie Analytique des Probabilités Pierre Simon Laplace Book II 5 9. pp. 203 228 5. An urn being supposed to contain the number B of balls, e dra from it a part or the totality, and e ask the probability

More information

AARMS Homework Exercises

AARMS Homework Exercises 1 For the gamma distribution, AARMS Homework Exercises (a) Show that the mgf is M(t) = (1 βt) α for t < 1/β (b) Use the mgf to find the mean and variance of the gamma distribution 2 A well-known inequality

More information

EEG- Signal Processing

EEG- Signal Processing Fatemeh Hadaeghi EEG- Signal Processing Lecture Notes for BSP, Chapter 5 Master Program Data Engineering 1 5 Introduction The complex patterns of neural activity, both in presence and absence of external

More information

Lecture 1: Brief Review on Stochastic Processes

Lecture 1: Brief Review on Stochastic Processes Lecture 1: Brief Review on Stochastic Processes A stochastic process is a collection of random variables {X t (s) : t T, s S}, where T is some index set and S is the common sample space of the random variables.

More information

Nonlinear GMM. Eric Zivot. Winter, 2013

Nonlinear GMM. Eric Zivot. Winter, 2013 Nonlinear GMM Eric Zivot Winter, 2013 Nonlinear GMM estimation occurs when the GMM moment conditions g(w θ) arenonlinearfunctionsofthe model parameters θ The moment conditions g(w θ) may be nonlinear functions

More information

SVM example: cancer classification Support Vector Machines

SVM example: cancer classification Support Vector Machines SVM example: cancer classification Support Vector Machines 1. Cancer genomics: TCGA The cancer genome atlas (TCGA) will provide high-quality cancer data for large scale analysis by many groups: SVM example:

More information

Probability Models. 4. What is the definition of the expectation of a discrete random variable?

Probability Models. 4. What is the definition of the expectation of a discrete random variable? 1 Probability Models The list of questions below is provided in order to help you to prepare for the test and exam. It reflects only the theoretical part of the course. You should expect the questions

More information

Problem 1 HW3. Question 2. i) We first show that for a random variable X bounded in [0, 1], since x 2 apple x, wehave

Problem 1 HW3. Question 2. i) We first show that for a random variable X bounded in [0, 1], since x 2 apple x, wehave Next, we show that, for any x Ø, (x) Æ 3 x x HW3 Problem i) We first show that for a random variable X bounded in [, ], since x apple x, wehave Var[X] EX [EX] apple EX [EX] EX( EX) Since EX [, ], therefore,

More information

Metapopulations with infinitely many patches

Metapopulations with infinitely many patches Metapopulations with infinitely many patches Phil. Pollett The University of Queensland UQ ACEMS Research Group Meeting 10th September 2018 Phil. Pollett (The University of Queensland) Infinite-patch metapopulations

More information

Introduction to course: BSCI 462 of BIOL 708 R

Introduction to course: BSCI 462 of BIOL 708 R Introduction to course: BSCI 462 of BIOL 708 R Population Ecology: Fundamental concepts in plant and animal systems Spring 2013 Introduction The biology of a population = Population Ecology Issue of scale,

More information

LECTURE NOTES FYS 4550/FYS EXPERIMENTAL HIGH ENERGY PHYSICS AUTUMN 2013 PART I A. STRANDLIE GJØVIK UNIVERSITY COLLEGE AND UNIVERSITY OF OSLO

LECTURE NOTES FYS 4550/FYS EXPERIMENTAL HIGH ENERGY PHYSICS AUTUMN 2013 PART I A. STRANDLIE GJØVIK UNIVERSITY COLLEGE AND UNIVERSITY OF OSLO LECTURE NOTES FYS 4550/FYS9550 - EXPERIMENTAL HIGH ENERGY PHYSICS AUTUMN 2013 PART I PROBABILITY AND STATISTICS A. STRANDLIE GJØVIK UNIVERSITY COLLEGE AND UNIVERSITY OF OSLO Before embarking on the concept

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables This Version: July 30, 2015 Multiple Random Variables 2 Now we consider models with more than one r.v. These are called multivariate models For instance: height and weight An

More information

ECE Lecture #10 Overview

ECE Lecture #10 Overview ECE 450 - Lecture #0 Overview Introduction to Random Vectors CDF, PDF Mean Vector, Covariance Matrix Jointly Gaussian RV s: vector form of pdf Introduction to Random (or Stochastic) Processes Definitions

More information

6 Continuous-Time Birth and Death Chains

6 Continuous-Time Birth and Death Chains 6 Continuous-Time Birth and Death Chains Angela Peace Biomathematics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology.

More information

Chapter 5 Lecture. Metapopulation Ecology. Spring 2013

Chapter 5 Lecture. Metapopulation Ecology. Spring 2013 Chapter 5 Lecture Metapopulation Ecology Spring 2013 5.1 Fundamentals of Metapopulation Ecology Populations have a spatial component and their persistence is based upon: Gene flow ~ immigrations and emigrations

More information

SPRING 2007 EXAM C SOLUTIONS

SPRING 2007 EXAM C SOLUTIONS SPRING 007 EXAM C SOLUTIONS Question #1 The data are already shifted (have had the policy limit and the deductible of 50 applied). The two 350 payments are censored. Thus the likelihood function is L =

More information

[y i α βx i ] 2 (2) Q = i=1

[y i α βx i ] 2 (2) Q = i=1 Least squares fits This section has no probability in it. There are no random variables. We are given n points (x i, y i ) and want to find the equation of the line that best fits them. We take the equation

More information

The Multivariate Gaussian Distribution [DRAFT]

The Multivariate Gaussian Distribution [DRAFT] The Multivariate Gaussian Distribution DRAFT David S. Rosenberg Abstract This is a collection of a few key and standard results about multivariate Gaussian distributions. I have not included many proofs,

More information

. Find E(V ) and var(v ).

. Find E(V ) and var(v ). Math 6382/6383: Probability Models and Mathematical Statistics Sample Preliminary Exam Questions 1. A person tosses a fair coin until she obtains 2 heads in a row. She then tosses a fair die the same number

More information

MA 777: Topics in Mathematical Biology

MA 777: Topics in Mathematical Biology MA 777: Topics in Mathematical Biology David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma777/ Spring 2018 David Murrugarra (University of Kentucky) Lecture

More information

Dependence. Practitioner Course: Portfolio Optimization. John Dodson. September 10, Dependence. John Dodson. Outline.

Dependence. Practitioner Course: Portfolio Optimization. John Dodson. September 10, Dependence. John Dodson. Outline. Practitioner Course: Portfolio Optimization September 10, 2008 Before we define dependence, it is useful to define Random variables X and Y are independent iff For all x, y. In particular, F (X,Y ) (x,

More information

Stat 643 Problems, Fall 2000

Stat 643 Problems, Fall 2000 Stat 643 Problems, Fall 2000 Assignment 1 1. Let ( HT, ) be a measurable space. Suppose that., T and Uare 5-finite positive measures on this space ith T Uand U...T.T.U a) Sho that T. and œ a.s......u.....u.u

More information

LECTURE 5. Introduction to Econometrics. Hypothesis testing

LECTURE 5. Introduction to Econometrics. Hypothesis testing LECTURE 5 Introduction to Econometrics Hypothesis testing October 18, 2016 1 / 26 ON TODAY S LECTURE We are going to discuss how hypotheses about coefficients can be tested in regression models We will

More information

4. Distributions of Functions of Random Variables

4. Distributions of Functions of Random Variables 4. Distributions of Functions of Random Variables Setup: Consider as given the joint distribution of X 1,..., X n (i.e. consider as given f X1,...,X n and F X1,...,X n ) Consider k functions g 1 : R n

More information

MAT X (Spring 2012) Random Variables - Part I

MAT X (Spring 2012) Random Variables - Part I MAT 2379 3X (Spring 2012) Random Variables - Part I While writing my book [Stochastic Processes] I had an argument with Feller. He asserted that everyone said random variable and I asserted that everyone

More information

Exercises with solutions (Set D)

Exercises with solutions (Set D) Exercises with solutions Set D. A fair die is rolled at the same time as a fair coin is tossed. Let A be the number on the upper surface of the die and let B describe the outcome of the coin toss, where

More information

Bayesian Methods with Monte Carlo Markov Chains II

Bayesian Methods with Monte Carlo Markov Chains II Bayesian Methods with Monte Carlo Markov Chains II Henry Horng-Shing Lu Institute of Statistics National Chiao Tung University hslu@stat.nctu.edu.tw http://tigpbp.iis.sinica.edu.tw/courses.htm 1 Part 3

More information

Fundamentals of Applied Probability and Random Processes

Fundamentals of Applied Probability and Random Processes Fundamentals of Applied Probability and Random Processes,nd 2 na Edition Oliver C. Ibe University of Massachusetts, LoweLL, Massachusetts ip^ W >!^ AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS

More information

Hypothesis testing. Data to decisions

Hypothesis testing. Data to decisions Hypothesis testing Data to decisions The idea Null hypothesis: H 0 : the DGP/population has property P Under the null, a sample statistic has a known distribution If, under that that distribution, the

More information

Why do populations go extinct?

Why do populations go extinct? Why do populations go extinct? Key concepts ˆ Stochastic and deterministic models ˆ Demographic and environmental stochasticity ˆ Gillespie s direct method ˆ Population viability analysis Extinction Extinction

More information

Probability Distributions: Continuous

Probability Distributions: Continuous Probability Distributions: Continuous INFO-2301: Quantitative Reasoning 2 Michael Paul and Jordan Boyd-Graber FEBRUARY 28, 2017 INFO-2301: Quantitative Reasoning 2 Paul and Boyd-Graber Probability Distributions:

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS

AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS First the X, then the AR, finally the MA Jan C. Willems, K.U. Leuven Workshop on Observation and Estimation Ben Gurion University, July 3, 2004 p./2 Joint

More information

Pure Random process Pure Random Process or White Noise Process: is a random process {X t, t 0} which has: { σ 2 if k = 0 0 if k 0

Pure Random process Pure Random Process or White Noise Process: is a random process {X t, t 0} which has: { σ 2 if k = 0 0 if k 0 MODULE 9: STATIONARY PROCESSES 7 Lecture 2 Autoregressive Processes 1 Moving Average Process Pure Random process Pure Random Process or White Noise Process: is a random process X t, t 0} which has: E[X

More information

White Noise Processes (Section 6.2)

White Noise Processes (Section 6.2) White Noise Processes (Section 6.) Recall that covariance stationary processes are time series, y t, such. E(y t ) = µ for all t. Var(y t ) = σ for all t, σ < 3. Cov(y t,y t-τ ) = γ(τ) for all t and τ

More information